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Temporal changes in habitat 
structure and gastropod 
community assemblage in 
response to active restoration of 
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Andrew Whitworth1 and Christopher Beirne1 
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Mangrove forests are biodiversity hotspots that provide critical ecosystem 
services, from coastal protection to carbon storage. Yet, these ecosystems are 
disappearing at alarming rates, and while restoration efforts are expanding 
globally, long-term monitoring—especially in the Americas—remains scarce 
and often narrowly focused on vegetation structure, overlooking biological 
recovery. In this study, we evaluate whether gastropod community 
assemblages can serve as functional indicators of ecological recovery across 
different stages of mangrove restoration in Costa Rica. Using a space-for-time 
approach, we compared tree structure and gastropod assemblages across 
restored sites of varying ages, unrestored areas, and mature mangrove forests. 
We applied linear mixed models to examine how restoration stages influenced 
structure (tree height and DBH) and biodiversity metrics (gastropod abundance 
and composition). Tree structure improved consistently with restoration age, 
with five-year-old trees reaching nearly half the height and DBH of mature forest 
counterparts. Gastropod abundance exhibited a non-linear response—initially 
declining post-planting, then peaking by year five. Community composition also 
shifted: Melampus dominated early stages, while older sites supported Vitta, 
Cerithideopsis, and Littoraria. The exclusive presence of Thaisella in mature 
forests suggests its potential as a bioindicator of late-stage ecological 
recovery. Our results underscore the value of integrating biological indicators 
into mangrove monitoring. Gastropod assemblages offer a powerful lens through 
which to monitor ecological functionality, providing a low-cost, scalable tool to 
enhance adaptive management and guide future restoration efforts in tropical 
coastal ecosystems. 
KEYWORDS 

mangrove restoration, adaptive management, gastropod community assemblage, 
ecological indicators, Costa Rica 
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1 Introduction 

Mangroves are among the world’s most productive ecosystems 
while occupying only 0.12% of the world’s total land area (Dodd 
and Ong, 2008; Nagelkerken et al., 2008). Mangroves provide 
multiple ecological services primarily related to coastal protection 
and carbon storage (Ong and Gong, 2013; Del Valle et al., 2019; 
Hilmi et al., 2022), while also sustaining rich assemblages of species, 
serving as breeding, refuge, and feeding zones for terrestrial and 
marine animals (Holguin et al., 2001; Hutchison et al., 2014; 
Wibowo et al., 2022). However, they are being destroyed at an 
alarming rate due to multiple anthropogenic factors (Kathiresan 
and Bingham, 2001; Hutchison et al., 2014; de Lacerda et al., 2019). 
Approximately 524,500 hectares of global mangrove area have been 
lost from 1996 to 2020 (Global Mangrove Watch, 2025). The loss of 
these ecosystems translates into detrimental effects on their 
ecological services and the livelihoods of coastal populations 
(Ellison et al., 2020; Lovelock et al., 2022). As a result, many 
mangrove restoration programs have been established worldwide 
to address this issue and reestablish mangroves in areas where they 
have been degraded or eradicated completely. 

Reforestation programs often emphasize tree planting over 
restoring ecosystem functions, neglecting key ecological processes 
(Ellison, 2008; Kodikara et al., 2017; Lovelock et al., 2022). 
Monitoring is frequently under-prioritized during planning and, 
when conducted, is usually short-term and focused only on 
vegetation structure (Bosire et al., 2003; Ellison et al., 2020) This 
lack of long-term monitoring hinders the ability to assess project 
success or failure (Lovelock et al., 2022). 

Robust ecological monitoring, community involvement, and 
transparent reporting are essential for adaptive management, which 
supports restoration success across ecological, political, and 
financial dimensions (Stokes et al., 2016; Ellison et al., 2020; 
Lovelock et al., 2022). However, monitoring often focuses only on 
vegetation structural parameters—such as growth rates, 
recruitment, and succession—while overlooking functional 
recovery, a key indicator of restoration success (Bosire et al., 
2003; Thornton and Johnstone, 2015). 

While assessing structural parameters of restored forests is 
essential for understanding early stabilization, it is critical to 
evaluate  restoration  success  at  the  ecosystem  level  by  
monitoring biodiversity dynamics such as the recolonization of 
macrobenthic fauna (Bosire et al., 2008; Blanco and Castaño, 2012; 
Basyuni et al., 2022). Gastropods, key macrobenthic fauna of 
mangrove ecosystems (Cannicci et al., 2008; Lee, 2008; Ortiz 
and Blanco, 2012; Salmo et al., 2017), serve as ecosystem 
engineers and keystone species (Cannicci et al., 2008; Isroni 
et al., 2023), playing a vital role in food webs and nutrient 
recycling (Macintosh et al., 2002; Ghasemi et al., 2011; Batvari 
et al., 2016). Their limited mobility makes them highly sensitive to 
environmental changes (Baderan et al., 2019), positioning them as 
effective biotic indicators (Macintosh et al., 2002; Nordhaus et al., 
2009; Blanco and Castaño, 2012; Salmo et al., 2017; Basyuni et al., 
2022; Sujarta et al., 2022). Additionally, they hold economic value 
Frontiers in Marine Science 02 
for local communities (Dewiyanti and Sofyatuddin, 2012; Awang 
et al., 2022). Despite their ecological and economic significance, 
studies on gastropod abundance, community dynamics, and 
ecological roles remain scarce (Ellison, 2008; Zvonareva 
et al., 2015). 

In response to a past focus on short-term structural assessments 
and the growing recognition of the need to understand biological 
and ecological functions in mangroves, recent studies have 
increasingly evaluated macrobenthic communities to assess 
ecological recovery in restored mangroves, particularly in the 
Indo-pacific region (Ashton et al., 2003; Dewiyanti and 
Sofyatuddin, 2012; Zvonareva et al., 2015; Salmo et al., 2017; 
Baderan et al., 2019; Yadav et al., 2019; Adharyan Islamy and 
Hasan, 2020; Basyuni et al., 2022). Gastropod diversity, 
composition and distribution has also been studied in the 
Americas, including Colombia (Cantera et al., 1999; Vilardy and 
Polanıá, 2002; Ortiz and Blanco, 2012), Mexico (Cruz-Abrego et al., 
1994; Hernandez-Alcántara and Solis-Weiss, 1994), Costa Rica 
(Pomareda and Zanella, 2006; Vargas-Zamora and Sibaja-
Cordero, 2011; Vargas et al., 2015), Venezuela (Balbas Acosta 
et al., 2013), Brazil (Collin R et al., 2005; Gorman and Turra, 
2016) and Belize (Ellison and Farnsworth, 1990, 1992). Despite 
these efforts, there is still limited information on using gastropods as 
indicators to assess ecological rehabilitation and functional recovery 
in mangrove restoration, particularly in Central America and 
Costa Rica. 

Our study evaluates for the first time in Central America, 
changes in gastropod abundance and community assemblages 
over time during a five-year mangrove restoration initiative in the 
Térraba-Sierpe National Wetland, the largest mangrove system in 
Costa Rica. Using a space-for-time approach that considers the age 
of the restored sites (planted between 2019 and 2023), we assess 
temporal changes in both structural and biological characteristics, 
comparing them to unrestored areas and mature mangrove forests. 
We hypothesize that older restoration sites will exhibit greater 
gastropod abundance and distinct community assemblages across 
different restoration stages. We hope this study serves as a guide to 
enhance mangrove restoration projects and ecological assessments 
across the Americas. 
2 Materials and methods 

2.1 Study site 

The study was conducted at a series of community-driven 
restoration sites, with technical and funding support from locally 
based conservation NGO Osa Conservation, in the Térraba-Sierpe 
National Wetland (TSNW), Costa Rica (Figure 1). The TSNW is a 
protected area of approximately 30,000 hectares in the 
northwestern region of the Osa Peninsula, declared as Ramsar site 
in 1995 (Acuña-Piedra and Quesada-Román, 2017). This wetland 
hosts the largest mangrove forest in the country with an area of 
17,736 hectares (Naranjo Lorıá, 2014; Barrantes and Peralta-
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Madriz, 2021). The TSNW is formed by two river basins: the Rıó
Grande de Terraba and the Rıo Sierpe. The wetland is located ́ ́
between 0 and 5 m.a.s.l. and has an average temperature of 26.7 C° 
and average annual precipitation of 4000 mm (Solano and 
Villalobos; Jimenez-R and Soto, 1984; Naranjo Lorıá, 2014). 

Between 1972 and 1992, the wetland experienced its highest 
deforestation rate. Changes in economic activities led local 
communities to extract timber and charcoal, drastically reducing 
mangrove coverage (Acuña-Piedra and Quesada-Román, 2017). 
The reforested sites, initially devoid of tree cover, became 
dominated by the opportunistic fern Acrostichum aureum. While 
this fern is part of the local mangrove flora, its high density and the 
morphology of its rhizomes prevent the natural regeneration of 
mangrove trees and the establishment of propagules (Barrantes and 
Peralta-Madriz, 2021). Although there was a slight increase in 
mangrove forest area after the protected area was established in 
1994, A. aureum still covered approximately 2,758 hectares of the 
wetland by 2012 (Leiva Barrantes and Cerdas, 2015; Acuña-Piedra 
and Quesada-Román, 2017). 

Based on the above, SINAC, Costa Rica’s agency in charge of the 
administration and surveillance of protected areas, designated 
priority sites for active restoration within the wetland. Osa 
Conservation joined this national effort in 2018. To date, 171 
hectares of mangroves area have been actively restored, where 
Frontiers in Marine Science 03 
three species of mangroves have been planted (Pelliciera 
rhizophorae, Rhizophora mangle and Rhizophora racemosa), 
favouring the natural regeneration of other mangrove species 
(Avicennia germinans, Laguncularia racemosa) when the fern 
is cleared. 
2.2 Gastropod sampling 

We use a space-for-time approach to determine the influence of 
restoration age on gastropod communities, using plots of different 
ages to reflect progression of ecological restoration after planting. 
Restoration sites planted in 2019, 2020, 2022 and 2023 were 
included in the present study, as well as control sites in mature 
mangrove forest (the ultimate target of the restoration) and in sites 
dominated by Acrostichum aureum (common name Negraforra; as 
a negative control reflecting no regeneration has occurred). We 
established 100m2 Permanent Monitoring Plots (PMP) using a 
systematic randomized design in both control sites and 
restoration sites planted between 2019 and 2023. We conducted 
gastropod sampling in 41 PMPs (Figure 1). Each PMP consisted of 
three subplots of 50cm x 50cm located equidistantly along a 
diagonal. The sampling was done in 2023 and 2024 during 
February and March (dry season) following the methodology of 
FIGURE 1 

Osa Conservation restoration sites and monitoring plots within the Térraba- Sierpe National Wetland, located in the Osa Peninsula, southern Pacific 
Costa Rica (left) - as identified by the red circle on the country inlay. Color depicts restoration per year. Negraforra sites where mangrove was 
removed (A), restoration area depicting a 4 year old mangrove recovery site (B), mature mangrove forest (C). 
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the Ecological Mangrove Monitoring Protocol developed by SINAC­
UNA (2020). Gastropods were sampled on all exposed roots, 
accessible trunk and branches, as well as the substrate and 
organic matter present in each subplot. Almost all individuals 
were identified in situ and unidentified individuals were collected 
and transferred to Osa Conservation laboratory facilities in Puerto 
Jimenez. Identifications were made to genus level with the 
taxonomic keys of Keen and Cruz (Keen, 1958; Cruz Soto and 
Jiménez Ramón, 1994). 
2.3 Restoration structural characteristics 

In each PMP the species, height and diameter of each tree was 
recorded. Height was measured using a tape measure from the base 
of the plant to the beginning of the apical meristem of the last leaf in 
formation. The diameter of the stem was measured with a vernier 
graduated in millimeters. Diameter measurement point varied 
according to the size of the individual: trees shorter than 50 cm 
were not measured; for trees between 50 and 150 cm in height with 
a diameter less than 10 cm, diameter was measured at 50 cm above 
the ground; and for trees taller than 150 cm with a diameter greater 
than 10 cm, diameter was measured at 130 cm. In the case of mature 
forest trees, height estimation was done with a Haglöf electronic 
clinometer (model ECII D) considering the base of the trunk at the 
level of the sediment and the highest visible part of the crown, and 
Diameter at Breast Height (DBH) was measured using a diametric 
taper, considering the highest root, as the basis for taking 
the measurement. 
 

2.4 Statistical analysis 

For each of the response terms outlined below, we implemented 
generalized linear mixed effects models using the ‘glmmTMB’ 
package (Brooks et al., 2017) in R.4.3.3 (R Core Team, 2023). In 
each model we included site as a random intercept term to account 
for the fact that multiple subsamples were taken within the same 
restoration site. For each response term, we compare the null model 
(a model with no fixed effects), to the  full  model (a model

containing restoration sites according to the planting year as a 
categorical effect). We assess the strength of evidence that 
restoration treatment influences the response term in question 
through comparing the full model to the null model using AICc, 
and take any model which improves on the null model by a DAICc 
> 6 units as ‘strong’ statistical support for restoration age. We 
compare effect sizes between strata of interest to determine the 
biological significance of the changes observed. As a measure of 
goodness of fit, we use marginal (fixed effects only) and conditional 
(full model) pseudo-R2 (Nakagawa and Schielzeth, 2013). All 
models were checked using standard residual plotting techniques. 
We assessed 1) How do mangrove structural characteristics change 
with restoration age? 2) How does the restoration stage affect 
gastropods’ general abundance? 3) Is there a genus-specific 
response of gastropods to the mangrove restoration stage? 
Frontiers in Marine Science 04
To assess how tree structure changed over time, we modeled 
average tree height and diameter at breast height (DBH) as response 
variables, with Restoration Year as a categorical fixed effect. This 
included restoration plots from 0.5 to 5 years post-planting, plus 
control treatments from mature mangroves and Negraforra 
(Acrostichum aureum); the latter was excluded from modeling due 
to the absence of trees. To examine how restoration influenced overall 
gastropod abundance, we fitted a  generalized linear mixed  model with  
the total count of individuals across all genera as the response. Finally, 
to assess shifts in community composition over time, we ran separate 
genus-specific models with each genus’ abundance as the response to 
restoration stage, grouping them into abundant and rare genera to 
improve model fit and enhance interpretability. All models mentioned 
above were fitted using a negative binomial distribution to account for 
overdispersion and the prevalence of zeros in our response variables. 

To test for significant differences in gastropod community 
composition across restoration stages and sampling periods 
(monitoring years), we performed a permutational multivariate 
analysis of variance (PERMANOVA). To further explore patterns 
in community composition across restoration stages, we conducted 
a Non-metric Multidimensional Scaling (NMDS) analysis using the 
metaMDS function from the vegan package in R, using Euclidean 
distances. The abundance matrix included five genera (Melampus, 
Vitta, Littoraria, Cerithideopsis, and Thaisella). Restoration stages 
were represented by convex hulls to visualize clustering patterns. 
The final stress value of the solution was reported as a measure of 
model fit. To examine relationships between community structure 
and vegetation attributes, we applied vector fitting (envfit) using 
average tree height and diameter at breast height (DBH). 
3 Results 

3.1 How do mangrove structural 
characteristics change with restoration 
age? 

Our results provide compelling statistical evidence for both tree 
height (DAICc = -83 from the null model; marginal R2 = 0.90; 
conditional R2 = 0.96) and DBH (DAICc = -88; marginal R2 = 0.89; 
conditional R2 = 0.97) increasing over time (Figure 2; Appendix 1 in 
Supplementary Material; Supplementary Table 1). After five years 
the predicted tree height reached 3.61 m (L95% = 221 cm; U95% = 
591 cm), roughly half that of a mature mangrove stand and 
predicted DBH was 5.7 cm (L95% = 3.5 cm; U95%= 9.2 cm), 
more than half that of the average tree DBH in mature mangrove 
forest (8.7 cm). 
3.2 How does the restoration stage affect 
gastropods’ general abundance? 

We recorded a total of 526 individuals representing five different 
genera: Melampus, Littoraria, Vitta, Cerithideopsis and Thaisella. 
Strong statistical evidence indicated restoration stage influencing 
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gastropod general abundance (DAICc= -38.5; marginal R2 = 0.67; 
conditional R2 = 0.67) with non-linear patterns (Figure 3; Appendix 2 
in Supplementary Material; Supplementary Table 3). Gastropod 
abundance dropped from 3 to 0.6 individuals per plot one year 
after restoration, then steadily increased, peaking at nearly 30 
individuals by year 5. Although abundance declined in mature 
mangroves (7.25), it remained higher than in the Negraforra control. 
Frontiers in Marine Science 05 
3.3 Is there a genus-specific response of 
gastropods to the mangrove restoration 
stage? 

Genus-specific assemblages varied notably across restoration 
stages (Figure 4; Appendix 4.1-4.5 in Supplementary Material; 
Supplementary Tables 4-8) with three general patterns observed: 
FIGURE 3 

Predicted overall gastropod abundance vs restoration stages (years since restoration). Black points represent predicted mean population level and 
lines denote the 95% confidence intervals around the fixed effects. 
FIGURE 2 

Predicted tree height (A) and DBH (B) increasing with time since restoration. Black points represent predicted mean population level; gray dots 
represent partial residuals (variance left over after accounting for all the predictors in the models); and vertical lines denote the 95% confidence 
intervals around the fixed effect for each restoration stage. As mangrove plants were completely absent from the Negraforra plots, this category was 
completely absent from the modelling process and is shown as zero height and DBH for illustrative purposes. 
frontiersin.org 

https://doi.org/10.3389/fmars.2025.1563965
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
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1) an increase with restoration progression in time (Vitta, 
Littoraria, and Cerithideopsis), 2) a decrease with restoration 
temporal progression (Melampus), and 3) presence observed only 
in mature mangrove (Thaisella). However, the patterns of change 
are not consistent between the genera, which increase with the 
restoration stage. While Littoraria abundance generally increases 
with time in restoration sites, reaching its peak in mature mangrove, 
Vitta and Cerithideopsis initially increase with restoration 
progression, being higher in the oldest restoration site (year five) 
but then significantly decreasing in mature mangroves. Thaisella, 
only present in mature mangroves, was absent from all restored and 
unrestored sites. 

We confirmed significant and consistent differences in genus-
specific compositions between restoration years, as indicated by 
PERMANOVA results (R² = 0.39, P = 0.001) (Appendix 6 in 
Supplementary Material; Supplementary Table 10). We also 
assessed sampling year as an explanatory variable in the 
PERMANOVA but as it only explained less than 1% of variation, 
we do not consider it here. Community-level compositional shifts 
became more pronounced as restoration progressed, as visualized 
through the Non-metric Multidimensional Scaling (NMDS) 
Frontiers in Marine Science 06
(Figure 5). Sites from Negraforra and early restoration stages 
(years 0.5 to 3) show overlapping compositions, although sites 
from three years post-restoration began to diverge slightly. In 
contrast, sites from years 4 and 5 cluster closely together, 
indicating a distinct community composition likely driven by the 
increased prevalence of Vitta and Cerithideopsis. Mature forest sites 
are clearly separated from all restoration stages, reflecting their 
unique and established assemblage structure, characterized by the 
exclusive presence of Thaisella. Both tree height and diameter were 
highly correlated with the NMDS axes (P = 0.001) and accounted 
for 26% and 30% of the variation respectively (Appendix 5 in 
Supplementary Material; Supplementary Table 9). 
4 Discussion 

4.1 Restored mangrove structure improves 
rapidly through time 

We found that, after just five years, the height and DBH of 
actively planted mangroves averaged about half of those in mature 
FIGURE 4 

Predicted genus-specific abundance changes with restoration progression, where Vitta and Cerithideopsis were pooled as abundant taxa and 
Melampus, Littoraria and Thaisella as rare. Colored lines confidence intervals around the mean abundance estimate (note - confidence intervals for 
restoration stages with zero individuals were excluded from the plots, as there was no variation in the reference category). 
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mangroves. These structural parameters, which increase with stand 
age are commonly used to assess ecosystem recovery (Ferreira et al., 
2015; Azman et al., 2021), proved effective for monitoring short-
term changes in mangrove forests. Interestingly, the average tree 
height in our study aligned with that observed in other five-year-old 
actively restored mangroves in the region, while the average DBH 
was significantly higher. 

For comparison, Ferreira et al (2015) reported a 4.12m height 
and 1.85cm DBH in northeastern Brazil, whereas in southern Brazil, 
the average height was 1.23 m (DBH not reported). Similarly low 
values were recorded in Cuba 1.78 m height and 1.85 cm DBH. 
These other sites typically involved monoculture plantings of 
Rhizophora mangle, which may limit restoration outcomes, as 
monocultures are often less effective for ecological rehabilitation 
(Bosire et al., 2008). In contrast, our restoration sites included three 
species, potentially enhancing forest heterogeneity, improving 
structural development, and reducing mortality due to propagule 
predation by crabs (Ellison, 2008). Growth variations are also 
influenced by site-specific factors such as soil texture, tidal 
amplitude, salinity, and density and diversity of planted species 
(Zvonareva et al., 2015; Ellison, 2008), especially across 
intertidal zones. 

We also compared planted mangrove structure with two other 
habitat types: unrestored areas (Negraforra) and mature mangroves. 
As expected, no mangrove trees or seedlings were found in 
Negraforra sites, where the fern Acrostichum aureum inhibits 
Frontiers in Marine Science 07 
natural mangrove regeneration (Dahdouh-Guebas et al., 2004; 
Blanco and Castaño, 2012; Censkowsky, 2022). These findings 
highlight the necessity of active restoration to recover ecological 
function in degraded mangrove areas colonized by A. aureum in the 
Térraba-Sierpe National Wetland. 

Interestingly, the average height of mature mangrove forests in 
our study was lower than the 10.8 m reported for mangroves in the 
TSNW (Jimenez-R and Soto, 1984) and the 10 m recorded for intact 
forests in Costa Rica’s North Pacific region (Cordero-Murillo et al., 
2023). It was also shorter than the 15.4 m average height and 
13.4 cm DBH observed in nearby Golfo Dulce mangroves (Samper-

Villarreal and Silva-Benavides, 2015). This discrepancy likely results 
from historical clearing in TSNW for tannin extraction prior to its 
protection in 1994. Mature forests that have not been degraded are 
generally more structurally complex than younger stands (Samper-

Villarreal and Silva-Benavides, 2015), suggesting that Golfo Dulce 
mangrove may be older than those in the TSNW. Despite these 
differences, we are confident in our data, as the mature mangrove 
sites were selected based on local knowledge of undisturbed areas 
over the last decade. 

Globally, mangrove restoration outcomes remain poorly 
documented particularly in Latin America and the Caribbean 
(O’Connell et al., 2021; Friess et al., 2022; Lovelock et al., 2022). 
Nevertheless, several evaluations of restored and naturally 
regenerated mangrove forests have been conducted in the Indo-
Pacific. Azman et al. (2021), in a comparative study in Malaysia, 
FIGURE 5 

Plot resulting from the NMDS analysis of the gastropod communities based on Euclidean dissimilarity to visualize differences in gastropod 
community composition across restoration stages. The final 2D solution had a stress value of 0.119, indicating a good representation of the data. 
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found that while naturally regenerated forests had higher tree 
species diversity, it was the restored mangroves which rapidly 
increased biomass and more closely resembled intact forests in 
structure. Similarly, Luo et al. (2010) observed no significant 
structural differences between planted and natural forests after 50 
years. In Kenya, Bosire et al. (2003) found that restored stands 
support seedling recruitment by providing protective structural 
development, unlike unrestored mangroves. Given the positive 
growth of all three planted species in our study, continued 
restoration and maintenance in the TSNW is strongly 
recommended to support the recovery of habitat functionality. 
 

4.2 Overall gastropod abundance increases 
with restoration time, and community 
assemblages differ across restoration 
stages 

Our results also show that gastropod abundance in restored 
mangroves increased non-linearly, initially decreasing in the first year 
after planting, then rising over time. By year five, gastropod abundance 
exceeded that of mature mangrove forests. This trend—characterized 
by an initial rise followed by a plateau or decline—mirrors patterns 
observed in other restoration efforts (Dewiyanti and Sofyatuddin, 2012; 
Zvonareva et al., 2015; Salmo et al., 2017; Chen et al., 2021). 

This increase in abundance is closely linked to the development 
of vegetation structure, which provides shelter, predator protection, 
and food for macrobenthic fauna (Skilleter and Warren, 2000; 
Dewiyanti and Sofyatuddin, 2012; Gorman and Turra, 2016; 
Harefa et al., 2024). Additional factors—including mangrove 
species diversity, organic carbon content, sediment parameters, 
salinity, pH, tidal regime, and soil moisture—also significantly 
influence gastropod recruitment (Macintosh et al., 2002; 
Dewiyanti and Sofyatuddin, 2012; Hookham et al., 2014; Salmo 
et al., 2017). For instance, Dewiyanti and Sofyatuddin (2012) found 
the highest gastropod abundance in four-year-old restoration sites 
with elevated organic carbon, while Salmo et al. (2017) linked shifts 
in species composition to increased forest cover and organic matter. 
Although we did not measure these abiotic factors, we highly 
recommend their inclusion in future studies to better explain 
gastropod community changes. 

Community-level trends identified through the NMDS analysis 
were marked by overlap in early restoration stages but began to 
clearly diverge by years 4 and 5, ultimately showing marked 
differences from mature forest composition, highlighting the 
importance of assessing changes in community assemblages on a 
long term basis. This approach provides valuable insights for 
tracking restoration progress and evaluating the ecological success 
of mangrove rehabilitation efforts. 

Our findings, in line with studies across the Indo-Pacific, support 
the use of gastropod abundance and community composition as early 
indicators of successional progress in mangrove restoration (Dewiyanti 
and Sofyatuddin, 2012; Zvonareva et al., 2015; Awang et al., 2022; 
Basyuni et al., 2022). We expect that, as our sites mature, gastropod 
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abundance will stabilize and community assemblages will more closely 
resemble those of mature forests. As noted by Zvonareva et al. (2015) 
the dominance of opportunistic organisms over mangrove-associated 
taxa may indicate that the ecosystem has not yet reached a state 
of maturity. 

Opportunistic epifaunal gastropods are commonly found in 
young or intermediate forests, which offer habitat heterogeneity, 
combining open areas with canopy-covered zones (Macintosh et al., 
2002; Salmo et al., 2017; Harefa et al., 2024). In contrast, mature 
forests are typically dominated by arboreal mangrove-associated 
gastropods (Basyuni et al., 2022; Salmo et al., 2017). In our study, 
Melampus was more abundant in early restoration sites, and 
declined thereafter, while Vitta and Cerithideopsis abundance 
increased after year 3. Littoraria was present across all sampled 
sites, (except in year 1), highlighting its adaptability. Thaisella 
kiosquiformis (identified to species level) was exclusively observed 
in mature forest sites. 

Both Melampus and Vitta -detritivorous grazers- were 
abundant during early restoration stages. Melampus, which

thrives in shaded areas with detritus (Proffitt and Devlin, 2005; 
Lee and Silliman, 2006), peaked in two-year-old sites, where tree 
growth was limited, and decaying Negraforra rhizomes were 
common (personal observation). Its decline over time may be due 
to increasing competition from more dominant grazers like 
Littoraria. Vitta, on the other hand, became more common after 
year three, likely benefiting from increased canopy cover and 
reduced A. aureum biomass, which improved habitat conditions 
for larval recruitment (Blanco and Castaño, 2012). Vitta was absent 
from mature mangrove sites, possibly due to reduced soil litter (its 
main food source (Cantera et al., 1983) and increased interspecific 
competition (Lee and Silliman, 2006). 

Littoraria was found across all restoration stages (except in year 
one), Negraforra and mature forests. This genus, known for its high 
mobility and dietary adaptability - feeding on algae, fungi and leaf 
sprouts (Banco and Cantera, 1999; Macintosh et al., 2002; Ellison, 
2008) - includes many mangrove-associated species (Reid, 1985; 
Ohgaki, 1992; Zvonareva et al., 2015; Chen et al., 2021). Given the 
ecological differences among species, species-level identification is 
essential for accurate ecological assessments - something we 
recommend for future studies, as it was a limitation in ours. 

Cerithideopsis, a genus of epifaunal detritivores from the 
Potamididae family, was recorded only in sites older than three 
years, with peak abundance observed in year five-year-old sites. 
These gastropods, adapted to shaded mud substrates (Cantera et al., 
1999; Pomareda and Zanella, 2006) and tree climbing, thrive in 
mature forest conditions (Reid et al., 2008). Their presence aligns 
with increased canopy cover and substrate complexity in older sites 
(Cantera et al., 1999). 

Thaisella kiosquiformis, a predatory species of sessile mollusks 
and barnacles, was found only in mature forests and it was typically 
observed on fallen wood (Banco and Cantera, 1999; Cantera et al., 
1999; Simone, 2017). Its absence from restoration sites likely reflects 
that these ecosystems have not yet reached the stage of ecological 
maturity required for its establishment. Its presence could serve as a 
 frontiersin.org 

https://doi.org/10.3389/fmars.2025.1563965
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
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useful bioindicator for advanced forest development; however, 
further understanding of reproduction dynamics, recruitment, 
and the proximity of adjacent mature forests as potential source 
populations is needed. 

We anticipate that further structural development will enable 
colonization by additional mangrove-associated species, including 
T. kiosquiformis. Based on Salmo et al. (2017), this shift may 
become apparent 11–15 years post-restoration, signaling 
functional recovery through stabilized gastropod abundance and 
mature community assemblage, resembling that of natural mature 
mangrove stands. 

Our study faced limitations in assessing gastropod diversity due 
to the lack of comparable data from other restored mangrove sites 
in Costa Rica, as well as seasonal constraints, since sampling was 
conducted only during the dry season. We recommend that future 
studies include multiple seasons to capture potential temporal 
variations in gastropod communities. However, the presence of 
genera typical of intermediate forest stages, even after only five 
years, indicates successful habitat rehabilitation (Macintosh et al., 
2002). This suggests that the restored mangrove ecosystem is 
already providing the essential resources and habitat conditions 
necessary for these taxa to thrive, while also reflecting specific 
community-level trends that align with the restoration trajectory. 

In line with our hypothesis, we found that older restoration sites 
—particularly those five years post-planting—exhibit greater 
gastropod abundance. Community assemblages also varied 
significantly across restoration stages, with early sites (up to three 
years) showing similar compositions, and a clear shift occurring in 
restoration years four and five. 

We strongly recommend future research on Thaisella 
kiosquiformis to establish its utility as a bioindicator of mature, 
stable restored mangroves ecosystems. Long-term monitoring -15 
to 20 years- is essential to fully track and understand 
ecosystem development and inform adaptive management. 
Identifying gastropods to species level will further clarify their 
ecological roles and improve restoration assessments. Our 
results provide compelling evidence for the effectiveness 
of active restoration initiatives, which, informed by prior 
assessments of degradation causes, aid in rehabilitating the 
ecological functionality of mangroves, particularly in promoting 
macrobenthic recolonization (Gorman and Turra, 2016; Salmo 
et al., 2017; Harefa et al., 2024). 

As the first study of its kind in Central American mangroves, 
our findings highlight the importance of incorporating faunal 
indicators, such as gastropods, into monitoring plans. Our results 
show that mangrove tree height and DBH increase with restoration 
age -comparable in height to other regional projects, and with 
higher average DBH. Gastropod abundance also increased with 
restoration age, and shifts in community assemblages reflect 
ecological succession. We hope this study encourages further 
research in Latin America and the Caribbean on gastropods as 
ecological indicators of mangrove restoration trajectories. 
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Cruz Soto, R. A., and Jiménez Ramón, J. A. (1994). Moluscos asociados a las áreas de 
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macrobénticas asociadas al manglar (Rhizophora mangle) en laguna de Términos, 
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