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Introduction: Compared to the measurement bias of sea surface height (<5 cm), 
the measurement bias of significant wave height (SWH) is around 10% (typically 
resulting in a 40 cm deviation for a 4 m SWH), making it challenging to meet the 
increasing demand for disaster prevention and reduction. 

Methods: In this study, the presented second-order retracking algorithm (MLE6) 
is investigated to specify furtherly the accuracy of SWH inversion. MLE6 includes 
skewness coefficient (ls) and electromagnetic bias coefficient (lem), in addition 
to four conventional parameters. The effects of non-linear or non-Gaussian 
random ocean surfaces on estimating SWH are analyzed and an improved 
adaptive algorithm is presented by considering the real radar point target 
response (PTR). The echoes simulated by MLE6 were compared with those of 
a three-term convolution model (Brown model) that considered the non-
Gaussian rough sea surface elevation distribution. 

Results: MLE6 showed closer alignment with the Brown model compared to the 
conventional model (MLE4), and exhibited better accuracy in SWH inversion. The 
improvement achieved by MLE6 in inverting SWH was approximately 3–7 cm. 
The improved adaptive algorithm, which incorporated the actual PTR of SWIM, 
further improved the accuracy of SWH inversion by 3–4 cm when compared to 
the adaptive algorithm used by SWIM. 

Discussion: MLE6 showed better accuracy in retrieving SWH than MLE4 with 
considering non-gaussian ocean. The improved adaptive algorithm, considering 
the realistic radar PTR and non-gaussian ocean, increased the accuracy of SWH 
inversion by an additional 4 cm from the surface wave investigation and 
monitoring (SWIM) measurements. 
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Highlights 
 

Fron
•	 The improved algorithm accurately estimates significant 
wave height by accounting for non-Gaussian ocean 
surface effects. 

•	 A new model involves the real radar response and non-
Gaussian ocean surfaces for better significant wave 
height estimation. 

•	 The improved algorithms provide more precise significant 
wave height estimating than previous methods. 
 

 

1 Introduction 

The satellite radar altimeter (SRA) is a powerful instrument for 
observing the ocean environment and measuring ocean dynamic 
parameters such as significant wave height (SWH) and sea surface 
height (SSH, the distance of the sea surface from the reference 
ellipsoid) (Chelton et al., 2001; Li et al., 2021; Jiang et al., 2019; 
Peacock and Laxon, 2004). The accuracy of estimating these ocean 
dynamic parameters is primarily governed by the “retracking” model 
(Hayne, 1980; He-Guang et al., 2018; Amarouche et al., 2004; Tourain 
et al., 2021), along with factors related to satellite orbit (Ge et al., 2022; 
Kang et al., 2020; Wang Y. et al., 2022; Montenbruck et al., 2018; Li 
et al., 2018) and instrument (Rossi, 2003; Richard, 2001; Fu and 
Cazenave, 2001), atmosphere (Huang et al., 2019; Abdalla, 2013), and 
geophysical corrections (Lago et al., 2017; Rosmorduc et al., 2018). 
Owing to advancements in sea state bias corrections (Huang et al., 
2019; Millet et al., 2003; Gaspar et al., 2002; Labroue et al., 2004; Tran 
et al., 2010) and satellite orbit determination technology, the bias in 
inverting SSH has been less than 2–5 cm, However, the bias in 
inverting SWH is still more than 20–30 cm (Qin and Li, 2021; Wang 
F. et al., 2022), failing to meet the increasing demands of disaster 
prevention and reduction, and scientific research. This article is 
primarily dedicated to improving the inversion accuracy of SWH. 

To obtain the ocean surface dynamic parameters (SSH, SWH, 
etc.)and their characteristics, Brown (Brown, 1977) first presented a 
three-term convolution model (Brown model) to calculate the SRA 
echo P(t) from a random ocean surface. However, obtaining ocean 
dynamic parametersby using this model required a great deal of 
computation owing to the convolution operation. Over the next few 
years, many scholars have attempted to obtain analytical 
expressions by using various approximations of Brown model. In 
1980, Hayne (Hayne, 1980) presented an analytical expression in a 
polynomial superposition form involving  slightly  complex

calculations. This model is approximately expressed from the 
three-term convolution model, that is, Brown model under the 
condition that the radar antenna mispointing angle is less than 1°. 
In 1988, considering the non-Gaussian (or non-linear) nature of 
ocean surfaces, Ernesto Rodrı ́ guez, 1988) introduced a guez (Rodrı ́
first-order approximate model involving skewness bias (SB) 
coefficient (ls) and electromagnetic bias (EMB) coefficient (lem) 
from the model presented by Hayne (Hayne, 1980). The analytical 
model was relatively simple and easy to apply in inverting ocean 
parameters but would have a great bias when the mispointing angle 
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was greater than 0.3°. Historically, the analytical model used for the 
first retracking of the SRA, named the maximum least estimation 
(MLE3) (Amarouche et al., 2004), was designed to retrieve three 
ocean parameters. This includes the ocean surface backscattering 
coefficient s° relative to the peak value of the echo waveform, the 
SWH derived from the slope of the leading edge of the echo 
waveform, and the epoch from which SSH can be inverted. 
Similarly, when the mispointing angle (x) of the  altimeter

antennas exceeded 0.3°, MLE3 tended to estimate SWH with 
significant biases. In 2004, Amarouche et al. (Amarouche et al., 
2004) proposed a second-order analytic expression known as MLE4 
model, which more effectively accounted for attitude effects, leading 
to substantial improvements in inverting SWH (Thibaut et al., 
2010). Hayne (Hayne, 1980) proposed a polynomial model that 
included ls by which the nonlinearity of the rough sea surface was 
investigated. However, the polynomial superposition expression 
was complex and inconvenient to apply. 

Therefore, MLE4 has been used as the operational algorithm for 
inverting SWH from current altimeter measurements, instead of 
Hayne’s expression and Brown model. In 2021, an adaptive model 
for retracking SWIM echoes at the nadir was introduced by Tourain 
et al. (Tourain et al., 2021) to enhance the accuracy of SWH inversion 
from SWIM measurements. This adaptive algorithm was significantly 
improved by numerically incorporating the real in-flight PTR of the 
SWIM instrument into an analytical SSR model (Tourain et al., 2021) 
in addition to accounting for the mean square slope (mss) of the 
random rough ocean surface. These enhancements had the potential to 
improve the accuracy of SWH inversion. However, the adaptive 
retracker proposed by Tourain et al. (Tourain et al., 2021) did  not
address skewness ls. By considering the non-Gaussian effects of 
random ocean surfaces, both the adaptive retracker and MLE4 
should be further refined for SWH inversion. In 2023, Jiasheng et al. 
(Tian and Shi, 2023) developed a second-order approximate algorithm 
(MLE6) involving ls and lem based on the models presented by Hayne 
(Hayne, 1980) and  Rodrı ́ guez, 1988), but the accuracy of guez (Rodrı ́
retrieving ocean parameters(e.g. SWH) by using MLE6 needs to be 
analyzed furtherly. Although MLE6 has been introduced, there is room 
for further improvement in SWH retrieval by considering real in-flight 
PTR and its impact on retrieving ocean parameters. It is crucial to 
conduct more research on retrieving SWH and other parameters for 
potential applications in future altimeter missions. 

Recently, researchers have attempted to improve SWH retrieval 
accuracy by introducing multiple satellite altimeter data fusion (Qin 
and Li, 2021), multi-satellite fusion frameworks (Guan et al., 2025), and 
employing machine learning methods along with buoy measurements 
(Wang F. et al., 2022). These methods have demonstrably enhanced 
SWH retrieval accuracy to a certain extent and obtain SWH more 
efficiently. Moreover, recent studies have demonstrated the potential of 
hybrid multiscale models in ocean parameter forecasting, such as the 
error-correction-based SST prediction (Gao et al., 2024; Cao et al., 
2024). However, these improvements do not address the physical 
mechanisms of improving SWH retrieval accuracy. These techniques 
often overlook the fundamental physics of rough sea surfaces, leading 
to persistent inaccuracies in complex scenarios like typhoon-
induced waves. 
 frontiersin.org 
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This study addresses this gap by developing a physics-based model 
that explicitly incorporates nonlinear wave dynamics and adaptive 
instrument response correction, validated against both simulated three-
term convolution waveforms and SWIM satellite data. By bridging 
theoretical wave mechanics with real-world observations, our approach 
aims to achieve a paradigm shift in SWH inversion accuracy, 
particularly in extreme and highly variable oceanic environments. 

In general, multiple satellite altimeter data fusion will lead to a 
mean absolute percentage error of 8.26% (Qin and Li, 2021), and the 
RMSE of the retrieved SWH by using Neural Network is more than 0.4 
m (Wang F. et al., 2022). Both of these inversion methods are empirical 
algorithms. Their inversion accuracy depends on the accuracy of the 
measured values and the sea conditions in the surveyed waters, which 
limits their promotion and application to a certain extent. To 
fundamentally improve the accuracy of significant wave height 
(SWH) retrieval, a thorough understanding of the mechanisms 
influencing SWH is crucial, and improving retrieval models 
represents an effective approach. In this article, the bias of retrieving 
SWH by using  the improved adaptive model  or  the adaptive algorithm  
(Tourain et al., 2021) is significantly lower than that of both of them. 

Currently, the SWH inverted by satellite remote sensors still suffers 
from relatively large deviations (approximately 10% error). Given the 
vast expanse of the ocean and its substantial spatio-temporal variability, 
empirical methods such as neural networks and data fusion cannot 
fundamentally address the issue of improving SWH accuracy. This 
paper focuses on the physical mechanisms of rough sea surfaces, 
considering the factors influencing SWH accuracy, and aims to 
fundamentally resolve this problem through the establishment and 
analysis of a physics-based model. This study will investigate MLE6 
and its improvement to enhance the accuracy of inverting SWH by 
considering non-Gaussian effects of the rough sea surfaces and the 
realistic PTR of a remote sensor. 

The article is arranged as follows: In Section 2, the three-term 
convolution model with ls and lem, MLE6, and the improved 
adaptive algorithm are presented. In Section 3, SWIM data are 
introduced to retrieve SWH. In Section 4, the validation and SWH 
inversion using MLE6 and the improved adaptive algorithm are 
presented. Section 5 presents the conclusions and perspectives for 
applying MLE6 and the improved adaptive algorithm. 
2 Retracking model for the satellite 
radar altimeter 

Herein, three-term convoluting model, MLE4 and MLE6 are 
discussed, and an improved adaptive model is proposed. 
2.1 Three-term convoluting model (Brown 
model) 

The average echo power P(t) from a random rough ocean 
surface was first demonstrated by Brown (Brown, 1977), which 
was called three-term convoluting model (Brown model) and can be 
given as the convolution of the flat sea surface response (FSSR), 
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radar PTR, and surface elevation probability density function (PDF) 
of the illuminated points: 

P(t) =  FSSR(t)*PTR(t)*PDF(t) (1) 

where t is the variable. As the altimeter antenna mispointing 
angle x is generally less than 1°, FSSR(t) can be approximated as: 

FSSR(t) =  Aexp( − d t)I0(bt
1=2)U(t) (2) 

Where 

  
A = A0 exp − 

4 
sin2 x (3)

g 

and 

g = 
2 

sin2 (qB =2) (4)
ln 2 

rffiffiffi 
4 c

b = sin (2x) (5)
g h 

4 c
d = cos (2x) (6)

g h 

where A0 is related to the peak value of the echo waveform, qB is 
the antenna beam width (e.g., 1.6°), c is the speed of light, U(t) is the 
unit step function, h is the modified satellite altitude, and I0(*) is a 
second type of Bessel function in (Equations 2–8). 

Generally, PTR(t) is replaced approximately by a Gaussian 
function: 

−t2 

PTR(t) ≈ exp (7)
2sp 

2 

where sp = 1.328 × 10−9s is PTR time. To study the non-linear 
effects on estimating SWH, the PDF must include higher terms with 
SB coefficient ls and electromagnetic bias (EMB) coefficient lem, as  
given by (Rodrıǵuez, 1988): 

PDF = 
1 ffiffiffiffiffiffi 
2p

p 
ss 

exp 
−h2 

2 
1 +  

ls 
6 
(h3 − 3h)

[ ] 

(8) 

and 

h = (t − t0 + lemss =2)=ss (9) 

where t0 is the tracking point, and ss = SWH/4 is the root mean 
square height of the random rough sea surface (Equation 9). 
(Equation 8) can be simplified to a Gaussian distribution if ls = 
lem =0. Considering (Equations 2, 7, 8), (Equation 1) is called as a 
non-Gaussian three-term convolution model (abbreviated 
as CONV_NONL). 
2.2 Improved second-order model (MLE6) 

In general, if the mispoint angle x is less than 0.8°, I0(bt1/2) can be 
replaced approximately by 2exp(b2t/8)−1 and thus MLE6 can be 
obtained from (Equations 1, 2, 7, 8), as given by (Tian and Shi, 2023): 
frontiersin.org 
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P(t) =  K1(P1 + Q1) − K2(P2 + Q2) (10) 

where 

K1 = 2A exp½−d1(t1 + d1 =2) (11) 

[ ]
1 pffiffiffi 1 

l 0 (d3P1 = ½erf (t1 = 2) + 1 1 +  1 − 3d1) (12)
2 6 

1 
Q1 = − 

6
p
2
ffiffiffiffiffi
p 
ffi exp ( − t1

2 =2)½l 0 (t1
2 + 3d1t1 + 3d1

2 − 1) (13) 

d1 = (d − b2 =8)sc (14) 

t + t0 − lemss =2 
t1 = − d1 (15)

sc 

K2 = Aexp½−d2(t2 + d2 =2) (16) 

[ ]
1 pffiffiffi 1 

P2 = ½erf (t2 = 2) + 1 1 +  l 0 (d2
3 − 3d2) (17)

2 6 

1 
Q2 = − 

6
pffiffiffiffiffi
2p 
ffi exp ( − t2

2 =2)½l 0 (t2
2 + 3d2t2 + 3d2

2 − 1) (18) 

d2 = dsc (19) 

t + t0 − lemss =2 
t2 = − d2 (20)

sc 

2 2)1/2 where  the  composite rise time  sc can be expressed as (sp +ss 
and l'=ls(ss )3 (Rodrıguez, 1988). Analytical expression (10), called /sc ́
the improved second-order algorithm (MLE6), containing six expected 
parameters(A0, t0, x, SWH(ss), lem, ls), is more convenient for 
inverting SWH than the one presented by Hayne (Hayne, 1980). Its 
derivatives can also be easily obtained for retracking ocean parameters. 
(Equation 10) with  ls and lem, called MLE6, is different from the 
current operation model MLE4 with ls = lem = 0.  
2.3 Convention second-order model 
(MLE4) 

The model MLE6, incorporating ls and lem relative to non
linear effects of random rough ocean surfaces, differs from MLE4. 
Let ls = lem = 0, MLE4 can be derived from MLE6: 

P(t) = 2Aexp( − X1)½1 +  erf (Y1) − Aexp( − X2)½1 +  erf (Y2) (21) 

where the parameters can be given by (Equation 22, 23) 

a1sc 
2 t − a1sc 

2 

X1 = a1t − , Y1 = pffiffiffi , a1 = d − b2 =8 (22)
2 2sc 
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a2sc 
2 

t−a2s2 
cX2 = a2t − , Y2 = pffiffi , a2 = d (23)

2sc2 

Known as the second-order model or MLE4, (Equation 21) is  
used as the operational algorithm in the current altimeters for 
tracking/retracking echo waveforms. However, MLE4 does not 
account for nonlinearity effects related to lem and ls, and its PDF 
and PTR are still approximated by a Gaussian function, with higher 
terms excluded. 
2.4 Improved adaptive retracking model 

For MLE6 and MLE4 models, the PTR was assumed to have a 
Gaussian distribution expressed by (Equation 7), which is generally 
different from the realistic PTR of the remote sensor. However, it is 
difficult to obtain a realistic PTR for a remote sensor, because the 
PTR varies with various instruments and their aging. The accuracy 
of inverting SWH can be further improved if a realistic PTR of the 
instrument (e.g. altimeter or SWIM) is measured while the return 
waveforms are being received. The realistic PTR of the SWIM 
instrument onboard China–France Oceanography Satellite 
(CFOSAT) was measured and determined. Tourain et al. 
(Tourain et al., 2021) used an adaptive algorithm to invert SWH 
with high accuracy because it accounted for a realistic PTR 
(Figures 1a, b) (Hauser et al., 2020). 

In this study, to further enhance the accuracy of inverting SWH 
by considering the realistic PTR effect, (Equation 10) is used to 
perform a convolution operation with the real mean PTR of the 
SWIM instrument (Figure 1b). The improved adaptive algorithm in 
this article can be given as 

W(t) =  fK1(P1 + Q1) − K2(P2 + Q2)g*PTR(t) (24) 

where sc = ss and l' = ls from (Equations 11–20). In MLE6 
model, this expression represents an analytical solution after 
completing a three-term convolution (FSSR*PDF*PTR), which 
inherently involves operations with the PTR function. However, 
the current formulation of this (Equation 24) only embodies the 
analytical result of the first two convolutions (FSSR*PDF), with the 
second-stage convolution—specifically the convolution with PTR— 
remaining unperformed. Consequently, it does not incorporate 
certain PTR-related parameters, implying that the point target 
response time sp is set to zero (Tourain et al., 2021). Therefore, 
in (Equation 24) sc = sqrt(ss 2 + sp 

2)= ss and sp is explicitly set to 0. 
When the measured PTR follows a Gaussian distribution, this 
equation can be represented by the MLE6 model. This novel 
technique is executed through the same iterative method as that 
of Tourain et al. (Tourain et al., 2021), named the Nelder Mead 
algorithm (Nelder and Mead, 1965). This is a type of direct search 
technology according to function comparison and often used for 
solving non-linear optimization problems where those derivative 
functions of the expected parameters need not be solved first. 
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2.5 The relationships among these several 
models 

MLE4, whose PDF and PTR are Gaussian distributions, is a 
conventional re-tracking algorithm that is still used in altimeter 
missions now. MLE6, whose PDF is non-Gaussian but PTR is a 
Gaussian distribution, is different from MLE4. From the perspective 
of parameter inversion, MLE4 and MLE6 are described as re-
tracking methods; essentially, both use the Brown theoretical 
model, with different model simplifications based on the number 
of tracking parameters required. Although the Gaussian 
distribution is an acceptable approximation for the PTR related to 
the altimeter instrument, it is generally different from that of the 
realistic PTR of an SRA (Rodrıǵuez, 1988). If the PTR of the MLE6 
model is substituted with a realistic PTR, MLE6 will further 
improve its performance in inverting ocean parameters, for 
example SWH, because it takes into account the real and 
nonlinear(non-gaussian) random rough sea surface. 

To apply realistic PTR, MLE6 is improved into (Equation 24), 
which is known as the improved adaptive algorithm, where the 
Gaussian distribution PTR is replaced by the realistic PTR function 
shown in Figure 1b, which is measured by SWIM, and the PTR of 
CONV_NONL is replaced by the realistic PTR, which is called 
CONV_NONL_REAL. The relationships among MLE4, MLE6, and 
the improved adaptive model are shown in Figure 2. 

In Figure 2, the return waveform is defined by the three-term 
convolution model(Brown model=FSSR*PDF*PTR). When PDF 
and PTR are approximated by Gaussian distribution, Brown 
model is approximated and simplified  into  the MLE4 model,

which is an  analytical  model.  It  is simple,  has a small

computation time, and its accuracy basically meets engineering 
requirements. However, it only considers the case of a linear 
(Gaussian) rough sea surface(PDF) and its PTR function of the 
altimeter is also a Gaussian approximation. In general, the rough 
random sea surfaces exhibit non-Gaussian distributions, meaning 
their probability density function (PDF) is non-Gaussian (the 
polynomial expansion includes skewness and electromagnetic 
deviation terms). So when PDF is non-gaussian(non-linear) and 
Frontiers in Marine Science 05 
PTR is gaussian, The Brown model is approximated and simplified 
into the MLE6 model, which is also an analytical model. Analytical 
models do not involve convolution operations, resulting in less 
computation time, simplicity, and high efficiency. Moreover, the 
point target response (PTR) of a radar is not a Gaussian distribution 
(Rodrıǵuez, 1988). The PTR of a radar instrument is inherently 
linked to the instrument’s performance and characteristics. As time 
progresses and the instrument ages with a shortened service life, the 
PTR evolves correspondingly (Rodrıǵuez, 1988). When feasible, 
PTR should be obtained through practical measurements (Tourain 
et al., 2021). In this context, as the instrument’s operational lifespan 
extends over time, real-time measurement of its actual PTR and 
subsequent update of the re-tracking model define an adaptive 
algorithm or model employed by SWIM (Tourain et al., 2021). 
However, the existing adaptive model (Tourain et al., 2021) remains 
a first-order approximation (analogous to MLE3) (Amarouche 
et al., 2004), with its probability density function (PDF) still 
assuming a Gaussian distribution. By contrast, the improved 
adaptive algorithm model proposed in this study is a second-
order approximation, similar to MLE4, featuring a non-Gaussian 
PDF  and  adaptive  PTR  updates  based  on  instrument  
measurements. The PTR function in (Equation 24) will be

adaptively updated according to real-time measured values. 
In this article, some works will be arranged according to the 

following steps. Step 1: using the waveforms simulated by the three-
term convolution model(Brown model or CONV_NONL) as the 
true echoes, conduct waveform validation and SWH inversion 
performance of MLE6 when compared with MLE4. The result 
will confirm that considering nonlinear (non-gaussian) random 
ocean surfaces is beneficial for improving SWH inversion accuracy. 
Step 2: Taking the simulated waveforms by the three-term 
convolution model (CONV_NONL_REAL, the realistic PTR) as 
real echoes, complete waveform validation and parameter 
characteristic analysis of the improved adaptive model by 
comparing it with the MLE6 model. The compared results will 
illustrate that accounting for the realistic PTR will enhance the 
SWH inversion accuracy. Step 3: (1) firstly, use SWIM measurement 
data to verify that the MLE6 model’s SWH inversion accuracy is 
FIGURE 1 

Realistic PTR of the SWIM instrument. (a) Real measurement sample, (b) Mean sample. 
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superior to MLE4, confirming that considering nonlinear effects of 
the rough sea surfaces enhances SWH inversion accuracy. (2) 
Secondly, using the same SWIM waveform data, compare with the 
adaptive model to validate the improved adaptive model’s enhanced 
SWH inversion accuracy, also confirming the benefit of nonlinear 
effect consideration. Compared with step (1), step (2) additionally 
accounts for adaptive updates of the instrument point target 
response (PTR) function, further improving SWH inversion 
accuracy. These steps can be read from the flowchart in Figure 2. 
3 SWIM data 

On 29 October 2018, the CFOSAT was launched successfully, 
equipped with a SWIM instrument operated as a Ku-band 
(13.575GHz) radar with six near-nadir scanning beams at 0°, 2°, 
4°, 6°, 8°, and 10° incidence angles. In addition to measuring the 
directional spectral behaviors of ocean surface waves using off-nadir 
beams pointed at 6°, 8°, and 10° incidence, SWIM provides nadir 
products such as SWH, wind speed, and backscattering coefficient 
s° etc. at 0° incidence. SWIM can provide a high-accuracy inversion 
of SWH comparable to traditional altimeter missions by using an 
adaptive retracking model with a realistic PTR. The European 
Center Wave Model from the European Centre Medium Weather 
Forecast (ECMWF) and products from Jason-3 and AltiKa 
altimeters are the primary references for wind speed and SWH 
products at 0° incidence. SWIM, when compared to Jason-3 
altimeter (Poseidon-3B), showed positive instrumental behavior 
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with adaptive retracking or tracking at the nadir. The adaptive 
retracking or tracking mode demonstrated similar performance to 
conventional altimeters over ocean surfaces, with less than 10% 
error in SWH inversion. 

To further explore the performance of MLE6 and its 
applications, return waveforms from SWIM are selected and 
processed. In this study, four SWIM tracks in August 2020 and 
March 2022 are selected, which are termed tracks No. 1, No. 2, No. 
3, and No. 4, respectively. In Figure 3, these four tracks are shown, 
where the red curves represent the running trajectories of SWIM 
(https://aviso-data-center.cnes.fr/). For track No.1, it may start 
from point A and end at point B, as shown in Figure 3a. For 
other tracks, the same logic applies, resulting in a complete track, as 
shown in Figures 3b–d. 
4 Results and discussion 

4.1 MLE6 validation and SWH inversion 

4.1.1 MLE6 waveform validation 
Almost no altimeters use the CONV_NONL model to retrack 

or track the echo waveforms from the rough ocean surface to invert 
SWH and other ocean parameters. This is because it takes a large 
amount of time to perform the convolution operations. To invert 
effectively ocean parameters, the CONV_NONL model is simplified 
approximately into MLE4 by applying I0(bt1/2)≈2exp(b2t/8)−1 and 
ls = lem = 0, with PTR and PDF being Gaussian functions. It is 
FIGURE 2 

Relationships among several models and flowchart. 
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simplified approximately into MLE6 by applying I0(bt1/2)≈ 2exp 
(b2t/8)-1, ls ≠0 and lem ≠0, where PTR is the Gaussian function 
expressed by (Equation 7), but PDF is the non-Gaussian 
distribution given by (Equation 8). 

In terms of (Equations 15, 20), lem only moves the echo 
waveform by lemss/2 along the timeline, but it does not impair the 
slope of the leading edge of the echo from the random rough ocean 
surface, and thus it will not impact the accuracy of SWH inversion. 
Therefore, lem will not be discussed in this article (let lem = 0).  

The differences and relationships among CONV_NONL, 
MLE6, and MLE4 are examined at SWH = 1, 8, 12, 18 m 
covering low/medium/high sea states, where mispointing angle x 
= 0.4°, non-Gaussian distribution ls = 0.1, and satellite attitude h = 
960 km. The echoes simulated by MLE6, MLE4, and CONV_NONL 
are displayed in Figure 4a. MLE6 is shown to be closer to 
CONV_NONL than MLE4 under the same conditions and 
parameters, as depicted in Figure 4a and its subfigures. In 
Figure 4b, the received normalized power differences between 
CONV_NONL and MLE6/MLE4 are presented. The differences 
between CONV_NONL and MLE6 (CONV_NONL-MLE6) 
represented by solid lines are significantly smaller than those 
between CONV_NONL and MLE4 (CONV_NONL-MLE4) 
Frontiers in Marine Science 07 
indicated by dashed lines under sea states (SWH = 1, 8, 12, 18 
m). The differences between CONV_NONL (ls = 0.1) and MLE4 
(ls = 0) are slightly larger, aligning with Hayne’s (1980) findings, 
especially observed in the leading edges of the return waveforms. 
This suggests that MLE4’s accuracy in inverting SWH may be 
impacted due to the shape or slope of the leading edge of the 
echo waveform. However, the differences between CONV_NONL 
and MLE6 are almost negligible, indicating the nearly identical 
nature of MLE6 to CONV_NONL. This highlights MLE6’s greater 
efficacy in improving SWH inversion accuracy compared to MLE4. 
The tail edges of these waveforms are nearly parallel, supported by 
the retrieved mispointing angles x (which are almost identical at 
0.4°). If let 

RMSE _ waveform sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
N 

= 
1

(CONV _ NONL(ti) − MLE6=MLE4(ti))
2 (25)

N o 
i=1 

where ti is the time-sampling point. RMSE_waveform (Equation 
25) of CONV_NONL-MLE6 (~10−6(normalized unit)) was 
significantly smaller than that of CONV_NONL-MLE4(~10−3 

(normalized unit)), as shown in Figure 4c, where  x = 0.4°.
FIGURE 3 

Several SWIM tracks in August 2020 and March 2022. (a) Track No. 1, (b) Track No. 2, (c) Track No. 3, (d) Track No. 4. 
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Similarly, the RMSE_waveform of CONV_NONL-MLE6 is smaller 
than that of CONV_NONL-MLE4 at x = 0.2° and 0.6°. MLE6 can 
more effectively replace the three-term convolution model 
CONV_NONL to inverse ocean parameters, for example, SWH, 
from the SRA measurements compared with MLE4.Echo 
Frontiers in Marine Science 08
waveforms from random rough ocean surfaces can be simulated 
by using the three-term convolution model provided by Brown’s 
model (Brown, 1977), namely, (Equation 1), which is the most 
accurate expression for ocean echoes among those models. In this 
section, the echoes simulated by (Equation 1) accounting for non-
FIGURE 4 

MLE6 and CONV_NONL/MLE4. (a) Comparison between MLE6/MLE4 and CONV_NONL, (b) Differences (CONV_NONL -MLE6) and (CONV_NONL
MLE4), (c) RMSE_waveform of CONV_NONL-MLE6/MLE4. 
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Gaussian ocean surfaces will be considered to be “the real echoes” to 
investigate the performance of MLE6 in inverting SWH and other 
parameters such as skewness coefficient ls. 

Assuming the satellite altitude h = 960 km, the beam width is 
1.6°, x = 0°, 0.2°, 0.4°, 0.6°, and SWH = 1, 2, 3,  …, 20 m are possible 
situations where Gaussian noise is added to echo waveforms. Those 
simulated waveforms are shown in Figure 5, where ls = 0.1 and 80 
simulated waveforms are plotted. We inverted SWH from these 80 
waveforms using MLE4 and MLE6. However, the inverted SWH for 
a return waveform sample is often different from another owing to 
random Gaussian noise. Therefore, 20 sampling waveforms that can 
represent a type of sea state with the similar SWH and mispointing 
angle x, are simulated and retracked. The first column in Table 1 
represents the true values of SWH and the other two columns 
represent the values inverted by MLE6 and MLE4, respectively. The 
accuracy of estimating SWH using MLE6 is better than that using 
MLE4, which can be demonstrated by calculating the root mean 
square error (RMSE) and Mean Bias as follows: 

N1 
Mean Bias = j (SWHest − SWHtru) j (26)i iN o 

i=1 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
N 

RMSE = 
1

(SWHest − SWHtru)2 (27)i iN o 
i=1 

tru estwhere SWHi represents the true value of SWH, SWHi 

represents the values estimated by the MLE4 or MLE6 algorithm. 
By inverting and calculating at x = 0.0°, 0.2°, 0.4°, and 0.6°, the 
Mean Bias (Equation 26) of  SWH estimated by MLE6 are less than 
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those estimated by MLE4, as is the RMSE (Equation 27), as listed in 
the 21st and 22nd rows in Table 1. 

In Table 1, the estimated SWHs represent the mean values of 20 
samples. For example, at x = 0.0° and SWH = 1 m, 1.0021 m is the 
mean value of the estimated SWH by MLE6 over 20 various 
simulated waveforms to which random Gaussian noises are 
added. Figure 6 shows the estimated SWH at x = 0.0° 20 samples, 
where Mean Biases of the estimated SWH by applying MLE6, 
varying from 0.45 cm to 2.03 cm (mean value = 1.11 cm listed 
(Table 1), were smaller than those estimated by MLE4, varying from 
2.54 cm to 8.79 cm (mean value = 4.33 cm listed (Table 1). The 
mean improvement was 3.23 cm, as indicated by the green dotted 
line in Figure 6a. In  Figure 6b, RMSEs of the estimated SWHs by 
applying MLE6, varying from 0.86 cm to 4.36 cm (mean value = 
2.24 cm listed in Table 1), were smaller than those estimated by 
MLE4, varying from 3.81 cm to 15.06 cm (mean value = 6.98 cm 
listed in Table 1). The mean improved amount is 4.74 cm, as shown 
by the green dot line in Figure 6b. 

Figure 7 shows the estimated SWH at x = 0.2° 20 samples, where 
Mean Biases of the estimated SWH by applying MLE6, varying from 
0.67 cm to 2.34 cm (mean value = 1.48 cm listed in Table 1), were 
substantially smaller than those estimated by MLE4, varying from 
6.22 cm to 9.56 cm (mean value = 8.01 cm listed (Table 1). The 
mean improvement amount is 6.53 cm, as shown by the green 
dotted line in Figure 7a. Figure 7b shows RMSEs of the estimated 
SWHs by applying MLE6 and MLE4, respectively. Here, the RMSEs 
of the estimated SWHs by applying MLE6, varying from 1.14 cm to 
4.57 cm (mean value = 2.83 cm listed in Table 1), were substantially 
smaller than those by MLE4, varying from 7.29 cm to 12.34 cm 
FIGURE 5 

Simulated echoes by three-term convolution model CONV_NONL. 
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(mean value = 9.37 cm list in Table 1). The mean improved amount 
is 6.53 cm, as shown by the green dot line. Figure 8 shows the 
estimated SWH at x = 0.4° 20 samples, where the Mean Biases of the 
estimated SWHs by applying MLE6, varying from 0.67 cm to 2.48 
cm (mean value = 1.50 cm listed in Table 1), were much smaller 
than those obtained by MLE4, varying from 5.60 cm to 11.65 cm 
(mean value = 8.22 cm listed (Table 1). The mean improvement was 
6.72 cm, as indicated by the green dotted line in Figure 8a. In
Figure 8b, RMSEs of the estimated SWHs by applying MLE6, 
varying from 1.52 cm to 5.75 cm (mean value=2.95 cm listed in 
Table 1), were substantially smaller than those by MLE4, varying 
from 7.13 cm to 12.40 cm (mean value = 10.15 cm listed in Table 1). 
The mean improvement in the estimated SWH was 7.20 cm, as 
indicated by the green dotted line. 

Figure 9 shows the estimated SWH at x = 0.6° 20 samples, where 
Mean Biases of the estimated SWHs by MLE6, varying from 0.86 cm 
to 2.82 cm (mean value = 1.47 cm listed in Table 1), were 
substantially smaller than those by MLE4, varying from 5.75 cm 
to 11.03 cm (mean value = 8.06 cm listed in Table 1). The mean 
improvement in the estimated SWH is 6.58 cm, as indicated by the 
Frontiers in Marine Science 10 
green dotted line in Figure 9a. Figure 9b shows RMSEs of the 
estimated SWHs by applying MLE6 and MLE4, respectively; RMSEs 
of the estimated SWHs by MLE6, varying from 1.48 cm to 4.03 cm 
(mean value = 2.83 cm listed in Table 1), were substantially smaller 
than those by MLE4, varying from 7.02 cm to 16.24 cm (mean 
value= 9.97 cm list in Table 1). The mean improvement in the 
estimated SWH was 7.14 cm, as indicated by the green dotted line. 

From Figures 6–9 and Table 1, some  conclusions  can  be
obtained: (1) Mean Bias and RMSE of the estimated SWHs by 
MLE6 (1.11, 1.48, 1.50, 1.47 cm; 2.24, 2.83, 2.95, 2.83 cm), from 
approximately 1 to 3 cm, were smaller than those by estimated 
MLE4 (4.33, 8.01, 8.22, 8.06 cm; 6.98, 9.37, 10.15, 9.97 cm), from 
approximately 4 to 10 cm. This demonstrates that the accuracy of 
estimating SWH can be enhanced by the amount from 4.74 to 7.2 
cm in RMSE, from 3.22 cm to 6.72 cm in Mean Bias by applying 
MLE6 with accounting for non-Gaussian effects. The mean total 
improvement was approximately 3.1630 cm. (2) The amount of 
improvement increases with the mispointing angle x increasing, but 
does not when x exceeds 0.4°. The improvement remained almost 
unchanged when x >0.4°. (3) The fluctuation amplitudes of RMSE 
TABLE 1 Estimated SWH by applying MLE6 (ls = 0.1) and MLE4. 

x 

SWH/m 

0.00 MLE4 0.00 MLE6 0.20 MLE4 0.20 MLE6 0.40 MLE4 0.40 MLE6 0.60 MLE4 0.60 MLE6 

1 1.003 1.002 0.996 0.996 0.988 0.988 1.001 1.000 

2 1.989 1.990 1.996 1.996 2.005 2.003 1.986 1.987 

3 2.979 2.982 2.986 2.988 3.008 3.006 2.975 2.979 

4 4.006 4.004 3.989 3.994 3.968 3.976 4.000 3.999 

5 4.962 4.973 4.985 4.989 4.996 4.996 4.954 4.968 

6 5.985 5.990 5.976 5.984 5.997 5.998 5.977 5.986 

7 6.980 6.987 6.958 6.977 6.981 6.991 6.962 6.974 

8 7.975 7.990 7.966 7.988 7.963 7.984 7.958 7.982 

9 8.976 8.992 8.937 8.983 8.948 8.988 8.946 8.984 

10 9.952 9.989 9.937 9.977 9.910 9.964 9.918 9.975 

11 10.986 11.000 10.953 10.996 10.904 10.977 10.932 10.994 

12 11.964 12.000 11.931 11.991 11.927 11.979 11.920 11.995 

13 12.985 13.000 12.916 12.987 12.901 12.988 12.910 12.992 

14 13.999 13.999 13.884 13.991 13.884 13.994 13.924 14.000 

15 14.974 14.999 14.892 14.992 14.896 14.999 14.858 14.997 

16 15.974 15.998 15.870 16.000 15.880 15.999 15.940 16.000 

17 16.992 16.999 16.907 16.997 16.904 17.000 16.971 17.000 

18 18.001 17.998 17.917 18.000 17.931 18.000 17.957 18.000 

19 19.038 18.997 18.963 19.000 19.061 19.000 19.078 19.000 

20 19.984 19.997 19.974 20.000 20.046 19.999 20.091 20.004 

RMSE 0.070 0.022 0.094 0.028 0.102 0.030 0.100 0.0280 

MeanBias 0.043 0.011 0.080 0.015 0.082 0.015 0.081 0.012 
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and Mean Bias of the estimated SWH by MLE6 were much smaller 
than those estimated by MLE4, as shown by the red and blue solid 
lines in Figures 6–9. The accuracy of inverting SWH using MLE6 
was relatively stable and higher than that of MLE4. 

4.1.2 Skewness coefficient retrieval from the 
simulated waveforms 

Similarly, assuming the satellite altitude h = 960 km, the beam 
width is 1.6°, x = 0°, 0.2°, 0.4°, 0.6°, and SWH =  1, 4, 7,  …, 19 m are 
possible situations where Gaussian noise is added to echo 
waveforms. In Figure 10, the simulated waveforms is simulated by 
Brown model with ls=0.1 and lem=0.0, where waveforms with 
ls=0.2 and lem=0.0 are not shown. 

To evaluate the performance of MLE6 in inverting the skewness 
coefficient, both the Brown model and MLE6 were used to track 
these waveforms simultaneously. The re-tracking results are shown 
Frontiers in Marine Science 11 
in Table 2. From Table 2, the performance of MLE6 model in 
inverting parameter ls is almost identical to that of the Brown 
model. The inversion bias ranges of the two models are between 
0.005 and 0.012 (<12%), and the specific error magnitude depends 
on the noise level(eg. signal/noise=1:0.01), with little relationship to 
SWH and mispointing angle x. If the noise is not added to these 
simulated waveforms, the retrieved ls is almost identical to the real 
values by using MLE6 and Brown model. 

For another example, when the added noise is high (simulated 
waveforms are shown in Figure 11), the retrieved skewness coefficient 
ls has a large deviation of up to 0.07(RMSE=0.0717, 0.0719 for MLE6, 
Brown model) and fluctuates significantly, but the average value is 
still close to 0.1(mean values=0.1139, 0.1148 for MLE6, Brown 
model), as shown in Figure 12. In  Figure 12, the retrieved skewness 
coefficient ls varies with SWH=1,4,7,10,13,16,19m at mispointing 
angle x=00, 0.20, 0.40, 0.60. the real skewness coefficient ls =0.1. 
FIGURE 6 

Mean Bias/RMSE varying with various samples. (a) Mean Bias at x = 0.0°, (b) RMSE at x = 0.0°. 
FIGURE 7 

Mean Bias/RMSE varies with various samples. (a) Mean Bias at x = 0.2°, (b) RMSE at x = 0.2°. 
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Therefore, minimizing noise interference can greatly reduce the 
parameter ls inversion error. All in all, the performance of MLE6 
in retrieving ls is almost the same as that of Brown model. 
4.1.3 Electromagnetic bias coefficient lem 

validation 
Electromagnetic (EM) bias coefficient lem is difficult to obtain 

from re-tracking waveforms (Rodrıǵuez, 1988). because the 
electromagnetic bias only shifts the waveforms, leading to the later 
arrival of the half-power point (average energy). Since the crests of the 
sea surface are more susceptible to wind, their scattering coefficient is 
lower (because wind speed is negatively correlated with the scattering 
coefficient). The probability density of the scattering field tends to 
favor the wave troughs, resulting in the fact that the average height of 
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the scattering points (radar apparent height) is below the average sea 
surface height. This error is called electromagnetic bias. The mean 
value of the sea surface scattering field is lower than the mean sea 
surface height. The effect of the later arrival of the scattering pulse 
sign is consistent with that of a decrease in sea surface height. It is 
difficult to distinguish both of them according to the mathematical 
expressions or (Equations 15, 20). 

The electromagnetic bias may be implicit in t0 when re-tracking 
the echoes. That is to say, if a bias occurs, it is difficult to distinguish 
whether the bias is due to t0 or lemss/2 (Rodrıguez, 1988). So in this ́
manuscript the electromagnetic bias is not discussed. 

However, the accuracy of MLE6 can be analyzed by comparing 
whether the movement amount of MLE6 is the same as that of 
Brown model when the electromagnetic bias coefficient lem is given 
as a series of values shown in Figure 13. It is obvious that the 
FIGURE 9 

Mean Bias/RMSE varying with various samples. (a) Mean Bias at x = 0.6°, (b) RMSE at x = 0.6°. 
FIGURE 8 

Mean Bias/RMSE varying with various samples. (a) Mean Bias at x = 0.4°, (b) RMSE at x = 0.4°. 
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TABLE 2 The retrieved ls by MLE6 and brown model. 

Mispointing angle/0 SWH/m Real ls ls by MLE6 ls by Brown model Real ls ls by MLE6 ls by Brown model 

0 1 0.1 0.122 0.122 0.2 0.182 0.182 

0 4 0.1 0.090 0.090 0.2 0.190 0.190 

0 7 0.1 0.106 0.106 0.2 0.194 0.194 

0 10 0.1 0.100 0.100 0.2 0.204 0.206 

0 13 0.1 0.104 0.104 0.2 0.200 0.200 

0 16 0.1 0.104 0.104 0.2 0.194 0.194 

0 19 0.1 0.094 0.096 0.2 0.196 0.198 

0.2 1 0.1 0.096 0.096 0.2 0.194 0.194 

0.2 4 0.1 0.098 0.098 0.2 0.208 0.208 

0.2 7 0.1 0.110 0.110 0.2 0.194 0.194 

0.2 10 0.1 0.102 0.102 0.2 0.200 0.200 

0.2 13 0.1 0.098 0.098 0.2 0.202 0.202 

0.2 16 0.1 0.100 0.100 0.2 0.202 0.204 

0.2 19 0.1 0.094 0.096 0.2 0.198 0.200 

0.4 1 0.1 0.102 0.102 0.2 0.184 0.184 

0.4 4 0.1 0.108 0.108 0.2 0.194 0.194 

0.4 7 0.1 0.098 0.098 0.2 0.198 0.198 

0.4 10 0.1 0.098 0.098 0.2 0.200 0.200 

0.4 13 0.1 0.096 0.096 0.2 0.192 0.194 

(Continued) 
F
rontiers in Marine Science 
13 
FIGURE 10 

The simulated waveforms by Brown model with ls=0.1 and lem=0. 
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movement amount of MLE6 is the same as that of Brown model, 
and the electromagnetic bias can be given as (Rodrıǵuez, 1988). 

EM bias = −SWH*lem =8 (28) 

based on the data in Figure 13 or Equation 28, EM bias is almost 
no related to mispointing angle x. 

All in all, the performance of MLE6 in retrieving parameters 
such as ls and lem is identical to that of Brown model, but MLE6 
has no convolution operations, resulting in small computational 
load, high efficiency, and easy real-time application on satellites. 
4.2 SWH retrieval from SWIM data by MLE6 

Using SWH products from ECMWF as the reference, we applied 
both the MLE6 and MLE4 algorithms to invert SWH from SWIM 
measurements [level 1 A [L1A] (https://aviso-data-center.cnes.fr/)] at 
FIGURE 11 

The simulated waveform with a large noise. 
TABLE 2 Continued 

Mispointing angle/0 SWH/m Real ls ls by MLE6 ls by Brown model Real ls ls by MLE6 ls by Brown model 

0.4 16 0.1 0.104 0.104 0.2 0.198 0.198 

0.4 19 0.1 0.100 0.100 0.2 0.196 0.198 

0.6 1 0.1 0.080 0.080 0.2 0.202 0.204 

0.6 4 0.1 0.104 0.104 0.2 0.200 0.200 

0.6 7 0.1 0.104 0.104 0.2 0.206 0.208 

0.6 10 0.1 0.098 0.098 0.2 0.204 0.204 

0.6 13 0.1 0.104 0.104 0.2 0.194 0.194 

0.6 16 0.1 0.100 0.102 0.2 0.204 0.204 

0.6 19 0.1 0.096 0.098 0.2 0.200 0.202 

RMSE – – 0.012 0.012 – 0.006 0.006 

Mean value – 0.1 0.098 0.098 0.2 0.198 0.198 
FIGURE 12 

The retrieved ls varying with SWH and x. 
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FIGURE 13 

EM bias varying with EM bias coefficient at various SWH and mispointing angle. 
FIGURE 14 

Track No. 1: SWH retrieved by MLE6 (Mean ls = 0.10735)/MLE4 compared with collocated model data (ECMWF). (a) SWH retrieved by MLE6, (b) SWH 
retrieved by MLE4. (c) Scatter plots for SWH retrieved by MLE6, (d) Scatter plots for SWH retrieved by MLE4. 
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0° incidence. The inverted SWHs, “box average values,” were 
compared with collocated model data (ECMWF), as depicted in 
Figures 14–17. Mean Bias and RMSE of the SWH estimated by 
MLE6 (0.28994, 0.46479, 0.46546, and 0.63556 m) were smaller than 
those estimated by MLE4 (0.32847, 0.50776, 0.50048, and 0.67728 
m). This indicates that considering non-Gaussian height distribution 
of rough ocean surfaces can improve the accuracy of SWH inversion, 
which is a 3–4 cm  improvement  in  RMSE of SWH retrieval; 
additionally, Mean Bias of SWH inversion was improved by 4 cm 
(0.04297 m denoted by Figure 18b and in Table 3). These results are 
in line with the simulation results presented in Section 4.1.1. 

Track No.  1 occurred on 15 August 2020.  The effects of the  non-
Gaussian distribution of sea surface elevation are rather weak owing to 
the small ls, with a mean value of 0.10735 denoted by Figure 18a. 
Therefore, the improvement of inverting SWH is weaker than others’. 
Tracks No. 2, No.3 and No.4 occurred on 29 March 2022. The effects of 
the non-Gaussian distribution of rough sea surfaces were slightly 
stronger, with a mean value of 0.1304, which is almost consistent 
with the reported values (Thibaut et al., 2005). The Number of 
waveforms for No.1 is 18619, No.2 17350, No.3 17638, No.4 15562, 
as listed in Table 3. From  Figures 14–17, box average values are shown. 
These sampling points or waveforms illustrated that MLE6 was robust 
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in a considerable degree. Moreover, some scatter plots are given, as can 
be seen from Figures 13–17C, D, the SWH wave height value inverted 
from the first track is higher than that of ECMWF, while the values of 
the remaining tracks are lower. This is mainly related to the season. 
4.2 Improved adaptive algorithm validation 

4.2.1 Validation of the improved adaptive 
algorithm 

MLE4, whose PDF and PTR are Gaussian distributions, is a 
conventional retracking algorithm that is still used in altimeter 
missions. MLE6, whose PDF is non-Gaussian but PTR is a Gaussian 
distribution, is different from MLE4. Although the Gaussian 
distribution is an acceptable approximation for the PTR related to 
the altimeter instrument, it is generally different from that of the 
realistic PTR of an SRA (Rodrıǵuez, 1988).  If  the PTR  of  the MLE6  
model is substituted with a realistic PTR, MLE6 will further improve its 
performance in inverting ocean parameters, for example SWH. 

To apply realistic PTR, MLE6 is improved into (Equation 24), 
which is known as the improved adaptive algorithm, where the 
Gaussian distribution PTR is replaced by the realistic PTR function 
FIGURE 15 

Track No. 2: SWH retrieved by MLE6 (Mean ls = 0.12932)/MLE4 compared with collocated model data (ECMWF). (a) SWH retrieved by MLE6, (b) SWH 
retrieved by MLE4. (c) Scatter plots for SWH retrieved by MLE6, (d) Scatter plots for SWH retrieved by MLE4. 
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shown in Figure 1B, which is measured by SWIM, and the PTR of 
CONV_NONL is replaced by the realistic PTR, which is 
called CONV_NONL_REAL. 

In Figure 19, the echoes simulated by the improved adaptive 
algorithm, MLE6, and CONV_NONL_REAL with realistic PTR are 
shown together. The improved adaptive algorithm is closer to 
CONV_NONL_REAL than MLE6, as shown in Figure 19a and its 
subfigure. The difference between CONV_NONL_REAL and the 
improved adaptive algorithm is smaller than that between 
CONV_NONL_REAL and MLE6, especially at the leading edges 
of the simulated waveforms shown by solid black lines and dash 
blue lines, as shown in Figure 19b and its subfigure. In Figure 20, 
RMSE of the differences between CONV_NONL_REAL and the 
improved adaptive algorithm, and RMSE of differences between 
CONV_NONL_REAL and MLE6 are shown at mispointing angle 
x = 0.2°, 0.4°,0.6° and SWH = 2,4,6,…,20 m. RMSE of differences 
between CONV_NONL_REAL and the improved adaptive 
algorithm increases slowly and steadily with increasing SWH, but 
does not change significantly with increasing mispointing angle; 
RMSE of differences between CONV_NONL_REAL and the 
improved adaptive algorithm, 10−5 (normalized unit) or so, is so 
small that both are almost identical to each other. The RMSE of the 
differences between CONV_NONL_REAL and the improved 
adaptive algorithm were much smaller than those of the 
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differences between CONV_NONL_REAL and MLE6. RMSE of 
the differences between CONV_NONL_REAL and MLE6, 10−3 

(normalized unit) or so, first decreased and then slowly increased 
with increasing SWH, with occasional abrupt changes in the middle 
period. This may be because of the different PTR between the two 
models. Overall, the improved adaptive algorithm can more 
effectively replace CONV_NONL_REAL than MLE6 for 
retracking return waveforms to obtain accurate ocean parameters. 

4.2.2 Improved adaptive algorithm inverting SWH 
from SWIM measurements 

The CONV_NONL_REAL model with non-Gaussian random 
ocean surface PDF and realistic radar PTR should be used to invert 
ocean parameters from SWIM measurements (waveforms). However, 
the three-term convolution model CONV_NONL_REAL will take a 
longer time than the improved adaptive algorithm to finish 
retracking these waveforms because of the great number of 
convolution operations. 

The proposed improved adaptive algorithm was used to invert 
SWH from track Nos. 1–4 (https://aviso-data-center.cnes.fr/). The 
accuracy of inverting SWH can be considerably improved by 3–4 cm  
(Figure 21) when compared with that of the SWH inverted by the 
adaptive algorithm employed by SWIM. RMSE/Mean Bias of 
inverting SWH using the improved adaptive algorithm (0.25191 m/ 
FIGURE 16 

Track No. 3: SWH retrieved by MLE6 (Mean ls = 0.12972)/MLE4 compared with collocated model data (ECMWF). (a) SWH retrieved by MLE6, 
(b) SWH retrieved by MLE4. (c) Scatter plots for SWH retrieved by MLE6, (d) Scatter plots  for SWH  retrieved by  MLE4.  
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0.094783 m) was smaller than that of the adaptive algorithm used by 
SWIM from L2_file (0.26643 m/0.10947 m) (https://aviso-data
center.cnes.fr/), and the improvement was 1 cm for track No.1. For 
Track No. 2, RMSE/Mean Bias of inverting SWH using the improved 
adaptive algorithm (0.1865 m/0.074673 m) was smaller than that of 
the adaptive algorithm (0.23979 m/0.11979 m), and the improvement 
Frontiers in Marine Science 18 
was 5 cm. For Track No.3, RMSE/Mean Bias of inverting SWH using 
the improved adaptive algorithm (0.15691 m/0.083337 m) was 
smaller than that of the adaptive algorithm (0.18493m/0.09788m), 
and the improvement was 3 cm. For Track No. 4, the RMSE/Mean 
Bias of inverting SWH by the improved adaptive algorithm (0.27555 
m/0.11187 m) was smaller than that of the adaptive algorithm 
FIGURE 17 

Track No. 4: SWH retrieved by MLE6 (Mean ls = 0.13217)/MLE4 compared with collocated model data (ECMWF). (a) SWH retrieved by MLE6, (b) SWH 
retrieved by MLE4. (c) Scatter plots for SWH retrieved by MLE6, (d) Scatter plots for SWH retrieved by MLE4. 
FIGURE 18 

Estimated ls and Mean Bias/RMSE of SWH are estimated by MLE6 and MLE4. (a) The retrieved ls, (b) RMSE/Mean_Bias and their differences. 
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(0.31228 m/0.13348 m), and the improved amount was 4 cm. The 
mean total improvement was 3–4 cm. For these four tracks, the mean 
skewness parameter ls was estimated to be 0.11 or so. 

The improved adaptive algorithm presented in this article and 
the adaptive algorithm used by SWIM have the same PTR function. 
However, the improved adaptive algorithm accounts for the non-
Frontiers in Marine Science 19 
Gaussian effect, whereas the adaptive algorithm used by SWIM does 
not. Accounting for non-Gaussian effects can effectively improve 
the accuracy of inverting SWH, approximately 4 cm for SWIM. The 
case has the same principle as the above conclusion that MLE6 
accounts for the non-Gaussian effect while MLE4 does not, and the 
mean improvement amount is 4 cm. 
TABLE 3 Deviation of SWH estimated by MLE6 and MLE4 when compared with ECMWF. 

Track/num Model Mean ls RMSE/m Mean Bias/m 

NO.1/18619 MLE4 0 0.329 0.181 

MLE6 0.107 0.290 0.164 

NO.2/17350 MLE4 0 0.508 0.341 

MLE6 0.129 0.465 0.308 

NO.3/17638 MLE4 0 0.500 0.368 

MLE6 0.130 0.465 0.330 

NO.4/15562 MLE4 0 0.677 0.425 

MLE6 0.132 0.636 0.389 
FIGURE 19 

Simulated echo waveforms by MLE6, the improved adaptive and CONV_NONL_REAL and their differences. (a) Waveforms simulated by 
CONV_NONL_REAL, MLE6, and improved adaptability, (b) Difference between CONV_NONL_REAL and MLE6: improved adaptability. 
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To better investigate the accuracy of the SWH inversion using 
the improved adaptive algorithm proposed in this paper, partial sea 
areas or specific SWH inversion data are selected for comparison 
and analysis, as shown by elliptical circles in Figures 21a–h. Except 
for the SWH retrieved in the sea area enclosed by the elliptical circle 
B (62 sampling points) in Track 4, all other retrieved results in those 
parts (31sampling points) enclosed by ellipses in Figure 21 show 
that the accuracy of the proposed improved adaptive algorithm 
retrieving SWH is significantly superior to that by the adaptive 
algorithm (Tourain et al., 2021) in the selected corresponding 
specific regions, as listed in Table 4A). The numerical value in the 
32nd row represents the root mean square error (RMSE) of the data 
from the 1st to the 31st rows relative to the ECMWF values. The 
33rd row of Table 4 is relative deviation. The proposed improved 
adaptive algorithm demonstrates remarkable improvement in 
higher sea states(SWH>3m), particularly when wave heights 
exceed 3 meters. In most cases, its relative deviation is less than 
5%(4.18%, 7.52%, 2.17%, 4.63%), which is much lower than the 
inversion bias of significant wave height by multi-satellite data 
fusion and machine learning methods. Of course, the inversion 
deviation in these  five sea areas is lower than that of the 
adaptive algorithm. 

In practices, a relatively complete model for inverting 
significant wave height (SWH) exhibits higher accuracy than 
multi-satellite data fusion (Qin and Li, 2021) and  machine

learning methods (Wang F. et al., 2022). This is because the SWH 
data inverted by each satellite remote sensor is obtained through 
model-based inversion, followed by certain corrections and 
processing. For instance, Janson, HY2, and SWIM all perform 
SWH inversion based on the MLE4 model. In general, the bias of 
retrieving SWH by using echo models (<0.5m or <5%) is lower than 
those empirical algorithms. Theoretical algorithms or model-based 
algorithms can serve as the foundation for empirical algorithms. 
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From the inversion results of SWH derived from over 60,000 
waveforms across these four orbits, when compared with 
ECMWF data, the deviations (RMSE) of both algorithms are less 
than 0.31 meters, which is smaller than those of data fusion and 
neural network inversion methods (Qin and Li, 2021; Wang F. 
et al., 2022). 

Compared with the vast expanse of the ocean, the coverage of 
satellites’footprint is limited. Using machine learning or multi-data 
fusion methods to infer the significant wave height in unknown sea 
areas is a rapid approach, but the accuracy cannot be guaranteed. 
This is due to the high spatiotemporal variability characteristics of 
the ocean. These empirical algorithms are necessary to be validated 
furtherly in those unknown regions. 

In Figure 21, at lower sea states (especially when SWHs are 
below 2 meters), the improvement of the improved adaptive model 
becomes less pronounced, which is attributed to the algorithm’s and 
sampling points’ lower resolution in such condition. When SWH is 
very small, the leading edge of the echo waveform, related to SWH, 
is steep. Due to nonlinear effects of the roughly sea surfaces, the 
leading edge of the waveform changes drastically in a certain degree, 
as shown in Figure 19. And thus, the insufficient sampling points 
and algorithm’s lower resolution will lead to less improvement in 
the inversion of SWH. For the special region B in Figure 21g, the 
relative deviation is more than 10%(17.4%,13.29%) although RMSE 
is less than 0.30m(0.277m, 0.249m). 
5 Conclusions 

In this study, we explored the improved second-order 
retracking algorithm known as MLE6, which incorporates the SB 
coefficient (ls) and EMB coefficient (lem). The upgraded algorithm 
MLE6 addresses the non-Gaussian effects of a random ocean, in 
FIGURE 20 

Differences among these simulated waveforms by MLE6/the improved adaptive algorithm and CONV_NONL_REAL varying with SWH. 
frontiersin.org 

https://doi.org/10.3389/fmars.2025.1569799
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http:10%(17.4%,13.29


Tian et al. 10.3389/fmars.2025.1569799 
contrast to the current operational algorithm MLE4, which 
disregards the impact of non-linear or non-Gaussian rough ocean 
surfaces on SWH inversion. MLE6 is different from MLE4 when ls 
and lem are not equal to zero but it matches MLE4 when ls = 0 and 
lem = 0. The coefficient (ls) distorts the return waveform shape, 
particularly the leading edge, which has an effect on SWH inversion. 
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First, the performance of MLE6 was analyzed. The return 
waveforms simulated by MLE6 were studied and found to be 
closer  to  those  of  the  three-term  convolution  model  
CONV_NONL than to MLE4 (Figure 4). RMSE_waveform of 
differences between MLE6 and CONV_NONL (an average value 
of 6.76 × 10−5 normalized unit) were smaller than that between 
 FIGURE 21

Retrieved SWH by the improved adaptive (a, c, e, g)/adaptive algorithm (b, d, f, h). Track No.1 (a, b), Track No.2 (c, d), Track No.3 (e, f), Track No.4 
(g, h). 
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MLE4 and CONV_NONL (an average value of 1.70 × 10−3 

normalized unit). Compared with MLE4, MLE6 is almost 
identical to the three-term convolution model CONV_NONL and 
can replace CONV_NONL in inverting SWH from the return 
waveforms measured by SRA or SWIM. By retracking the return 
Frontiers in Marine Science 22 
waveforms simulated by CONV_NONL, MLE6 can have better 
accuracy in inverting SWH than MLE4, with an improvement of 
approximately 3–7 cm and a mean value of 3.163 cm. The 
improvement increased as the mispointing angle increased, 
reaching a peak when the mispointing angle was less than 0.4°, 
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TABLE 4A SWH inversion in local sea areas enclosed by elliptical circles (m). 

Sampling 
Point 

Track No.1: *551.nc file Track No.2: *812.nc file Track No.3: *132.nc file 

ECMWF Improved 
addaptive 

Adaptive ECMWF Improved 
addaptive 

Adaptive ECMWF Improved 
addaptive 

Adaptive 

1 4.74 4.453 4.582 2.51 2.697 1.673 2.20 2.289 2.131 

2 5.16 5.481 4.999 2.56 2.768 1.913 2.18 2.274 2.121 

3 5.38 5.619 5.443 2.7 2.898 2.176 2.16 2.259 2.113 

4 5.66 5.879 5.601 2.83 3.079 2.395 2.20 2.269 2.166 

5.83 6.023 5.654 3.05 3.320 2.669 2.23 2.293 2.253 

6 6.04 6.162 5.731 3.27 3.513 2.816 2.25 2.292 2.150 

7 6.13 6.190 5.669 3.50 3.753 2.910 2.25 2.289 2.072 

8 6.16 6.364 6.105 3.74 4.027 3.133 2.25 2.312 2.052 

9 6.20 6.319 6.212 3.89 4.152 3.329 2.29 2.328 2.128 

6.17 6.416 6.252 4.01 4.286 3.501 2.35 2.374 2.178 

11 6.11 6.360 6.578 4.06 4.361 3.688 2.41 2.460 2.375 

12 6.06 6.208 6.541 4.07 4.394 3.685 2.49 2.467 2.482 

13 5.94 6.010 6.355 4.07 4.344 3.543 2.57 2.597 2.425 

14 5.82 5.942 5.717 4.01 4.267 3.511 2.63 2.631 2.472 

5.75 5.889 5.458 3.98 4.255 3.746 2.71 2.691 2.452 

16 5.69 5.859 5.261 3.94 4.201 3.424 2.77 2.756 2.556 

17 5.61 5.766 5.264 3.93 4.162 3.218 2.78 2.784 2.573 

18 5.55 5.923 5.437 3.9 4.082 3.448 2.78 2.768 2.686 

19 5.44 5.688 5.364 3.86 4.060 3.607 2.80 2.809 2.762 

5.33 5.460 5.471 3.77 3.998 3.546 2.87 2.859 2.850 

21 5.18 5.316 5.483 3.66 3.908 3.416 2.90 2.907 2.822 

22 5.07 5.348 5.206 3.55 3.780 3.771 2.92 2.959 2.873 

23 4.94 5.253 5.234 3.41 3.667 3.322 2.98 3.001 3.031 

24 4.82 5.123 5.237 3.24 3.513 3.237 3.11 3.116 3.225 

4.72 4.887 4.674 3.10 3.361 3.202 3.18 3.209 3.468 

26 4.63 4.803 4.566 2.93 3.198 3.162 3.22 3.305 3.467 

27 4.53 4.891 4.842 2.77 3.022 2.868 3.26 3.313 3.608 

28 4.45 4.641 5.192 2.58 2.841 2.379 3.27 3.333 3.430 

29 4.38 4.603 4.513 2.41 2.681 2.379 3.21 3.280 3.447 

4.30 4.554 4.533 2.29 2.526 2.483 3.14 3.264 3.233 

31 4.21 4.480 4.557 2.23 2.455 1.951 3.05 3.189 3.094 

32 0 0.224 0.294 0 0.252 0.422 0 0.058 0.155 

33 0 4.18% 5.5% 0 7.52% 12.61% 0 2.17% 5.76% 
frontiersin.org 

https://doi.org/10.3389/fmars.2025.1569799
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tian et al. 10.3389/fmars.2025.1569799 
but remained almost unchanged when the mispointing angle 
exceeded 0.4°. 

We applied the improved technique MLE6 to inverting SWH 
from SWIM measurements at the nadir. The inverted results showed 
that MLE6 had higher accuracy in inverting SWH compared to 
Frontiers in Marine Science 23 
MLE4, with an improvement of 3–5 cm  in  RMSE and Mean Bias 
when using ECMWF as a benchmark. Results obtained from the situ 
data aligned with those from simulated waveforms. 

Although the PDF of MLE6 differed from that of MLE4, the 
PTR functions of both models were similar, approximately 
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TABLE 4B SWH inversion in local sea areas enclosed by elliptical circles (m). 

Track No.4: *330.nc file, A Track No.4: *330.nc file, B Track No.4: *330.nc file, B 

ECMWF Improved 
addaptive 

Adaptive ECMWF Improved 
addaptive 

Adaptive ECMWF Improved 
addaptive 

Adaptive 

1 3.91 4.022 1.286 1.75 2.005 1.701 1.67 1.914 1.698 

2 4.20 4.387 1.750 1.67 1.932 1.721 1.67 1.927 1.762 

3 4.51 4.711 2.448 1.61 1.889 1.806 1.70 1.958 1.776 

4 4.87 5.052 3.093 1.61 1.903 1.736 1.72 1.975 1.721 

5.40 5.715 3.937 1.60 1.879 1.700 1.72 1.976 1.717 

6 5.94 6.229 4.570 1.59 1.855 1.634 1.73 1.980 1.698 

7 6.06 6.332 4.838 1.59 1.935 1.591 1.75 1.996 1.729 

8 6.07 6.293 4.984 1.58 1.898 1.556 1.75 2.015 1.790 

9 6.08 6.218 4.710 1.57 1.837 1.586 1.77 2.011 1.764 

5.98 6.189 4.738 1.58 1.853 1.52 1.78 2.027 1.759 

11 5.91 6.053 4.515 1.58 1.844 1.556 1.82 2.048 1.775 

12 5.76 5.934 4.841 1.59 1.834 1.567 1.84 2.080 1.722 

13 5.62 5.808 4.725 1.6 1.880 1.579 1.86 2.103 1.816 

14 5.44 5.650 4.719 1.63 1.883 1.614 1.88 2.116 1.893 

5.28 5.501 4.510 1.63 1.905 1.609 1.90 2.134 1.879 

16 5.18 5.310 4.460 1.63 1.877 1.614 1.94 2.201 1.889 

17 5.06 5.252 4.393 1.54 1.807 1.507 1.99 2.237 1.973 

18 4.93 5.139 4.496 1.50 1.768 1.551 2.03 2.276 2.093 

19 4.79 5.027 4.580 1.45 1.775 1.556 2.06 2.301 2.144 

4.68 4.934 4.718 1.46 1.791 1.570 2.05 2.307 2.214 

21 4.56 4.822 4.696 1.54 1.841 1.786 2.08 2.390 2.246 

22 4.47 4.720 4.361 1.59 1.871 1.730 2.09 2.338 2.211 

23 4.37 4.653 4.292 1.61 1.889 1.696 2.09 2.350 2.190 

24 4.28 4.539 3.936 1.62 1.887 1.732 2.10 2.361 2.014 

4.23 4.476 4.192 1.55 1.848 1.664 2.04 2.309 1.985 

26 4.22 4.494 4.002 1.61 1.866 1.640 1.98 2.236 1.905 

27 4.24 4.461 4.358 1.61 1.885 1.555 1.91 2.163 1.787 

28 4.25 4.455 4.163 1.60 1.842 1.639 1.86 2.104 1.738 

29 4.27 4.481 4.110 1.61 1.845 1.666 1.83 2.073 1.755 

4.32 4.666 4.381 1.60 1.861 1.637 1.81 2.029 1.756 

31 4.47 4.735 4.485 1.61 1.870 1.654 1.77 1.972 1.669 

32 0 0.229 1.086 0 0.277 0.086 0 0.249 0.077 

33 0 4.63% 21.95% 0 17.4% 5.42% 0 13.29% 4.12% 
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Gaussian distributions due to the difficulty in measuring the 
realistic PTR of a remote sensor. However, the realistic PTR of 
the SWIM instrument was measured and could be obtained from 
CFOSAT. And thus an improved adaptive algorithm was 
introduced in this study to consider the realistic PTR of the 
SWIM instrument. The PDF of the improved adaptive algorithm, 
accounting for the non-Gaussian effects on inverting SWH, was 
different from that of the adaptive algorithm used by SWIM, despite 
having the same PTR function. The improved adaptive algorithm 
was nearly identical to CONV_NONL_REAL, with the similar non-
Gaussian PDF and realistic PTR. The difference in RMSE between 
the two models (10−5 normalized unit) was smaller than that 
between the adaptive algorithm and CONV_NONL_REAL (10−3 

normalized unit). Due to accounting for the non-Gaussian random 
ocean and realistic radar PTR, the proposed improved adaptive 
algorithm could more effectively invert ocean parameters than the 
adaptive algorithm. 

The improved adaptive algorithm was applied to invert SWH 
from the same four-track measurements of SWIM. Using ECMWF 
measurements as references. It effectively enhanced the accuracy of 
inverting SWH by 3–4 cm compared to the adaptive algorithm 
employed by SWIM. 

MLE6, which addresses non-Gaussian effects on estimating 
SWH, and the improved adaptive algorithm, considering non-
Gaussian random ocean surface and realistic radar PTR, were 
validated, showing better accuracy in inverting SWH than MLE4 
and the adaptive algorithm used by SWIM. Both algorithms have the 
potential to replace MLE4 or other retracking algorithms for 
inverting ocean parameters (e.g., SWH) in future altimeter missions. 

The Nelder Mead algorithm, sensitive to initial value selection, 
is a local optimal algorithm that is prone to getting stuck in local 
minima and requires strict initial value settings. If the initial value is 
set incorrectly, there may be a significant deviation in the inverted 
SWH. Exploring global optimal algorithms or finding a good 
suitable algorithm for the improved adaptive model will be a 
future mission. 

Beyond the altimeter data employed in this study, future 
research on significant wave height (SWH) can explore the 
potential of recent advancements in radar systems and deep 
learning methods. For example, novel radar technologies, such 
as the SAR altimeter (Jiang et al., 2020), may offer innovative 
approaches to SWH measurement and inversion. Some unique 
signal processing capabilities can potentially yield more detailed 
and accurate insights into wave characteristics, particularly 
regarding Doppler scattering mechanisms (Zhang et al., 2024) 
associated with SWH. Deep learning has shown remarkable 
promise in various remote-sensing applications, holding the 
potential to revolutionize SWH research. Specifically, some 
remote-sensing images (Gao et al., 2025) incorporating

contextual global attention mechanisms and lightweight task-
specific context decoupling, can inspire new ideas for SWH 
research. The concept of using multi-source data can be applied 
to SWH research. By fusing data from satellite altimeters, radar 
Frontiers in Marine Science 24 
systems, and in-situ sensors, researchers can achieve a more 
comprehensive and precise understanding of SWH. This multi-

source data approach not only mitigates the limitations of 
individual data sources but also enhances the overall reliability 
of SWH estimations. 
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