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Mesoscale eddies play a crucial role in energy transfer and material transport in

the ocean. Accurate identification of mesoscale eddies is crucial for a deeper

understanding of ocean internal dynamics, the development of marine

resources, and the prediction of changes in the marine environment. This

study utilizes Absolute Dynamic Topography (ADT) data provided by AVISO

and the YOLOv8 algorithm model to investigate the identification of

mesoscale eddies in the South China Sea (SCS). Due to its feature analysis and

generalization capability, the YOLOv8 can successfully captures somemesoscale

eddies undetected by the PET, thus track more mesoscale eddy trajectories. By

enhancing the model’s input features and loss function, the YOLOv8 algorithm

model has achieved high-precision identification of mesoscale eddies in the SCS

with 93.9% Recall and 96.4% AP0.5, radius and amplitude average errors kept

under 5 km and 0.50 cm. The incorporation of sea surface current field has

improved the characteristics of mesoscale eddies, resulting in a smaller bias.

However, due to some obscured ADT information, there was a slight increase in

the identification errors for eddies’ amplitude and radius. Under typhoon events,

the model accurately captures the evolution of mesoscale eddy characteristics,

demonstrating high reliability. The model’s high accuracy (90.5% Recall, 93.6%

AP0.5) for the transfer application in the Arabian Sea. Moreover, its accuracy in the

transfer application to high-resolution products is also commendable. After only

a few additional training rounds, the model achieves a high level of accuracy

(90.0% Recall, 94.9% AP0.5), highlighting its robust generalization capabilities and

transfer potential. This study suggests that the improved YOLOv8 algorithm

enables threshold-free identification of mesoscale eddies with strong prospects

for generalization and transfer applications which are expected to provide richer

and more accurate mesoscale eddy track data.
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mesoscale eddy identification, deep learning, YOLOv8, South China Sea,
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1 Introduction

Mesoscale eddies, categorized into cyclonic and anticyclonic

types based on their rotational characteristics, are a critical

component of the ocean’s dynamical system, exerting a significant

influence on the global oceanic circulation and the material transport

(Zhang et al., 2014). As quintessential manifestations of mesoscale

physical processes in the ocean, mesoscale eddies are critical conduits

for the cascading of energy between large-scale and small-scale water

motions (Zhang and Qiu, 2018; Wang et al., 2022a). The typical

spatial dimensions of these oceanic mesoscale eddies extend from

tens to hundreds of kilometers, with temporal scales that span from

several days to hundreds of days, and vertical extents that may plunge

several kilometers deep, occasionally reaching the abyssal seafloor

(McGillicuddy et al., 1998; Uchida et al., 2022). Mesoscale eddies can

be distinguished from the broader oceanic currents by their rapid

rotational velocities, pronounced convergence of eddy kinetic energy,

and profound vertical impact (Gaube et al., 2019; Cao et al., 2022).

They can typically induce substantial variations in sea level elevation,

modulate marine biogeochemical processes, and exert a considerable

influence on heat exchange, materials transportation, chlorophyll

concentration, as well as seawater salinity and density (Levy, 2003;

Chen et al., 2011; Dong et al., 2014, 2017; Xiu and Chai, 2020; van

Westen and Dijkstra, 2021; Zhou et al., 2021), thereby impacting

underwater acoustic communication pathways (Oka et al., 2009;

Chaigneau et al., 2011; Guo et al., 2017; Liu et al., 2021; Zhou

et al., 2021). Additionally, through their interactions with the

atmosphere, these eddies can modulate the local sea surface wind

field, cloud formation, and precipitation patterns (Frenger et al.,

2013). Therefore, the precise delineation of mesoscale eddies holds

substantial research significance across the disciplines of physical

oceanography, ocean acoustics, and marine environmental studies.

Due to the lack of a unified and precise definition for mesoscale

eddies, the most accurate method of identification to date is “expert

visual identification”, which is a process that requires a significant

expenditure of time and effort and is inevitably subject to certain

human errors. Currently, the popular identification methods for

mesoscale eddies can be categorized into four types: the physical

parameter method (Okubo, 1970; Weiss, 1991; Jeong and Hussain,

1995; Liu et al., 2016), the geometric image method (Sadarjoen and

Post, 2000; Nencioli et al., 2010), the hybrid method (Chelton et al.,

2011; Mason et al., 2014; Pegliasco et al., 2022), and the artificial

intelligence method. The physical parameter method, geometric

algorithm, and hybrid algorithm all rely on preset thresholds, which

introduces subjectivity in defining eddies. Establishing a universal

detection threshold and rigid constraints is challenging, as they

must accommodate the diverse conditions of the sea and the

varying developmental stages of eddies. As a result, both the

physical parameter method and the geometric image method

struggle to adapt effectively to the dynamic changes in marine

eddies due to environmental complexities.

In recent years, the rapid development of artificial intelligence

has facilitated the extensive use of machine learning methods in

marine science. Machine learning techniques are notably

distinguished by their robust transfer learning capabilities, which
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hold promise for extending the universality of mesoscale eddy

identification models and enabling effective identification across

various maritime regions. Consequently, many researchers have

adopted machine learning approaches for mesoscale eddy

identification, leading to substantial advancements in the field.

For instance, a machine learning method based on altimetry was

proposed to detect and characterize mesoscale eddies using decision

tree regression to estimate their lifecycles with a root mean square

error of approximately five days (Ashkezari et al., 2016). The U-Net

network architecture was also applied to identify oceanic mesoscale

eddies, introducing EddyNet (Lguensat et al., 2018). Subsequent

studies have improved upon U-Net, developing variants such as

MU-Net (Saida and Ari, 2022), AttresU-Net (Zhang et al., 2022b),

DPU-Net (Zhao et al., 2023) and PSA-EDUNet (Zhao et al., 2023).

Other deep learning algorithms, such as PSPNet, DeepLabV3+, and

BiSeNet, have been used for mesoscale eddy detection,

outperforming traditional methods in identifying a greater

number of eddies (Xu et al., 2021). Hybrid approaches combining

traditional methods with deep learning, such as integrating

AMEDA with Faster R-CNN or using dual attention mechanisms

with ADT and SST data, have further enhanced recognition

efficiency and accuracy (Li et al., 2022; Xie et al., 2024; Zhang

et al., 2024). More recently, the 3D-U-Res-Net model has enabled

efficient delineation of the three-dimensional structure of mesoscale

eddies, identifying various vertical structures and cylindrical eddies

in the Southern Ocean (Liu et al., 2024; Xu et al., 2024). Artificial

intelligence methods have become a hot topic and research

direction in the identification of mesoscale eddies.

The “You Only Look Once” (YOLO) series of deep learning

models for multi-object detection has been widely adopted since

2016 (Redmon et al., 2016). The term “You Only Look Once”

indicates that the model can produce results after a single

examination of an image. In the ocean research, the YOLO

algorithm has been applied to identify marine fish species (Jalal

et al., 2020) and underwater debris (Xue et al., 2021) from deep-sea

imagery, ships (Zhang and Zhang, 2019) and mesoscale eddies (Cao

et al., 2022) from Synthetic Aperture Radar (SAR) imagery. For

mesoscale eddy identification, the YOLO Feature (YOLOF) model

was employed to detect mesoscale eddies in the SCS from 1993 to

2021 (Cao et al., 2022). This approach mitigated biases associated

with subjective threshold settings in traditional methods, thereby

enhancing the identification efficiency (Cao et al., 2022).

Additionally, the YOLO (DAY) model was proposed for precise

mesoscale eddy identification (Wang et al., 2022b). This model

incorporates spatiotemporal attention mechanisms and applies data

augmentation techniques to Sea Level Anomaly (SLA) images,

focusing on the spatiotemporal distributions of eddies and

maximizing identification efficiency. Furthermore, a YOLO-based

detection model was constructed to automate the identification of

submesoscale eddies in C-band satellite Synthetic Aperture Radar

(SAR) imagery, and the spatial distribution disparities between

submesoscale and mesoscale eddies were further explored (Zi

et al., 2024). At present, research on mesoscale eddy recognition

based on the YOLO framework primarily focuses on the detection

task of mesoscale eddies, marking them with bounding boxes
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without identifying eddy contours. However, the YOLOv5

framework has integrated semantic segmentation capabilities into

the model. Subsequent YOLOmodels have also been widely applied

to semantic segmentation tasks across various scenarios, achieving

excellent results (Kavitha and Palaniappan, 2023; Liu et al., 2023).

Therefore, this study aims to employ a semantic segmentation

model under the YOLOv8 framework for the identification of

mesoscale eddies. Based on its outstanding detection capability,

the model will further discern the specific shapes of mesoscale

eddies, benefit to study of the intensity, amplitude, and life cycle of

mesoscale eddies.
2 Study area and dataset

The study area is the South China Sea and its adjacent waters

(5~25°N, 105~125°E; Figure 1). The SCS is the largest marginal sea

of the East Asian continent, with a complex topography and

hydrodynamics, which are conducive to the generation of various

types of mesoscale eddies.

Mesoscale eddies in the SCS are primarily influenced by three

factors: terrain undulations, the intrusion of the Kuroshio Current,

and the impact of monsoons (Wu and Chiang, 2007; Wang et al.,

2012a; Yang et al., 2022). The multi-scale circulation in the SCS is

primarily regulated by monsoons and the exchange process with the

Pacific Ocean. The Kuroshio Current, as a strong western boundary

current of the North Pacific, plays a crucial role in the water

exchange process between the SCS and the North Pacific (Chu
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et al., 1999; Yang et al., 2019). When the Kuroshio passes through

the Luzon Strait, it forms a bend, intermittently invading the SCS

and shedding anticyclonic eddy flows (Yang et al., 2019). The

intensity of the Kuroshio exhibits periodic variations, affecting the

multi-scale circulation and mesoscale processes in the SCS

differently across years and seasons (Nan et al., 2015). Notably,

the Kuroshio’s intrusion and eddy shedding peak in winter, likely

due to the Ekman drift induced by the winter northeast monsoon,

which pushes the Kuroshio into the SCS and triggers westward

transport and eddy formation (Jia and Chassignet, 2011). The

interaction of dynamic factors such as topographical variations,

monsoon effects, the Kuroshio Current, and multi-scale circulation

leads to baroclinic instability, causing the SCS to exhibit a high

frequency of mesoscale eddies, a broad distribution of eddies, and

significant eddy kinetic energy compared to the open ocean. At the

same time, various eddy phenomena such as single eddies, eddy

dipoles, and eddy groups all occur in the SCS. Therefore, the

complex driving mechanisms and diverse types of eddies make

the SCS a typical area for conducting mesoscale eddy research.

This study utilizes the Ssalto/Duacs altimetry products released

by the Archiving Validation and Interpretation of Satellite

Oceanographic (AVISO+), which is a multi-mission merged

altimeter data product. These products are processed by the Data

Unification and Altimeter Combination System (DUACS) multi-

mission altimeter data processing system. The system handles data

from various altimeter missions, including Jason-3, Sentinel-3A,

HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, T/P, EN-VISAT,

GFO, and ERS1/2. Currently, the data set is managed and
FIGURE 1

Study area: South China Sea (SCS). The bottom map illustrates the topographic structure of the SCS. The primary circulation structures in the SCS
include the South China Sea West Boundary Current (SCSWBC), which exhibits east-west flow in the central region of the SCS, and the SCS Warm
Current located in the northern part of the SCS. Additionally, the Kuroshio Current intermittently intrudes into and generates warm eddies in the
Luzon Strait.
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distributed by the Copernicus Marine Environment Monitoring

Service (CMEMS). The marine remote sensing data product

employed in this study is the Map of Absolute dynamic

topography (MADT). This product has a spatial resolution of

0.25° by 0.25° and a temporal resolution of 1 day. The ADT is

calculated using Equation 1.

ADT = SLA +MDT   (1)

where, ADT is the absolute dynamic topography, the sea level

anomaly (SLA) is defined as the height difference between the actual

sea level and the mean sea level. The current version of the mean sea

surface height is derived from averaging the sea surface height

values over a 20-year period from 1993 to 2012. Additionally, SLA is

obtained by integrating measurements from different altimeter

missions and applying optimal interpolation. Mean dynamic

topography (MDT) refers to the average of the dynamic

topography. Some of the eddies in the SCS are formed in coastal

and variable depth areas, which are the result of wind-topography

effects and current reflections. These dynamic processes leave

imprints on the MDT (Pegliasco et al., 2022). Therefore, this

ADT dataset facilitates a more comprehensive identification of

mesoscale eddies in the South China Sea.

Furthermore, the absolute dynamic geostrophic velocity can be

calculated from the ADT data using the Equations 2 and 3:

u = − g
f
∂ADT
∂y , v = g

f
∂ADT
∂x (2)

speed =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u2 + v2)

p
(3)

where, u and v represent the zonal (west-east) and meridional

(south-north) components of the absolute dynamic geostrophic

velocity, respectively. f denotes the Coriolis parameter, g is the

acceleration due to gravity, and speed refers to the magnitude of the

absolute dynamic geostrophic velocity.
3 Deep learning model

3.1 YOLOv8 algorithm model

YOLOv8 is an open-source algorithmic model released by

Ultralytics in January 2023, supporting three branch tasks: image

classification, object detection, and instance segmentation (Jocher

et al., 2023). The framework of the YOLOv8 algorithm is depicted in

Figure 2 and consists of three parts: the backbone, the neck, and the

head, totaling 22 layers. For the first time, YOLOv8 introduces the

Faster Implementation of CSP Bottleneck with 2 convolutions (C2f)

module. The C2f module adds more cross-layer connections,

providing the model with richer gradient flow information.

Within the backbone, the first and second layers use two

consecutive convolutional networks with a 3×3 kernel, followed

by downsampling, resulting in larger-scale feature maps. The

Spatial Pyramid Pooling-Fast (SPPF) module employs a serial and

parallel form of maxpool2d, achieving better feature fusion. The
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neck utilizes the Path Aggregation Feature Pyramid Network

(PAFPN) structure, enhancing the bottom-up information

transfer path through a combination of upsampling and

downsampling processes. The neck also uses low-level features for

precise localization to improve information transfer efficiency, with

a fully connected layer fusion structure that provides a richer source

of information for mask prediction.

In the segmentation task of the YOLOv8 model, a segmentation

branch (Mask) runs parallel to the existing detection branch

(Detect) in the prediction head. The head has evolved from a

coupled head in the previous version to a more advanced

decoupled head, separating the classification and regression tasks.

This allows each task to be completed more independently and

efficiently. Finally, this branch outputs the category of the eddy, as

well as its bounding box information and k mask coefficients

(ranging from -1 to 1) for each target eddy.

In the Protonet of the segmentation module, the input is the

highest resolution image from the FPN. This facilitates enhanced

preservation of spatial detail information within the ADT, while

also offering valuable semantic insights. Since there are k different

input images, the segmentation branch will output k prototype

mask images (Prototype) for all input images. After completing the

detection and segmentation branches, Non-Maximum Suppression

(NMS) is utilized to retain optimal values in the prediction head

results, reducing spatial overlap in recognition results. Finally, for

each detected mesoscale eddy, we apply a linear combination of k

mask coefficients to k prototype mask images. Then, the results are

summed and passed through a sigmoid nonlinear function to obtain

final mesoscale eddy instance segmentation results.

The regression branch loss function employs Complete

Intersection over Union (CIoU) and Distribution Focal Loss

(DFL), while the classification branch loss function utilizes Binary

Cross-Entropy (BCE). In the instance segmentation task, the

regression branch loss function also leverages BCE to calculate

the loss between the predicted mask and the target mask. The

overall model loss is the weighted sum of the regression and

classification branch losses. YOLOv8 offers five models of varying

scales, designated as n (nano), s (small), m (medium), l (large), and

x (extra large). Each model features a distinct number of channels in

its backbone network, and they do not strictly adhere to the same

scaling factors. This design is beneficial for meeting the task

requirements across different scenarios.
3.2 Loss function

The detection box loss (Bbox loss), calculated within the

regression branch, is composed of two parts: CIoU and DFL. The

expression for CIoU is shown in Equation 4 (Zheng et al., 2020):

LCIoU = 1 − IoU + r2(b,bgt )
c2 + av (4)

where, IoU represents the Intersection over Union between

the predicted box and the ground truth box. b and bgt denote the
frontiersin.org
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predicted box and the ground truth box, respectively. r is the

distance between the centers of the predicted box and the ground

truth box, c is the diagonal distance between the two boxes, and a is

the weight coefficient. v is a parameter that measures the

consistency of the aspect ratio between the predicted and ground

truth boxes. The specific expressions for v and a are shown in

Equations 5 and 6:

v = 4
p2 (arctan wgt

hgt − arctan w
h )

2 (5)

a = v
(1−IoU)+v (6)

where, wgt and hgt represent the width and height of the

detection box, respectively, while w and h denote the width and

height of the ground truth box.

During the model training phase, multiple detection boxes are

generated, and the probability is uniform across all points within

the box. The DFL can assign a higher probability to points that are

closer to the target point, enabling the network to quickly focus on

the area surrounding the target point, thereby enhancing the

effectiveness of network learning. The expression for DFL is

shown in Equation 7 (Li et al., 2020):
Frontiers in Marine Science 05
DFL(Si, Si+1) = −((yi+1 − y) log (Si) + (y − yi) log (Si+1)) (7)

where, Si represents the probability of each point, and yi denotes

the location of the target point.

The Mask loss is calculated in the regression branch following

the detection box loss, and is derived using Binary Cross Entropy

with Logits. This function employs the log-sum-exp technique to

combine the Sigmoid layer and the BCE in a single computation.

The specific form of log-sum-exp is shown in Equation 8:

log − sum − exp (x1, x2,…, xn) = log (on
i=1e

xi−c) (8)

The classification loss in the classification branch is directly

calculated using BCE. The expression for BCE is shown in

Equations 9 and 10:

l(x, y) = LBCE = l1, l2,…, lnf g (9)

ln = −wn½yn · log(xn) + (1 − yn) · log(1 − xn)� (10)

where, LBCE represents the Binary Cross-Entropy loss, x is the

predicted value with a range of (0,1), y is the label value which is

either 0 or 1, and wn is the weight coefficient.
FIGURE 2

YOLOv8 algorithm framework diagram (d, w and r are model depth, width and ratio, respectively); In C2f module, h is the height, w is the width, and
c is the number of channels. In the convolution module, k is the convolution kernel size, s is the operation step size, and p is the filling size of 0
value. After Jocher et al (Jocher et al., 2023).
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3.3 Data set production

A total of 3653 daily ADT data spanning a decade from 2011 to

2020 were used as the training set, and the 365 daily ADT data from

2021 served as the validation set. The mesoscale eddies identified by the

PET method is used as the Label in deep learning models. The PET

method identifies closed contour lines of the ADTwithin a range of -100

cm to 100 cm with a search interval of 0.2 cm based on the input ADT

data field. After the closed contours are identified, they must meet the

following criteria to be classified as mesoscale eddies (Pegliasco et al.,

2022): (1) Shape detection: The difference between the area of the closed

contour and the area of its fitted circle, relative to the fitted circle area, is

less than or equal to 55%. (2) Area detection: The closed contour must

contain ADT data points ranging from 4 to 1000. (3) Consistency

detection: The closed contour must only include data points with ADT

values higher (lower) than the current ADT interval value for

anticyclonic (cyclonic) eddies. (4) Single extremum detection: An

anticyclonic (cyclonic) eddy should have no more than one maximum

(minimum) ADT value within its interior. (5) Amplitude detection: The

amplitude of the closed contour must be within the range of 1-150 cm.

Prior to being input into the YOLOv8 model for training, the ADT

data underwent high-pass filtering with a 700 km radius in order to

eliminate the influence of large-scale motions and highlight the image

features of mesoscale processes. The input image size is 648×648 pixels,

which is close to the maximum image resolution supported by the

YOLOv8 model. This enhances the model’s ability to extract features

across the entire marine area and mitigates the risk of feature loss

resulting from image segmentation and compression.
3.4 Model evaluation index

The images of ocean mesoscale eddies detected by the YOLOv8

model are compared with the labeled images of the ocean mesoscale

eddy dataset. If the network’s segmentation result matches the standard

segmentation result, it is classified as a True Positive (TP); otherwise, it

is considered a False Positive (FP). For pixels that are not part of

mesoscale eddies, if the network’s segmentation result is correct, it is a

True Negative (TN); otherwise, it is it is a False Negative (FN).

This experiment utilized three common metrics at the pixel

level from the field of image segmentation to assess the results,

including Precision, Recall, the Dice coefficient (F1), and Average

Precision (AP). These metrics were employed to evaluate the

outcomes accurately and effectively, with accuracy being regarded

as the mesoscale eddy identification rate.

Precision measures the accuracy of the positive predictions

made by the model, as shown in Equation 11.

Precision = TP
TP+FP (11)

Recall quantifies the model’s ability to detect all positive

instances, as shown in Equation 12.

Recall = TP
TP+FN (12)

The precision rate indicates the proportion of mesoscale eddies

that are correctly predicted, such that when the Precision is at 100%,
Frontiers in Marine Science 06
there are no FP. The recall rate represents the proportion of eddies

that the model correctly detects out of all labeled mesoscale eddies,

meaning that at 100% recall, there are no FN. However, since

Precision and Recall are inversely related, neither Precision nor

Recall alone can fully encapsulate the model’s identification

capabilities. Thus, this study also utilizes more comprehensive

evaluation metrics: the F1, AP0.5 and AP0.5-0.95.

The F1 score is the harmonic mean of the model’s precision and

recall, providing a more comprehensive assessment of the

classification model’s performance, as shown in Equation 13.

F1 =
2*Precision*Recall
Precision+Recall

(13)

AP0.5 refers to the area under the Precision-Recall curve of the

model, with a value closer to 1 indicating superior model

performance, as shown in Equation 14. The subscript 0.5

indicates that a predicted target is considered a true positive (i.e.,

a mesoscale eddy) only if the Intersection over Union (IoU), which

measures the overlap between the predicted target and the ground

truth, is at least 0.5. When the IoU threshold is set to 0.5, varying the

confidence threshold generates multiple pairs of Recall and

Precision, thus forming the Precision-Recall curve.

AP0:5 = ∫
1

0Precision(Recall)dRecall
(14)

AP0.5-0.95 is calculated by determining the APIoU across multiple

IoU thresholds ranging from 0.5 to 0.95 (with a step size of 0.05)

between predicted and true targets. The average of these APIoU is

then taken. This metric reflects the model’s overall recognition

capability under different evaluation criteria.

mAP (mean Average Precision) is the average of the AP0.5-0.95
for cyclonic and anticyclonic mesoscale eddies.
3.5 Experimental environment and
parameter setting

This study employed a deep learning experimental environment

within the PyCharm framework, with the following specific

hardware, software, and system configurations: CPU: Intel Xeon

Processor (Skylake, IBRS) × 2, GPU: NVIDIA Tesla T4 × 2, Python:

3.8, CUDA: 11.3, operating system: Ubuntu 16 LTS, and memory:

32.00 GB. For the YOLOv8 model parameter settings, the training

batch size was set to 16, with a total of 200 training epochs. The

initial learning rate was 0.01, which was reduced to a final learning

rate of 0.0001. The optimizer used was SGD, with a dropout

regularization rate of 0.2. The mask downsampling rate was set to 4.
4 Experiment and result

4.1 Sensitivity of identification accuracy to
input field and loss function

In the computation of the Bbox loss, although the CIoU loss

takes into account the overlapping area, the distance between
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centers, and the aspect ratio similarity, the aspect ratio consistency

parameter v is not well-defined. The aspect ratio consistency

parameter v may lead to unreasonable optimization and to some

extent slow down the convergence speed of the YOLOv8 model.

Given that mesoscale eddies are generally quasi-circular, the width

and height of their bounding boxes can more directly reflect their

shape characteristics. Therefore, this study proposes using Focal

EIoU instead of CIoU for calculating the Bbox loss. EIoU, which is

based on CIoU, calculates the width loss and height loss of the

bounding box separately. This approach addresses a limitation in

CIoU where focusing solely on aspect ratio loss prevents

simultaneous adjustments in width and height losses.

Consequently, it aligns more closely with the morphological

characteristics of mesoscale eddies. Additionally, the introduction

of Focal Loss optimizes the imbalance of samples in regression tasks

and mitigates the negative impact of low-quality samples on the

gradient. This approach focuses on high-quality bounding boxes,

enhancing the model’s training accuracy and convergence rate. The

expression for Focal EIoU is shown in Equations 15 and 16 (Zhang

et al., 2022a):

LEIoU = LIoU + Ldis + Lasp = 1 − IoU + r2(b,bgt )
c2 + r2(w,wgt )

C2
w

+ r2(h,hgt )
C2
h

(15)

LFocal EIoU = IoU g LEIoU (16)

To highlight the sensitivity of identification accuracy to input

field and loss function, the experiment utilizes the most lightweight

version of the YOLOv8 model, hereafter referred to as YOLOv8, to

conduct a sensitivity analysis on two types of loss functions (i.e.,

CloU and Focal EIoU) and input fields (i.e., ADT and uv). The

experiment designs are presented in Table 1 and Table 2.

Table 1 reveals that the YOLOv8 model, utilizing the EIoU loss

function, exhibits a marginal decrease in training duration and a

1.9% increase in mAP relative to its predecessor. Subsequent

integration of Focal loss into the model leads to a more

pronounced reduction in training time by 25.2% and a 2.2%

boost in mAP. These enhancements in loss functions are shown

to markedly improve the efficiency of model training and the

precision of recognition. Table 2 demonstrates that the YOLOv8

model attains the optimal recall rate, when using the Focal EIoU

loss function with both ADT and uv data inputs. With the Focal

EIoU loss function and ADT as the sole input, the model achieves

more accurate mesoscale eddy identification, evidenced by the

minimal average errors in amplitude and radius, along with the

highest AP0.5, AP0.5-0.95 and F1 scores. Detailly, transitioning from

the CIoU loss function to the Focal EIoU loss function improves the
Frontiers in Marine Science 07
YOLOv8 model’s identification rate and precision for mesoscale

eddies, as evaluated by the F1, AP0.5 and AP0.5-0.95 metrics.

However, under the same confidence, the model’s Precision and

Recall exhibit fluctuations, yet remain consistently high. The

inclusion of uv data enriches the eddy characteristics with the

dynamics of geostrophic flow fields, facilitating the model’s ability

to discern features beyond ADT variations and leading to the

detection of an increased number of mesoscale eddies. However,

the introduction of uv data, which can only represent a single

physical attribute per pixel (either uv or ADT), may overshadow

certain information within the ADT data, resulting in greater shape

errors (amplitude and radius) in the identified mesoscale eddies.

Figure 3 compares the performance of the YOLOv8 model with

other AI models in the identification of mesoscale eddies. It is

evident that the YOLOv8 model outperforms other models across

various evaluation metrics. The model achieves higher scores in the

more objective and balanced metrics of F1 and mAP, indicating

greater stability and reliability in practical applications.

Figure 4 further reveals that the YOLOv8 model can detect the

majority of eddies identified by the original annotation methods

and also uncover some previously overlooked mesoscale eddies

based on the training data. Furthermore, the simultaneous input of

uv and ADT data, under identical training conditions, enhances the

model’s ability to identify mesoscale eddies, enabling it to recognize

a broader spectrum of smaller-scale mesoscale eddies.
4.2 Statistical characteristics of SCS
mesoscale eddies

The YOLOv8 model achieves high precision in mesoscale eddy

identification, with an average precision higher than 95% and an F1

score higher than 88%, under four different input conditions and

loss functions (Table 2). According to the evaluation using the AP0.5
and the F1 score, the YOLOv8 model with ADT as the input field

and the Focal EIoU as the loss function was selected for the

statistical analysis of eddy characteristics in the SCS for the year

2021 test set.

As illustrated in Figure 5a, the daily count of eddy identification

by the YOLOv8 model is comparable to that of the PET method,

indicating a certain level of reliability in the YOLOv8 model’s

identification outcomes. The quantity of mesoscale eddies in the

SCS exhibits significant seasonal variations, with an increase

observed in the spring of 2021, peaking in May, followed by a

gradual decline during summer and autumn, and a slight

resurgence in winter. The seasonal statistical analysis of the

number and eddy kinetic energy (EKE) in the SCS shows that in

spring, the mesoscale eddies in the SCS are smaller but larger in

number, and the average EKE in the SCS is lower. In autumn, the

mesoscale eddies are larger in scale, fewer in number, and the

average EKE of the SCS remained low (Wang et al., 2012b; Xia and

Shen, 2015). The variation characteristics of the number of eddies in

2021 are consistent with these findings. Figures 5b, c reveal that the

YOLOv8 model identifies a greater number of eddies compared to

the PET algorithm, particularly within the radius range of 25-50 km
TABLE 1 Model training time and mAP under different loss functions.

Model Loss function Train time / mins mAP

YOLOv8 CIoU 2317 72.9%

YOLOv8 EIoU 2283 74.8%

YOLOv8 Focal EIoU 1733 75.1%
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and amplitude range of 5~10 cm, where it detects a significant

increase in eddy counts. This enhancement can be ascribed to two

primary factors: firstly, the higher frequency of eddies within this

radius and amplitude range in the SCS, providing a larger base for

identification; secondly, the YOLOv8 model’s ability to

identification eddies without being constrained by fixed physical

thresholds, thereby capturing eddies that were previously

overlooked. In statistical analyses for other radii or amplitude

ranges, the YOLOv8 model identifies more eddies, except for

those with amplitudes in the 25~30 cm interval. However, given

the small proportion of eddies with radii exceeding 75 km or

amplitudes above 15 cm within the total eddy population of the

SCS, the additional detections by the YOLOv8 model in these

categories are relatively constrained.

The average radius of cyclonic mesoscale eddies in the SCS for

2021 is 68 km, with an average amplitude of 4.95 cm; for

anticyclonic eddies, the average radius is 73 km, with an average

amplitude of 5.84 cm (Figures 6a, b). There is a higher frequency of

mesoscale eddies with a radius of 30~50 km. Within this range,
Frontiers in Marine Science 08
cyclonic eddies outnumber anticyclonic ones. In terms of amplitude

frequency distribution, anticyclonic and cyclonic eddies are largely

consistent but there is a slight predominance of cyclonic eddies over

anticyclonic ones in smaller amplitudes. As illustrated in Figure 6e,

the baroclinic Rossby deformation radius is generally less than 50

km in most maritime regions located north of 10°N. Furthermore,

over 80% of the identified eddies exceed their local baroclinic

Rossby deformation radius, suggesting that these eddies are

classified as mesoscale phenomena. Due to the influence of the

baroclinic Rossby deformation radius and the positive correlation

(r = 0.71) between eddy radius and amplitude (Figure 6f), mesoscale

eddies in the SCS can attain radii up to 100 km and amplitudes

surpassing 20 cm remain relatively infrequent.

In the SCS for 2021, cyclonic and anticyclonic mesoscale eddies

exhibit similar trends in radius variation over their lifecycles, with

consistent sizes during the same life phase (Figure 6c). During the

middle to late stages (about 0.5~0.8 for normalized lifetime), there

is a certain fluctuation in eddy radius, which does not follow a

monotonic decay. In contrast, in the final stage (about from 0.8 or
FIGURE 3

(a) Filtered ADT at 700 km. (b) Identification using PET method. (c–h) Identification results for Unet, MaskRCNN, MS_RCNN, Cascade_RCNN, SOLO,
and YOLOv8. Warm colors and cool colors respectively represent anticyclonic and cyclonic eddies. (i) Comparative accuracy metrics, with F1 and
mAP as key indicators; asterisk denotes YOLOv8 results.
TABLE 2 Results of mesoscale eddy identification under different loss functions and input data.

Model Input Loss function Eddy type Precision Recall AP0.5 AP0.5-0.95 F1 AAE/cm ARE/km

YOLOv8 ADT CIoU
CE 87.27% 92.87% 96.0% 72.7% 89.98% 0.42 4.76

AE 87.48% 92.47% 96.1% 73.1% 89.88% 0.48 4.80

YOLOv8 ADT Focal EIoU
CE 86.21% 94.14% 96.3% 74.9% 90.00% 0.41 4.76

AE 86.41% 93.65% 96.5% 75.2% 89.91% 0.46 4.78

YOLOv8 ADT+uv CIoU
CE 84.81% 93.57% 95.8% 71.0% 88.97% 0.45 4.97

AE 84.81% 93.11% 95.6% 71.3% 88.77% 0.48 5.08

YOLOv8 ADT+uv Focal EIoU
CE 83.96% 94.20% 95.9% 72.6% 88.79% 0.44 4.95

AE 84.74% 93.69% 96.1% 73.4% 88.99% 0.50 5.10
fr
uv means surface geostrophic flow field; AAE means average amplitude error; ARE means average radius error.
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0.9 for normalized lifetime), the eddy radius rapidly diminishes.

Cyclonic eddy amplitudes are relatively smaller compared to

anticyclonic ones during the same life phase (Figure 6d).

Cyclonic eddies maintain a more stable and gradual variation

throughout their lifecycle, with a rapid decrease only occurring

at the end of their lifespan. In contrast, anticyclonic eddies

experience a rapid increase in amplitude to a maximum value

during the initial growth phase. Thus, there is a significant

difference in amplitude between the two types of eddies at the

beginning of their growth.
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5 Discussion

5.1 More mesoscale eddy tracks
recognized by YOLOv8 model

Figures 7a and b presents a comparative analysis of eddy tracks

(with lifecycles exceeding four weeks) in the SCS, as identified by

the PET method and the YOLOv8 model throughout 2021. The

YOLOv8 model demonstrates a notable ability to track a substantial

increase in eddy tracks in the central and southern SCS. Motion
FIGURE 5

(a) Daily variations in the number of mesoscale eddies in the SCS in 2021. (b, c) the additional eddies identifications by the YOLOv8 model over the
PET method for different radii and amplitudes in 2021.
FIGURE 4

Comparisons of mesoscale eddies identification in the SCS on January 13, 2021. (a) the filtered ADT at 700km. (b–f) the results using the PET
method and four YOLOv8 models. Blue represents cyclonic eddies, red represents anticyclonic eddies, and arrows represent sea surface
geostrophic flow.
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trajectories show that the majority of mesoscale eddies have a

propensity for westward propagation. Conversely, some eddies

exhibit a pronounced northward movement, particularly those

influenced by the Kuroshio Current in the eastern part of the

Luzon Strait. Additionally, there are eddies that appear to be

trapped, indicating minimal spatial dispersion. For example,

within the Sulu Sea, while eddies originating in the central and

eastern areas predominantly move westward, those in the southern

and western zones seem to be anchored in place, likely due to the

geographical constraints imposed by the southwestern boundary of

the Sulu Sea, hindering their westward propagation.

The number of eddy tracks recorded by the two methods

(Figure 7c) reveals that, on average, mesoscale eddies with stable
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presence (lifecycles exceeding four weeks) in 2021 have a lifespan of

about eight weeks. The YOLOv8model excels in identifying eddy tracks

with shorter lifecycles, uncovering over a hundred additional mesoscale

eddy tracks with lifecycles ranging from four to eight weeks in 2021. The

YOLOv8 model demonstrates a significant advantage over the PET

method, detecting an average of 1 to 3 additional eddies per day in the

SCS (Figure 5a). This enhanced performance can be primarily attributed

to the superior generalization capabilities inherent in deep learning

approaches, which are not limited by fixed physical thresholds. In the

comparative analysis of mesoscale eddy tracking case (Figure 8), the PET

method demonstrates a high degree of accuracy in identifying the

contours of mesoscale eddies for most instances. However, this

approach is contingent upon a fixed physical threshold for
FIGURE 6

(a, b) Histogram and probability density curve of the radius and amplitude frequency distribution of mesoscale eddies in the SCS in 2021; (c, d) The
normalized radius and amplitude evolution curves of mesoscale eddies in the SCS in 2021; (e) the deformation radius of the SCS baroclinic Rossby

wave (LR) calculated based on a simple two-layer model (the water body is divided into upper and lower layers by the thermocline boundary), LR =
ffiffiffiffiffiffi
g0H

p
f . where, g0 = r2−r1

r1
g, H = H1H2

H1+H2
, H1 and H2 are the thickness of the upper and lower water bodies; r1  and r2are the average density of the upper

and lower water bodies, g is the gravitational acceleration; (f) the fitting curve of the mesoscale eddy radius and amplitude in the SCS in 2021.
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identification, which can lead to distortions in the shape of mesoscale

eddies when the predicted threshold is not entirely applicable. For

instance, as illustrated in Figure 8B, the identified anticyclonic eddy

appears significantly smaller than its actual form. This limitationmay also

result in erroneous significant mutations in the characteristics of the eddy

throughout its lifecycle. Moreover, the fixed threshold limitation of the

PET method, especially the wide search interval, may cause it to miss

some eddies during the identification process. As evidenced by Figures 8i–

k, it can be inferred that an anticyclonic eddy persists based on ADT and

sea surface geostrophic flow characteristics over these three days.

Consequently, the identification results obtained from the YOLOv8

model are deemed to be reasonable. However, the PET method failed

to detect this eddy consistently across those days, resulting in an abnormal

interruption within its trajectory. Conversely, while boundary

identification using the YOLOv8 algorithm is somewhat coarser

compared to that achieved with PET, it effectively and accurately

continues to identify the anticyclonic eddy over an extended period of

eight days. The YOLOv8 model effectively addresses challenges such as

rapid contour variations and shape deformations that occur during the

dynamic evolution of mesoscale eddies. As a result, it identifies a greater

number of eddies and establishes more comprehensive trajectories.

During the propagation of mesoscale eddies, morphological variations

can result in threshold deviations from the PET method; however, these

eddies continue to persist. The YOLOv8 algorithm, characterized by its

advanced generalization and robustness, effectively identifies these eddies.
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This capability prevents erroneous interruptions in trajectory tracking and

facilitates amore precisemonitoring of the complete lifecycle ofmesoscale

eddies. The YOLOv8 model’s threshold-free and generalized capabilities

for detecting me-so-scale features will substantially enhance continuity in

mesoscale trajectory tracking, thereby providing a more authentic and

reliable trajectory dataset for research on mesoscale eddies.
5.2 Tracking eddies changes under
extreme events: a case study of typhoon
Rai

Typhoon Rai formed in the low-latitude waters of the

Northwest Pacific on December 13, 2021, and experienced a slow

development phase initially. On December 16, 2021, the typhoon

crossed the Philippines and entered the SCS. While in the SCS, Rai

underwent two rapid intensifications, culminating in its

development into a super typhoon. It gradually weakened and

dissipated in the northern part of the SCS on December 21, 2021.

The specific trajectory of Rai is detailed in Figure 9a. In the central

SCS, Rai traversed four mesoscale eddies, comprising three cyclonic

eddies and one anticyclonic eddy. After the passage of Rai, the sea

under its path experienced a significant drop in SST (-0.5 to -1°C),

as shown in Figure 9b. Data from Table 3 indicate that after the

typhoon’s passage, the radii and amplitudes of the cyclonic eddies
FIGURE 7

(a, b) Eddy tracks identified by PET method and YOLOv8 algorithm in the SCS in 2021 (life cycle greater than 4 weeks). Blue is cyclonic eddy track,
and red is anticyclonic eddy track. C and × represent the locations where eddies were generated and dissipated. (c) Comparison of the number of
eddy tracks (life cycle greater than 4 weeks) identified by PET method and YOLOv8 algorithm in 2021.
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significantly increased, while the anticyclonic eddy notably

weakened. On December 18 and 19, the typhoon successively

passed over these four eddies. Post-typhoon on December 19, the

radius of CE1 increased by 19.98 km and its amplitude by 2.48 cm;

the radius of AE1 decreased by 6.88 km and its amplitude by 0.4 cm.

These two eddies continued to exhibit trends of strengthening and

weakening on December 20 and 21, respectively. The radii of CE2

and CE3 increased by 1.66 km and 12.59 km, respectively, and their

amplitudes by 0.49 cm and 2.64 cm, respectively, but their radii and

amplitudes gradually decreased over the following two days.

Recent studies on the interactions between typhoons and eddies

have shown that when a typhoon traverses an eddy, the cyclonic

eddy is typically amplified and its energy is intensified (Liu et al.,

2017; Ma, 2020; Zhang et al., 2023). Conversely, the surface of the

warm eddies (anticyclonic eddy usually) cools rapidly, resulting in a

reduction of eddy energy, and it is more readily influenced by

typhoons than cold eddies (cyclonic eddy usually). Furthermore, the

characteristics of mesoscale eddy changes identified by YOLOv8

align with these conclusions.

This demonstrates that the YOLOv8 model maintains robust

mesoscale eddy detection capabilities during extreme events, such as

typhoons, accurately capturing eddy characteristics. Consequently, the
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YOLOv8 model serves as a reliable identification tool for studying

mesoscale eddy variations under extreme conditions.
5.3 Comparisons of mesoscale eddy data
sets

To further assess the performance of the YOLOv8 algorithm in

identifying mesoscale eddies, this study compares the results of the

YOLOv8 algorithm with two traditional mesoscale eddy datasets by

using the SLA closed contour identification method (Base SLA) (Xu,

2021) and the Vector Geometry (VG) algorithm (Nencioli et al.,

2010), respectively.

The YOLOv8 algorithm demonstrates superior capability in

identifying mesoscale eddies relative to two conventional methods

(Figure 10a), detecting nearly double the number of eddies identified by

the Base SLA method. In contrast to YOLOv8, the Base SLA method

sets minimum amplitude and radius thresholds for eddies and lacks

spatial large-scale filtering on the input SLA field, leaving it vulnerable

to interference from large-scale oceanic processes. Consequently, its

ability to detect less prominent eddies is restricted, leading to a

tendency to identify larger eddies while resulting in fewer overall
FIGURE 8

Comparison of eddy tracking case in the SCS (base map are the filtered ADT at 700km and sea surface geostrophic flow). (a–d) and (i–l) are the
daily tracking effects of the PET method on an anticyclonic eddy in the northern SCS from March 18, 2021 to March 25, 2021, while (e–h) and (m–p)
are the tracking effects of the YOLOv8 algorithm on the same anticyclonic eddy at the same time.
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detections. The distribution patterns of eddy radii and amplitudes

identified by the YOLOv8 algorithm are similar to those identified by

the VG method (Figures 10b, c). However, there is a slight decrease in

the proportion of eddies with smaller radii and amplitudes, resulting in

a more balanced identification outcome that better aligns with the

actual conditions in the SCS.While, the VGmethod is based on closing

the stream function field for identifying eddies, which yields consistent

results with their characteristics. However, due to differences between

flow field features and sea level height change features, this method

does not account for sea level height variations caused by mesoscale

eddies. As a result, it may lead to the identification of relatively smaller

eddy radius.

Results from January 3, 2006 (Figure 11) also indicate that the

YOLOv8 algorithm exhibits superior capabilities in identifying a

greater number of mesoscale eddies in the SCS when compared to

these two methods. This indicates its superior performance in

mesoscale eddy identification.
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5.4 Evaluation of YOLOv8’s generalization
ability

5.4.1 Generalize to other seas: a case study of
the Arabian Sea

The Arabian Sea and the SCS are located in similar latitudinal

regions and experience comparable geostrophic effects, implying certain

similarities in the meridional forces and Coriolis forces acting on the

eddies. However, they exhibit significant differences in topography,

monsoon patterns, and hydrodynamics. The Arabian Sea possesses a

distinctive western boundary current, and due to the seasonal reversal of

the Indian Ocean monsoon, the western boundary Somali Current

shares this characteristic seasonal reversal (Fischer et al., 2002).

Consequently, eddy activity in the Arabian Sea displays unique

seasonal and spatial variations, which are markedly different from

those in the SCS (Hammoud et al., 2023). Therefore, selecting the

Arabian Sea as a test region for assessing the model’s generalization
TABLE 3 The mesoscale eddy changes under the typhoon path identified by YOLOv8.

Eddy December 18, 2021 December 19, 2021 December 20, 2021 December 21, 2021

AE1
Radius/km 85.80 78.92 75.36 52.06

Amplitude/cm 7.03 6.63 5.98 4.76

CE1
Radius/km 134.31 154.29 142.08 187.59

Amplitude/cm 11.39 13.87 14.84 15.77

CE2
Radius/km 47.98 49.64 45.62 44.06

Amplitude/cm 3.18 3.67 3.48 2.70

CE3
Radius/km 67.77 80.36 70.84 65.16

Amplitude/cm 3.88 6.52 5.76 5.31
AE1 and CE1~3 refer to the Anticyclonic Eddy (AE) and the Cyclonic Eddies (CE) under the typhoon path.
FIGURE 9

(a) The track of Typhoon "Rai" after entering the SCS. (b) The evolution of SST in the central SCS before and after Typhoon "Rai" entered (December
17, 2021) and left (December 20, 2021). (c–f) The evolution of mesoscale eddy characteristics in the central SCS following the passage of
"Rai"(identification by YOLOv8).
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capability can effectively evaluate the model’s potential for

broader application.

The four YOLOv8models trained on the SCS dataset in section 4.2

were applied to identify mesoscale eddies in the Arabian Sea for the

year 2021 (365 days), with the experimental results presented in

Table 4. At the same time, we further analyze the recognition

accuracy of the optimal results among the four models in different

regions of the Arabian Sea, as shown in Figures 12g–i. The YOLOv8

model achieves an F1 score exceeding 85% across the entire Arabian

Sea. However, in the central region of the sea, there is a relative decline

in recognition rates for CE. This may be attributed to relatively stable

ocean dynamics in this area, resulting in fewer occurrences of CE

compared to other regions and increased difficulty due to weaker eddy

characteristics (Trott et al., 2019). Additionally, in low-latitude marine

areas, both CE and AE exhibit decreased recognition accuracy

compared to that observed in the northern Arabian Sea. This could

be due to the smaller scale and lower intensity of these eddies, which

are more susceptible to zonal tensile deformation (Ni et al., 2020a, b),

thereby increasing identification challenges.

All four models demonstrate effective identification of mesoscale

eddies in the Arabian Sea (Table 4). Notably, the YOLOv8 model

utilizing only ADT as input, relative to the simultaneous input of ADT

and uv, exhibits superior generalization capabilities. The YOLOv8
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model, with an optimized loss function, achieves an average precision

of 93.6% and an F1 score of 88.81% in identifying mesoscale eddies in

the Arabian Sea. These results suggest that the deep learning model has

strong generalization ability, enabling high-precision identification of

mesoscale eddies across various marine dynamic environments. The

relatively lower precision of the model using both ADT and uv input is

due to the significant difference in sea surface current speeds between

the South China Sea and the Arabian Sea. The faster coastal currents in

the Arabian Sea create longer and denser vector arrows in the imagery,

which obscure more ADT information compared to the SCS.

Figures 12a–f displays the transfer identification results of the

four models on a particular day in the Arabian Sea. All models

effectively identify mesoscale eddies in the new marine area and

detect some eddies missed by the PET method. This indicates that

the YOLOv8 model has captured the characteristic features of

mesoscale eddies, retaining the ability to identify previously

overlooked eddies in new marine areas. However, in areas with

higher sea surface current speeds, the size of the mesoscale eddies

identified by YOLOv8 appears relatively smaller than the actual size

due to the obscuration of uv information.

In summary, the YOLOv8 model demonstrates robust transfer

learning capabilities and could evolve into a new method for global

mesoscale eddy identification.
FIGURE 10

Comparisons of three eddy identification methods in the SCS from 2006 to 2020. (a) Mesoscale eddies numbers, (b) the probability density curve of
eddy radius, and (c) the probability density curve of eddy amplitude. .
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5.4.2 Generalization to other resolution data
products

Given that the ADT data from the Arabian Sea (in 5.3.1) is

identical to the data product used for training the YOLOv8 model in

the SCS, validating the model’s transferability and generalization by

applying it to different data products for eddy identification is

essential. The GLORYS12V1 product, offered by CMEMS, is a

global ocean dataset with a 1/12° resolution that includes sea

surface height (SSH) data. The higher resolution of this dataset

compared to the ADT data used during model training allows for an

effective assessment of YOLOv8’s adaptability to inputs of varying

resolutions for mesoscale eddy identification.

Using the SSH data from GLORYS12V1, we calculated the SLA

in the SCS for 2021, applied a 700 km filter, and then employed the

YOLOv8 model trained in the SCS for identification. Table 5

compares the identification accuracy of the original YOLOv8

mesoscale eddy identification model with the new YOLOv8

model, which underwent an additional 10 epochs of training on

GLORYS12V1 product data. Figure 13 shows the mesoscale eddies

identification effect of both models on the same day.

Although the original YOLOv8 model’s accuracy dipped slightly

when directly applied to identification compared to its initial

performance, it still demonstrated robust capabilities, with a Recall of
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84.39%, AP0.5 of 91.9%, and an F1 score of 84.97%. These identification

results align well with the PET method, meeting the detection

requirements for mesoscale eddies and showcasing the model’s

generalization and versatility. The slight decrease in accuracy is

attributed to the higher spatial resolution of the input data, which

provides the algorithm with more nuanced information, some of which

the original model had not encountered. Moreover, after an additional

10 epochs of training on the new product data, themodel’s identification

accuracy significantly improved: Recall rose to 89.96%, AP0.5 to 94.9%,

and the F1 score to 90.05%. Thus, when transitioning to different data

sources for mesoscale eddy identification, enhancing the accuracy of the

existing YOLOv8 model requires only minimal additional training.

In conclusion, YOLOv8 has exhibited formidable transfer

learning capabilities, whether detecting mesoscale eddies in

various waters or employing different data products, suggesting

its potential as a novel global method for mesoscale eddy detection.
6 Conclusion

This study uses ADT data fromAVISO and the improved YOLOv8

algorithmic model to conduct a mesoscale eddy identification study in

the South China Sea (5°~25°N, 105~125°E). By adjusting input data,
FIGURE 11

Eddy identification using three methods in the SCS on January 3, 2006. (a) Base SLA; (b) VG; (c) YOLOv8. The background map shows filtered ADT
at 700km and sea surface geostrophic flow, with blue representing cyclonic eddies and red representing anticyclonic eddies.
TABLE 4 Identification Effect of Mesoscale Eddies in the Arabian Sea.

Model Input Loss function Eddy type Precision Recall AP0.5 AP0.5-0.95 F1 AAE/cm ARE/km

YOLOv8 ADT CIoU
CE 86.35% 90.70% 93.1% 68.9% 88.47% 0.60 8.46

AE 87.06% 90.45% 93.3% 70.4% 88.60% 0.71 8.51

YOLOv8 ADT Focal_EIoU
CE 86.87% 90.19% 93.3% 70.6% 88.50% 0.60 8.38

AE 88.17% 90.08% 93.6% 71.5% 89.11% 0.69 8.44

YOLOv8 ADT+uv CIoU
CE 85.41% 86.29% 89.1% 65.2% 85.85% 0.59 9.77

AE 86.97% 86.04% 90.4% 66.8% 86.50% 0.65 9.92

YOLOv8 ADT+uv Focal_EIoU
CE 84.96% 87.21% 89.3% 66.4% 86.07% 0.57 9.69

AE 86.14% 86.85% 90.5% 67.7% 86.50% 0.65 9.80
fr
uv means surface geostrophic flow field; AAE means average amplitude error; ARE means average radius error.
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FIGURE 12

Transfer application of YOLOv8 models to the Arabian Sea on February 12, 2021. (a) filtered ADT at 700km; (b–f) the mesoscale eddies identification using PET
method and the four YOLOv8 models trained for the SCS. Blue represents cyclonic eddies, and red represents anticyclonic eddies. (g–i) presents the cyclonic
eddy, anticyclonic eddy, and overall eddy identification accuracies (F1 scores) in various regions obtained by the generalization of YOLOv8 to the Arabian Sea.
FIGURE 13

(a–c) Mesoscale eddy identification results of PET method, YOLOv8 (original), and YOLOv8 (trained 10 epochs) on the GLORYS12V1 data product on
the same day in 2021.
TABLE 5 The identification accuracy of mesoscale eddies in the SCS using the GLORYS12V1 data product.

Model Eddy type Precision Recall AP0.5 AP0.5-0.95 F1

YOLOv8
(original)

CE 86.37% 84.87% 92.3% 68.8% 85.61%

AE 84.73% 83.91% 91.6% 69.1% 84.32%

YOLOv8(trained 10 epochs)
CE 89.89% 90.32% 95.2% 75,2% 90.10%

AE 90.45% 89.59% 94.7% 77.7% 90.01%
F
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refining the model’s loss function, and performing transfer learning

tests, the study reaches several conclusions:
Fron
1. YOLOv8 achieves high-precision identification of mesoscale

eddies in the in the SCS, with Recall of 94%, AP0.5 of 96%, F1

of 90%, average radius error below 5 km, and average

amplitude error below 0.50 cm.

2. Incorporating sea surface current field information

enhances eddy characteristics, improving model accuracy.

However, some ADT information obscuration leads to

slightly increased errors in amplitude and radius.

3. YOLOv8 can detect some mesoscale eddies undetected by

the PET model and track more mesoscale eddy trajectories,

offering a dataset that is richer in eddy quantity.

4. In extreme events such as typhoons, YOLOv8 maintains its

ability to accurately identify the characteristic changes of

mesoscale eddies, showing high reliability.

5. The YOLOv8 model trained in the SCS achieves high-

precision identification in the Arabian Sea (Recall 90.5%,

AP0.5 93.6%) and retains accuracy when transferred to high-

resolution data (Recall 84.39%, AP0.5 91.9%). With additional

training on this dataset for 10 epochs, accuracy can be

enhanced (Recall 89.96%, AP0.5 94.9%). Consequently, the

YOLOv8 demonstrates robust generalization and applicability

across various maritime regions and data products.
Deep learning methods, as a novel approach to target

identification, can effectively identify mesoscale oceanic eddies. ADT

is not merely a variable in marine elements; it also includes physical

information such as the cumulative effects of air-sea dynamics and

historical information. Deep learning methods begin with the data,

extract and learn the implicit information behind it, and match it with

the characteristics of mesoscale eddies to achieve efficient and precise

identification. This study provides a new deep learning method for the

mesoscale eddies identification and provides more refined and

comprehensive mesoscale eddies trajectory data for the studying their

formation and dissipation processes.
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