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A spatially explicit understanding of marine benthic habitats is essential for

sustainable marine resource management. While advances in remote sensing,

acoustic methodologies, geostatistical modelling, and predictive species

distribution models have improved our ability to map underwater habitats,

selecting the most appropriate approach, particularly in turbid or remote

regions, remains challenging. This study was conducted in the protected

nursery area of the Exmouth Gulf Prawn Managed Fishery in Western Australia

and compared four commonly used “off-the-shelf” mapping techniques. These

included satellite remote sensing, acoustic sounding, predictive modelling, and

geostatistical interpolation, with each technique evaluated using comprehensive

ground-truthing and output confidence matrices. Geostatistical kriging emerged

as the most robust method, delivering the highest predictive accuracy,

quantifiable confidence, and spatially explicit seasonal habitat maps. These

maps delineated submerged aquatic vegetation, including seagrass and

macroalgae, at broad spatial scales and captured seasonal shifts in habitat

distribution and density. Our findings enhance knowledge of benthic habitats

in Exmouth Gulf and underscore that effective marine habitat mapping,

particularly in dynamic and turbid environments, cannot rely on remote

methods alone. Spatially balanced field data collection at ecologically relevant

temporal scales is essential to support sustainable marine resourcemanagement.
KEYWORDS

marine habitat mapping, confidence statistics, Exmouth Gulf, remote sensing, machine
learning, EBFM
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1 Introduction

In the last decade fisheries management globally has undergone

a shift from a target species approach to the more holistic ecosystem

based fisheries management (EBFM) that considers the broader

ecosystem (Townsend et al., 2019). A key component of EBFM is a

spatially explicit understanding of marine benthic habitats, their

productivity and relationship with commercially important species

(Overly and Lecours, 2024). A lack of comprehensive data on the

distribution and abundance of habitat types and their role as

essential fish habitats results in knowledge gaps that may limit

scientific advice and effective decision making for sustainable

fisheries management and marine spatial planning (Moore

et al., 2016).

With marine habitats under increasing pressure, from climate

change (Abdo et al., 2012; Hickey et al., 2020; Strydom et al., 2020)

and coastal development (Orth et al., 2006), there is urgent need to

map and monitor habitats to support effective management for the

sustainable use of aquatic resources and marine conservation

(Brown and Collier, 2008; Cogan et al., 2009; Ware and Downie,

2020; Arenas-Castro and Sillero, 2021). Benthic habitat maps can be

used to monitor changes in habitat distribution and condition over

time, to assess the effectiveness of management actions and identify

emerging threats (Menandro et al., 2022). However, producing

habitat maps for large or complex marine environments often

remains a challenge due to the submerged nature of these

environments and the associated difficulty of data collection

(Mumby et al., 2001; Madin and Madin, 2015).

Advances in technology, particularly in remote sensing, acoustic

methodologies and geostatistical modelling, have enhanced our

ability to map marine habitats (Brown et al., 2011; Smith

Menandro and Cardoso Bastos, 2020; McKenzie et al., 2022;

Mastrantonis et al., 2024b; Misiuk and Brown, 2024). However,

challenges remain to ensure there is an appropriate level of spatial

and temporal detail in field data and maps, with the statistical

confidence required to inform EBFM (Schultz et al., 2015; Moore

et al., 2016; Roelfsema et al., 2020; Ware and Downie, 2020;

McKenzie et al., 2022; Mastrantonis et al., 2024b). These

challenges often relate less to technical limitations and more to

selecting the most suitable approach. While many studies rely on a

single approach, due to resource constraints or user preference,

greater use of preliminary comparative assessments of techniques

tailored to specific fisheries or management areas may reduce the

uncertainty of outputs and improve decision making (Lecours,

2017; Bastardie et al., 2021).

Satellite remote sensing, acoustic sounding, geostatistical

(interpolation) modelling and predictive modelling are four

common marine habitat mapping tools. Satellite remote sensing

has a long history in marine habitat mapping. However, remote

sensing in aquatic environments can be complex due to water

properties such as depth and turbidity (Dahdouh-Guebas, 2002;

Franklin, 2010) as well as the presence of diverse habitat types

within the resolution of a single pixel (Mastrantonis et al., 2024b).

Therefore, validation of unsupervised satellite classifications is

essential (Lu and Weng, 2007; Schultz et al., 2015). Machine
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learning algorithms such as Support Vector Machine, Random

Forest (RF), and Artificial Neural Networks (ANN), also enhance

the accuracy and efficiency of classification by processing large

datasets and extracting complex patterns (Wulder et al., 2022).

Advancements in freely available high-resolution imagery and rapid

resurvey capabilities make satellite remote sensing a cost-effective

tool for managing nearshore habitats. However, its effective use

requires outputs that are fit-for-purpose and limitations are

assessed and communicated to allow for robust decision making.

Similarly, acoustic sounding (hydroacoustics) has been used to

map the marine benthic environment for over five decades by using

soundwaves to capture data on seabed features, particularly in deep

or turbid environments, where optical methods are not well-suited

(Misiuk and Brown, 2024). Recent advances have expanded the use

of acoustic sounding to assess submerged aquatic vegetation (SAV),

such as dense seagrass meadows and canopy forming macroalgae.

However, the discrimination of low-canopy or sparsely distributed

vegetation remains a challenge (Gumusay et al., 2019; Kruss

et al., 2019).

Species distribution modelling (SDM) is widely used to map

habitats in areas where full observational coverage is restricted by

turbidity, depth, or remoteness (Robinson et al., 2017; Pickens et al.,

2021). Geostatistical interpolation techniques, such as kriging,

estimate environmental variables at unsampled locations using

principles of spatial autocorrelation, while deterministic methods

such as inverse distance weighting (IDW), spline, and natural

neighbour, rely on spatial proximity (Shumchenia and King,

2010; Li and Heap, 2014). Kriging is particularly useful due to its

ability to incorporate spatial relationships and provide uncertainty

estimates (Krige, 1951; Wu & Hung, 2016), Spline interpolation

suits variables with gradual spatial changes, and IDW offers

simplicity and computational efficiency for homogenous

distributions (Wu and Hung, 2016). Predictive machine learning

techniques further expand SDM capabilities by modelling complex,

non-linear relationships between species occurrences and

environmental predictors (Melo-Merino et al., 2020; Misiuk and

Brown, 2024). Methods like RF, Maximum Entropy (MaxEnt),

ANN, and Boosting are useful in handling large datasets and

imbalanced presence/absence data (Phillips et al., 2006;

Franceschini et al., 2019; Norberg et al., 2019; Rubbens et al.,

2023). Ultimately, the choice between geostatistical and machine

learning methods depends on the data, ecological dynamics, and

management objectives (Li and Heap, 2014).

Exmouth Gulf is an important marine embayment in Western

Australia, valued for its social, ecological and economic significance

(Fitzpatrick et al., 2019). However, its remoteness and highly turbid

environment create challenges for the collection of benthic habitat

information. Previous studies have focused on quantifying the

abundance and distribution of broad habitat classes based on

their occurrence at specific point locations (McCook et al., 1995;

Loneragan et al., 2013; Vanderklift et al., 2016; Cartwright et al.,

2023) or collecting discrete data to inform wider bioregional

occurrence or genetic connectivity patterns, particularly for

seagrasses (McMahon et al., 2017; Evans et al., 2021). However,

habitat maps that provide a robust, spatially explicit understanding
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of the extent of habitat classes relevant to resource management are

lacking. With high water turbidity (Cartwright et al., 2023) limiting

the effectiveness of satellite-based optical methods, habitat maps

produced for Exmouth Gulf have historically relied on different

scales of ground truth data (e.g., UVC and tow video), collected at

different time points, combined with geostatistical modelling (e.g.,

IDW, Krige) to estimate the spatial abundance and distribution of

habitats (Loneragan et al., 2003; MBS, 2018; DPIRD, 2020).

However, these maps have not incorporated confidence statistics,

for model development and validation, likely due to the challenges

of collecting sufficient ground-truth samples in a remote location.

Without confidence statistics, it is difficult to determine whether

these methods are fit-for-purpose for the study area, or to evaluate

their robustness to support evidence-based management decisions.

The aim of this study was to evaluate the suitability of existing cost-

effective habitat mapping techniques, focusing on the confidence of

their outputs, to identify the best approach for providing a

quantitative spatial description of benthic habitats in the

Exmouth Gulf Prawn Managed Fishery (EGPMF) nursery area.

This information is crucial for fisheries management decisions,

particularly concerning EGPMF recruitment patterns (DPIRD,

2020; DPIRD, 2021), while also supporting broader marine

resource management within Exmouth Gulf (Fitzpatrick et al.,

2019; Sutton and Shaw, 2021).
2 Methods

To aid interpretation, key terms, acronyms and descriptions

related to statistical model algorithms and performance metrics

used in this study are summarised in Tables 1 and 2.
2.1 Study area

Located on the coast of Western Australia (22°0’S, 20'E), the

EGPMF nursery area spans 1,139 km² (~29%) of Exmouth Gulf and

has been closed to commercial prawn trawl fishing since the 1970’s

(Figure 1) (DPIRD, 2020). Water depths are mostly <5m, gradually
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deepening to 15 m in the west (Figure 1). The area features fringing

salt flats, cyanobacterial mats, mangroves and intertidal mudflats

which transition into subtidal macroalgae flats, seagrass beds and

sand or mud (McCook et al., 1995; Loneragan et al., 2013; DPIRD,

2021). High turbidity is a defining characteristic of Exmouth Gulf,

driven by local factors like winds and tides, along with larger-scale

oceanographic influences such as ENSO and the Indian Ocean

Dipole (Cartwright et al., 2021).

Exmouth Gulf receives occasional freshwater and associated

nutrient inputs, mostly associated with summer tropical low-

pressure systems and run off from Cape Range to the west or the

eastern arid plains (Lovelock et al., 2011; Fitzpatrick et al., 2019).

These sporadic freshwater pulses and high evaporation rates result

in inverse estuarine conditions, where salinity is generally highest

on the landward edge (Tomczak and Godfrey, 2003; Fitzpatrick

et al., 2019). Environmental patterns are characterised by high

summer air temperature (mean maximum of 38°C in January),

low rainfall (~260 mm/year), high evaporation rates (1700 mm to

3050 mm per annum) and mixed semi-diurnal tides with a

maximum range of 3m (Semeniuk, 1985; Fitzpatrick et al., 2019;

Australian Bureau of Meteorology, 2022).
2.2 Ground truth habitat data surveys – in
water data collection

Ground truthing sites were selected by stratifying the study area

into four depth zones: intertidal, 0–5 m, 5–10 m, and 10–15 m

(Figure 1), using digitised bathymetry data from the Australian

Hydrographic Services (2014). An unsupervised ten-class ISO

cluster classification (Jain et al., 1999) was applied to the

intertidal and 0–5 m depth zones using ESRI ArcGIS v10.3

Spatial Analyst extension (ESRI, 2011). The 5–10 m and 10–15 m

depth zones were excluded from the unsupervised classification due

to poor visibility beyond ~5 m in the imagery, which was derived

from a single, cloud-free SPOT 6 satellite image (November 4, 2014)

during neap high tide and low wind conditions (<15 knots)

(Australian Bureau of Meteorology, 2022). Four hundred

potential survey sites were then randomly stratified across the
TABLE 1 Common habitat mapping algorithms.

Name Acronym Description

Artificial Neural Network ANN A machine learning algorithm that models complex relationships in data, generally for classifying habitat types from satellite
and acoustic sources.

Random Forest RF An ensemble learning method based on decision trees, used for habitat classification and predictive modelling. It is robust to
overfitting and performs well with large, high-dimensional datasets.

Classification
Tree Analysis

CTA A decision-tree-based method that classifies habitat data by recursively splitting variables based on a series of hierarchical
decision rules.

Generalised
Additive Model

GAM A flexible regression model used to capture non-linear relationships in habitat distributions by incorporating smooth
functions of environmental predictors.

Multivariate Adaptive
Regression Splines

MARS A non-parametric regression technique that models complex, non-linear relationships by partitioning data into multiple
segments and fitting piecewise linear regressions.

Extreme
Gradient Boosting

XGBoost A machine learning algorithm that builds multiple weak decision trees sequentially to improve classification accuracy, often
outperforming traditional models with ability to handle missing data.
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intertidal (200 sites) and 0–5 m (200 sites) depth zones, weighted by

spatial area of each of the unsupervised ISO cluster classes, with a

buffer of 200 m from the edge. Fifty sites were then randomly

allocated in the 5–10 m depth zone and 62 sites placed throughout

the study area based on local knowledge, resulting in 512 potential

sites for the summer 2016 survey. No sites were selected in the 10–

15 m depth range as it was expected to lack suitable prawn

recruitment habitats. For the winter 2016 survey, 100 additional

sites were added to the previously unmapped northern extent of the

study area, bringing the total to 612 potential sites (Figure 1).

Surveys were conducted using a tethered drop video system

comprised of a georeferenced, live feed GoPro Hero3/3+ camera

(wide view, 16:9 aspect ratio, 1080p) mounted on a drop lander

system to capture benthic imagery with a 0.2 m2 footprint per drop.

The system captured benthic imagery approximately every 5 m

along a 50 m transect, for a total of ten static frames per site (2 m2

per site). Surveys took place over two-week periods in March/April

(‘summer’) and August/September (‘winter’) 2016, with 455 sites

sampled in summer and 539 in winter, ensuring at least three sites

per class, per depth range. Habitat images were analysed using

Transect Measure© and the CATAMI classification scheme on a 64-

point stratified grid, yielding 640 annotated points per site (Althaus

et al., 2015; Hill et al., 2018). Mean habitat percentages were

calculated, square root transformed and subjected to CLUSTER
Frontiers in Marine Science 04
analysis with SIMPROF (significance level of 1%), in PRIMER v7©.

This resulted in five statistically (p<0.05) distinct habitat classes:

macroalgae, seagrass, zoanthids, unconsolidated substrate and

‘other’. All vegetated classes were also grouped into a submerged

aquatic vegetation (SAV) class, with habitats classified as presence/

absence and percent density. These 2016 ground truth habitat

datasets represent the most extensive habitat data known to be

available for the EGPMF nursery area and provide a baseline and

foundation for evaluating habitat classification techniques.
2.3 Habitat mapping techniques - remote
sensing

Supervised classification techniques were applied to Landsat-8

(https://www.usgs.gov/landsat-missions/landsat-8) and Sentinel-2

(https://scihub.copernicus.eu/) satellite images for summer

(March/April) and winter (August/September) 2016. Selected

satellite image scenes were cloud-free and the study area was fully

captured within one scene (Table 3).

Classification focused on mapping SAV presence/absence using

≥10% and ≥25% cover thresholds derived from the 2016 ground-

truth datasets. A six-class habitat model was also developed for

winter 2016 presence/absence dataset, with classes defined by the
TABLE 2 Performance (confidence) metrics for model evaluation.

Name Acronym Description Name Acronym Description

Area Under the Curve AUC Measures a model’s ability to distinguish between
presence and absence. Higher values indicate
better discrimination, with 1.0 being perfect and
0.5 indicating random performance

Kappa
Statistic

Kappa Assesses overall classification accuracy,
adjusting for agreement expected by
chance. Higher values indicate better
reliability, with 1.0 being
perfect agreement.

True Skill Statistic TSS Measures predictive performance by comparing
correct predictions beyond random chance to a
perfect model. Values range from -1 to 1, with
higher values indicating better performance.

Root Mean
Square
Error

RMSE Quantifies model prediction error by
calculating the square root of the mean of
squared differences between predicted and
observed values. Lower values indicate
higher accuracy.

Mean Absolute Error MAE Measures the average absolute difference between
predicted and observed values for continuous
data, providing an intuitive measure of prediction
accuracy. Lower values indicate better
predictive accuracy.

Sensitivity – Measures the proportion of actual presence
cases correctly identified. High sensitivity
means fewer false negatives.

Specificity – Measures the proportion of actual absence cases
correctly identified. High specificity means fewer
false positives.

Validation
Accuracy

– Measures how well a model performs on
new, independent data. Higher values
indicate better generalisability.

Calibration Accuracy – Evaluates how well predicted probabilities align
with actual occurrences. Higher values indicate
better model reliability.

Producer’s
Accuracy

– Measures the proportion of true presence
cases correctly predicted by the model.
Higher values indicate fewer
false negatives.

User’s Accuracy – Measures how many predicted presence cases are
actually present in the reference data. Higher
values mean fewer false positives.

Precision – Measures the proportion of predicted
presence cases that are correct, reducing
false positives. Higher precision indicates a
more reliable classification.

F1 Score – Harmonic mean of precision and sensitivity,
balancing both metrics to assess classification
performance. Higher values indicate stronger
classification ability.
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dominant vegetated habitat type. The six classes were: seagrass,

macroalgae, dominant seagrass with macroalgae, dominant

macroalgae with seagrass, sand (100% cover), and ‘SAV other’.

Datasets were converted into point feature shapefiles in ArcGIS Pro

v2.9 (ESRI, 2023), with a 50m buffer applied to represent

transect length.

Image pre-processing for both sensors included atmospheric

correction through QGIS using ESA SNAP (Sen2Cor plugin)

(Main-Knorn et al., 2017; QGIS Development Team, 2020),

clipping to the study area, projection to WGS 84 UTM Zone 50S

and the exclusion of artefact-prone bands (e.g., Sentinel-2’s Coastal/

Aerosol band). Only blue, green, and red bands were used, as the
Frontiers in Marine Science 05
near-infrared and shortwave infrared were ineffective due to poor

water penetration. Sun glint correction was tested on summer

Sentinel-2 scene but excluded due to overcorrection issues and no

improvement in accuracy.

Classification was conducted in SAGA GIS (v7.5), an open-

source system for geospatial analysis and batch processing (Conrad

et al., 2015), initially testing multiple algorithms (e.g., Boosted

Classification, RF, ANN) on the Landsat-8 summer scene using

the ≥25% threshold SAV presence/absence ground-truth dataset.

The ANN achieved the highest kappa (0.48) and was used for final

classifications on both sensors for both seasons. This involved

randomly selecting 80% of ground-truth sites within the ≥10%

and ≥25% SAV presence/absence thresholds and six-class datasets

for training, with results exported as GeoTIFFs and vectorised as

ArcGIS shapefiles. Validation with the remaining 20% of ground-

truth sites was tested in the ORFEO Toolbox (Grizonnet et al.,

2017) to generate confusion matrices.
2.4 Habitat mapping techniques – acoustic
sounding

Acoustic data were collected using a Kongsberg EA400 SBES

with a Simrad 38/200 Combi D transducer (38 kHz and 200 kHz)

and Hemisphere R131 Differential-GPS. The transducer was

mounted on a shallow-draft research vessel away from propeller

wash. The SBES was chosen for its “off the shelf” availability, cost-

effectiveness, ease of use, and suitability for the shallow study area,

given the limited swath coverage of multi-beam echosounders

(Gumusay et al., 2019). Surveys were conducted across 10 sites

(3–20 km²) over eight days (1st-31st August 2017), focusing on areas

≥2 m deep and likely to contain SAV (Loneragan et al., 2003)

(Figure 1). Parallel transects (~250 m apart) were surveyed at 5–6

knots in calm conditions (sea state <0.5 m, wind <12 knots). Data

collection parameters included a 1 s−¹ ping rate, 1000W power, and

a 0.256 ms pulse length. Water temperature, salinity and pH were

measured to calibrate sound speed and absorption coefficients.

Depth settings exceeded 2.5 times the maximum study area depth

to ensure second echo acquisition.

Data processing in Echoview® v8 used the habitat classification

module (Echoview, 2023a), which can extract nine acoustic features

(Echoview, 2023b). Gaps in bottom detection were smoothed with a
frontiersin.or
TABLE 3 Key properties of Landsat-8 and Sentinel-2 satellites used in this study.

Property Landsat-8 Sentinel-2

Spatial Resolution 30 m 10 m

Temporal Resolution 16 days 5 days

Spectral Bands Used Band 2 (Blue): 0.45-0.51 μm
Band 3 (Green): 0.53-0.59 μm
Band 4: (Red): 0.64-0.67 μm

Band 2 (Blue): 0.492 μm (66 nm)
Band 3 (Green): 0.560 μm (36 nm)
Band 4 (Red): 0.665 μm (31 nm)

Scene Numbers LC08_L1TP_115075 T49KHR

Image Capture Dates 9 March 2016 (Summer)
16 August 2016 (Winter)

16 March 2016 (Summer)
12 September 2016 (Winter)
FIGURE 1

Map of Exmouth Gulf and the Exmouth Gulf Prawn Managed Fishery
Nursery Area survey sites.
g
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three-sample mean filter and manually validated. Data outside

transect lines (e.g., vessel turns) were removed and the feature

extraction interval was set to 30 m, aligning with comparable

satellite imagery resolution. Principal components analysis

indicated depth was not a dominant feature and was excluded to

avoid bias. Dominant features, including first bottom length,

skewness, and kurtosis, contributed ~50% of variation in PC1.

The Calinski-Harabasz criterion was used to select the number of

habitat classes by identifying the grouping that showed the clearest

separation between classes. Unsupervised classifications were

applied to two bottom echo thresholds (-100 dB and -110 dB) for

each frequency, resulting in four acoustic classified datasets.

Geospatial analysis of the four classified datasets (-100db/38

kHz, -110db/38 kHz, -100db/200 kHz, -110db/200 kHz) was

conducted using indicator kriging interpolation in R (v4.2.1)

(Pebesma, 2004; R Core Team, 2023). Data were projected to

UTM WGS84 Zone 50S with 80% used for training and 20% for

testing accuracy. Variograms were modelled using an exponential

approach (Gräler et al., 2016), and kriging predicted the most

probable class for each location. Outputs were saved as GeoTIFF

for visualisation and the documentation of performance metrics

followed Kuhn (2008). To evaluate acoustic classes against habitat

data, the winter 2016 ground-truth dataset (categorised as seagrass,

macroalgae, and unconsolidated substrate) was used. Habitat

occurrence was based on a ≥20% cover threshold. This dataset

was overlaid on the acoustic rasters to analyse spatial correlations.
2.5 Habitat mapping techniques –
predictive modelling

Predictive habitat modelling was conducted using the

BIOMOD2 package (Thuiller et al., 2023) in R v4.2.1 (R Core

Team, 2023), with 2016 summer (n=455) and winter (n=539)

habitat datasets. Models evaluated macroalgae, seagrass, and

combined SAV, the primary benthic habitats in the study area,

defining presence/absence using a ≥20% cover threshold to ensure

functional accuracy and avoid overfitting observed with lower

thresholds. The only spatially comprehensive environmental

predictor available for use at a comparable resolution was a 10 m

resolution satellite-derived bathymetry (SDB) (Lebrec et al., 2021).

Six modelling algorithms were initially tested: GAM, XGBoost,

CTA, MARS, RF and ANN (Table 1). A 10-fold cross-validation

approach was used to ensure robustness, with 80% of data used for

training and 20% for validation. Model performance was assessed

using a range of metrics (e.g., Table 2).
Frontiers in Marine Science 06
GAM, CTA, and MARS showed poor predictive performance

and computational inefficiencies, leaving RF, XGBoost, and ANN

for further evaluation. No single model excelled across all

performance metrics (Table 4). However, RF was selected due to

its balanced performance, lower risk of overfitting, and widespread

use in habitat assessment. The low kappa values for RF (Table 4) are

reflective of the presence/absence single predictor variable and

imbalanced data in this study (dominated by unconsolidated

substrate), with AUC and TSS likely a better indication of

predictive reliability.

Individual predictive habitat maps for seagrass, macroalgae and

SAV were generated using the R package randomForest (Liaw and

Wiener, 2002). Statistically distinct habitat categories (SIMPROF

p<0.05) identified from the 2016 habitat datasets for summer

(n=455) and winter (n=539) were used to calculate continuous

percent composition and binary presence/absence data (with a

range of presence thresholds modelled, e.g., ≥10%, ≥20%, ≥30%)

to define habitat presence. Depth values from the SDB (Lebrec et al.,

2021) were extracted and associated with spatial data points,

creating response-predictor datasets. The dataset was split into

training (80%) and testing (20%) subsets, with model

performance (e.g., Table 2) assessed. Final validated models were

applied to predict habitat distribution and cover across the study

area, with output rasters visualised and analysed in ArcGIS Pro v2.9.

The filter feeder and reef structure classes were excluded due to

insufficient occurrence in the ground truth habitat data.
2.6 Habitat mapping techniques –
geostatistical (interpolated) modelling

Geostatistical modelling used statistically distinct habitat

categories (SIMPROF p<0.05) identified from the 2016 dataset.

Unconsolidated substrates were excluded due to their dominance,

while vegetated habitats were grouped into seagrass, macroalgae,

reef structure (including zoanthids) and filter feeders to ensure

ecologically relevant outputs. A continuous dataset was generated

by averaging percent composition across 640 points per site for each

habitat group. Presence/absence was defined at ≥10% cover. A

combined SAV class was also created from all four vegetated

classes, at ≥10% combined presence.

Kriging was selected as the preferred geostatistical model due to

its ability to model spatial autocorrelation, apply flexible variograms

structures, and quantify uncertainty through weighted interpolation

(Pebesma, 2004; Gräler et al., 2016; Zarco-Perello and Simões,

2017). Ordinary kriging was used for continuous (% cover) data
TABLE 4 Performance metrics geostatistical (Interpolation) modelling.

Model Validation Accuracy Calibration Accuracy Specificity Sensitivity Kappa AUC TSS

RF 0.6308 0.9266 0.9362 0.8970 0.0644 0.5780 0.0757

XGBoost 0.6400 0.9443 0.9454 0.9371 0.0761 0.5923 0.0783

ANN 0.7121 0.7324 0.8203 0.3490 0.1869 0.6671 0.2901
fro
ntiersin.org

https://doi.org/10.3389/fmars.2025.1570277
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Evans et al. 10.3389/fmars.2025.1570277
and indicator kriging for binary (presence/absence) data. Data were

processed in R (v4.2.1) using the gstat, sf, terra, and raster packages

(R Core Team, 2023). Spatial data were projected to WGS84 UTM

Zone 50S and kriging conducted on a 10 m grid using spherical

variograms for continuous data and exponential variograms for

binary data (Pebesma, 2004). The datasets were randomly split into

80% training and 20% testing data.

Variograms showed a reasonable fit, levelling off at a sill

generally within 10,000 m, indicating spatial autocorrelation was

limited to that range. However, filter feeder and reef habitats

showed no clear spatial structure due to their sparse presence and

were excluded from modelling. Fitted variogram parameters (psill,

nugget, and range) for seagrass and macroalgae informed the

kriging process, producing 10 m raster predictions. Accuracy was

assessed using RMSE and MAE (continuous data), and kappa,

sensitivity, specificity, precision, F1 score, and AUC for binary

data using a 0.5 threshold (Kuhn, 2008). Final kriging rasters for

summer and winter 2016 were projected to WGS84 Zone 50S UTM.

Combined habitat maps were created using raster reclassification,

summarising dominant and mixed habitat types (e.g., seagrass,

macroalgae or both). Sites with ≥10% reef or filter feeder (though

not modelled) were also shown. Combined continuous predictions

were classified as: <10% = absence, 10 to 20% = low, 20 to 40% =

medium, and >40% = high.
3 Results

3.1 Comparisons of habitat mapping
techniques for Exmouth Gulf

3.1.1 Satellite remote sensing
Classification accuracy metrics varied by sensors and the

threshold used to delineate habitat presence (Supplementary

Table 1). Using the ≥10% SAV presence threshold, Landsat-8 had

the highest accuracy (81.95%, kappa = 0.63) in summer 2016, but

dropped in winter (66.04%, kappa = 0.37), with higher rates of false

positives observed. Sentinel-2 accuracy for ≥10% SAV presence

threshold was more consistent across seasons, ranging from 76.12%

(kappa = 0.53) in summer to 73.91% (kappa = 0.48) in winter.

At the ≥25% SAV presence threshold, classification accuracy was

more consistent with Landsat-8 showing 81.62% in summer and

77.99% in winter (kappa = 0.54 and 0.49), and Sentinel-2 75.91% in

summer to 77.02% in winter (kappa = 0.41 to 0.47). Higher

thresholds reduced seasonal variations, though sensor differences

remained, likely due to image resolution and environmental factors

such as turbidity. While SAV presence thresholds provide moderate

to strong accuracy for predicting abundance and distribution, further

disaggregation of the habitats to six-class classification for winter

2016, using both ≥10% and ≥25% threshold datasets, showed poor

performance overall (Landsat-8: 43.59%, kappa = 0.11; Sentinel-2:

36.94%, kappa = 0.12). While some specific classes achieved high

accuracy, such as sand using Landsat-8 (93.44%), most classes were

poorly classified highlighting significant limitations of this technique
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in distinguishing vegetated habitat types in this study area

(Supplementary Table 1i, j).

3.1.2 Acoustic sounding
Classification accuracies from indicator kriging applied to the

200 kHz and 38 kHz SBES datasets (using -100 dB and -110 dB

thresholds) produced contrasting results. The 200 kHz datasets,

each classifying three acoustic classes, showed stronger overall

performance, with accuracies between 87% to 93%, precision of

78% to 88%, and kappa values from 0.76 to 0.80, indicating reliable

predictions. In contrast, the 38 kHz datasets produced more classes

(-100 dB = seven, -110 dB = nine), with a wider accuracy range

(67% to 97%), much lower precision (12% to 16%), and kappa

values of 0.44 to 0.56, suggesting a higher rate of false positives

(Supplementary Table 2a). Although the 200 kHz kriging

interpolation produced accurate acoustic classification estimates,

spatial intersects with the 2016 winter ground-truth data showed no

consistent patterns, with an even distribution of habitat classes

across the acoustic classes (Supplementary Table 2b). This suggests

that while 200 kHz acoustic data are effective for mapping broad

substrate features, it is spatially confined for habitat mapping

(Figure 1) and detailed habitat delineation in the study area

requires significant supplementary validation and integration with

other techniques.

3.1.3 Predictive modelling – Random Forest
Random Forest density models showed moderate predictive

accuracy across habitats and seasons. For SAV, summer predictions

had an RMSE of 22.4% and MAE of 16.0%, increasing slightly in

winter (RMSE: 23.6%, MAE: 18.4%). Macroalgae models performed

better in summer (RMSE: 18.6%, MAE: 12.3%) than in winter

(RMSE: 22.2%, MAE: 16.7%). Seagrass models were the most

accurate, with summer RMSE of 14.0% and MAE of 9.9%,

improving further in winter (RMSE: 10.3%, MAE: 7.2%). In

comparison, binary models using a ≥20% presence threshold

showed high sensitivity but low specificity, limiting their ability to

predict absences. Kappa values ranged from -0.07 to 0.11, and AUC

scores were generally low, indicating performance near random. For

SAV, summer accuracy was 57.1% (sensitivity: 67.8%, specificity:

37.5%, kappa: 0.05, AUC: 0.60), while winter accuracy declined to

48.6% (sensitivity: 57.0%, specificity: 41.0%, kappa: -0.03, AUC: 0.47).

Macroalgae models showed moderate accuracy in summer (68.1%)

but poor agreement (kappa: -0.07), and worse accuracy in winter at

57.9% (kappa: 0.02). Seagrass models had the highest accuracy,

especially in winter (82.2%), but minimal agreement (kappa: 0.003),

indicating persistent false positives (Supplementary Table 3). Model

performance was influenced by habitat thresholds (≥10% to ≥30%),

with lower thresholds increasing sensitivity but inflating false

positives, while higher thresholds underrepresented habitat presence.

3.1.4 Geostatistical (interpolation) modelling
Kriging density models showed good predictive accuracy across

habitats and seasons. For SAV, RMSE was ~20% and MAE ~14% in

both summer and winter. Macroalgae models performed better in
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summer (RMSE: 13.8%, MAE: 9.5%) than in winter (RMSE: 17.4%,

MAE: 12.3%), while seagrass was most accurately predicted,

especially in winter (RMSE: 9.4%, MAE: 5.0%) compared to

summer (RMSE: 16.3%, MAE: 9.4%). Binary kriging models

(≥10% threshold) also performed well. For SAV, summer

accuracy was 71.4% (sensitivity: 64.3%, specificity: 78.6%, kappa:

0.43, AUC: 0.77) and winter improved in accuracy (79.2%),

specificity (92.7%) and kappa (0.51), with lower sensitivity

(54.0%). Summer macroalgae models had 72.5% accuracy and

moderate agreement (kappa: 0.41, sensitivity: 83.3%, specificity:

56.8% and precision (73.8%) with winter models improving

across all metrics (accuracy: 75.5%, specificity: 83.7%, precision:

83.0%, kappa: 0.51, AUC: 0.85). Seagrass models were stronger in

winter (accuracy: 80.9%, sensitivity: 88.6%, precision: 85.4%, kappa:
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0.46, AUC: 0.81) than in summer (accuracy: 71.4%, sensitivity:

71.0%, specificity: 72.4%, kappa: 0.40) (Supplementary Table 4).
3.2 Describing and quantifying broad
habitats of EGPMF nursery grounds and
season changes

Our comparative evaluation supported by a comprehensive

training and testing dataset, identified geostatistical modelling as

the most robust and practical method for mapping SAV,

macroalgae, and seagrass in the EGPMF nursery area. This

approach captured seasonal variations using both continuous

density and binary presence/absence models. Due to logistic
FIGURE 2

Predicted distribution of submerged aquatic vegetation (SAV) density (a) summer, and (b) winter 2016 and presence/absence for (c) summer, and (d)
winter 2016. Note the hashed area in summer 2016 was not mapped with confidence and not included in the seasonal comparison.
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constraints in summer 2016, an ~148.5 km² area in the north was

excluded reducing the summer study area to 983.5 km² (Figure 1).

However, the full study area of 1139 km² was surveyed for winter

2016. As a result, spatial and temporal comparisons were restricted

to the overlapping areas.

3.2.1 Submerged aquatic vegetation
The presence of SAV (>10%) was slightly less spatially extensive

during summer (663.1 km²) compared to winter (683 km²)

(Figures 2a, b). However, a notable increase in the spatial
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coverage of dense SAV was evident in winter, with 11.8% of the

common extent showing SAV density >40% (Figure 2b), compared

to only 4.2% in summer (Figure 2a). While the distribution of the

lowest density SAV class (10-20%) remained stable between seasons

(22.6% - 22.7%), the proportion of moderate density SAV (20-40%)

was greater in summer, at 40.4% compared to 30.7% in winter

(Figures 2a, b). This indicates a shift from moderate to high density

SAV during the winter months. Binary models also showed an

increased abundance in SAV in winter (Figures 2c, d). Overall, the

model predicted a slightly lower spatial coverage in summer (520.1
FIGURE 3

Predicted distribution of macroalgae (MA) density (a) summer, and (b) winter 2016, and, presence/absence for (c) summer, and (d) winter 2016. Note
the hashed area in summer 2016 was not mapped with confidence and not included in the seasonal comparison.
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km²) compared to winter (587.3 km²), as would be expected with

the applied ≥10% presence threshold. The confidence in SAV

density predictions was moderate, with RMSE values of 19.6%

and 19.9% for summer and winter, respectively, with the binary

models reporting overall accuracies of 71.4% and kappa of 0.43 for

summer and 79.2% and 0.51 for winter (see Supplementary Table 4

for full confusion matrices).

3.2.2 Macroalgae
Macroalgae showed seasonal shifts in both density and spatial

distribution (Figure 3). Macroalgae distribution across the common

extent showed an increase from 446.2 km² in summer (Figure 3a) to
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524.5 km² in winter (Figure 3b). Higher density macroalgae areas

(>20%) also covered more of the comparable study area in winter

compared to summer, with the densest concentrations observed in

the southern part of the study area. This indicates substantial

seasonal growth of macroalgae during winter. Although, the

binary models represented a more conservative estimate of

macroalgae distribution in both summer (291.2 km²) and winter

(388.8 km²), the overall trends of broader spatial coverage predicted

in winter were consistent (Figures 3c, d). The confidence in

macroalgae density predictions was moderate to strong, with

RMSE values of 16.26% and 9.37% for summer and winter,

respectively, while the binary estimates reported overall accuracy
FIGURE 4

Predicted distribution of seagrass (SG) density (a) summer, and (b) winter 2016, and, presence/absence for (c) summer, and d) winter 2016. Note the
hashed area in summer 2016 was not mapped with confidence and not included in seasonal comparisons.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1570277
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Evans et al. 10.3389/fmars.2025.1570277
of 72.5% and kappa of 0.41 for summer and 75.5% and 0.51 for

winter (See Supplementary Table 4 for full confusion matrices).

3.2.3 Seagrass
Seagrass density and distribution exhibited contrasting dynamics

to SAV andmacroalgae across the common extent of seasonal habitat

mapping, with coverage increasing to 308.4 km² in summer from

209.9 km² in winter (Figures 4a, b). Summer distribution was more

widespread, particularly in the southern and eastern areas, while

winter coverage remained consistent in the central study area, near

Whalebone Island (Figures 4a, b). Density comparisons revealed

minimal seasonal changes at the highest density class (20 - 40%)

which was similar between seasons (6.74%/66.3 km² in summer;

7.8%/76.3 km² in winter). However, the lower density class (10 - 20%)

increased substantially in summer (24.6%/242.1 km²) compared to

winter (13.6%/133.7 km²) and was the main driver of the increase in

spatial coverage (Figures 4a, b). The more conservative binary models

of seagrass distribution estimated a smaller seasonal difference in the

total area of seagrass, decreasing only 7.2 km2 between summer

(137.1 km2) and winter (129.9 km2) (Figures 4c, d). Seagrass models

achieved the highest predictive accuracy of the habitat types, with

RMSE values of 16.26% (summer) and 9.37% (winter) for the density

models. Binary models showed varying confidence, with the summer

model reporting an accuracy of 71.4% and kappa of 0.40, while winter

reported 80.2% accuracy and a kappa of 0.46 (See Supplementary

Table 4 for full confusion matrices).
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3.2.4 Combined habitat maps for EGPMF nursery
grounds

The combined four class binary presence/absence habitat maps

(e.g., seagrass, macroalgae, mixed seagrass and macroalgae, and

sand) provide a comprehensive view of the spatial and temporal

dynamics within the EGPMF nursery grounds (Figure 5).

Homogeneous seagrass areas are predominantly found in the

central eastern area, covering an estimated area of 92.9 km²

(9.5%) in summer (Figure 5a) and 96.4 km² (9.8%) in winter

(Figure 5b). Macroalgae also demonstrated high spatial

homogeneity, predominantly occupying the southern and eastern

nearshore areas of the study area (Figure 5). The extent of

macroalgae was estimated to be 247 km² (25.1%) in summer,

increasing to 340 km² (34.6%) in winter. Mixed habitats, where

seagrass and macroalgae overlap, represent a relatively small

proportion of the study area with just 44.2 km² (4.5%) in summer

and 52.7 km² (5.4%) in winter (Figures 5a, b). Filter feeders (≥10%

abundance) were only observed at six summer ground-truthing

sites and five winter sites, with only three reef structure sites (≥10%

abundance) observed across both surveys (Figure 5), indicating

these habitats are too sparse for robust modelling and are likely

sparsely distributed in the study area.

Combining the density habitat maps provide more detailed

information on the spatial distribution and seasonal dynamics of

habitats within the EGPMF nursery grounds (Figure 6),

complementing the patterns observed in the binary maps
FIGURE 5

Combined binary (presence/absence) habitat maps for the habitat classes predicted in this study using kriging interpolation for (a) summer, and (b)
winter 2016.
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(Figure 5), emphasising that seasonal changes in the study area are

primarily driven by shifts in habitat density. In the combined

habitat density maps, homogeneous seagrass covers an estimated

131.3 km² of the study area in summer (Figure 6a) and 132.0 km² in

winter (Figure 6b). In winter, medium density seagrass accounts for

47 km² (35.6%), with the remaining 85 km² (64.4%) classified as low

density, compared to summer, where medium density seagrass

covers 28 km² (21.3%) and low density seagrass covers 103

km² (78.7%).

As with the binary estimates of seasonal trends in macroalgae,

the density estimates of homogeneous macroalgae shows an

increase between summer (276.8 km²) and winter (415.3 km²),

particularly in the southeast (Figures 6a, b). The density of

homogeneous macroalgae also shifts seasonally, increasing from

0.9% high and 26.5% medium density (remaining 72.6% low

density) in summer, to 11.7% high and 51.5% medium density

(remaining 36.7% low density) in winter (Figures 6a, b). For overall

SAV estimated in the comparable habitat density maps for the

summer of 2016 (585 km²), 30.3% (or 177.1 km²) consists of five

mixed density assemblage classes, with low-density seagrass/low-

density macroalgae (Low SG & LowMA) being the dominant mixed

class with 117.3 km² (Figure 6a). Similarly, in winter 2016, the

combined SAV estimate of 625 km² includes 16.3% (102.3 km²) of

seven mixed density assemblage classes, with low density seagrass/

low density macro algae (Low SG & Low MA) again being the

dominant mixed class with 37.9 km² (Figure 6b).

This underscores the high degree of homogeneity within the

dominant habitat classes and shows increases in both density and
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distribution of SAV habitats, particularly in the southern and

eastern regions of the study area during winter compared

to summer.
4 Discussion

4.1 Comparisons of habitat mapping
techniques for Exmouth Gulf

Of the four techniques applied, geostatistical kriging was the

most robust off-the-shelf method to describe the distribution of

benthic habitats in the study area. It demonstrated robust predictive

accuracy for both density and presence/absence data, particularly

for seagrass and macroalgae. This approach was able to capture

spatial patterns with consistent kappa values and high precision,

which is essential for supporting evidence-based management

(Sharpe et al., 2020; Link and Marshak, 2021; Pennino et al.,

2023). Kriging methods are less commonly used for marine

habitat mapping due to advancements in remote sensing

technology and availability (Malthus and Mumby, 2003; Kutser

et al., 2020; Mastrantonis et al., 2024b). Historically, kriging

methods have been associated with limitations in predictive

accuracy such as sensitivity to uneven data distribution (Legendre

and Fortin, 1989). However, given the limitations of satellite remote

sensing techniques in turbid environments (McKenzie et al., 2020),

our study demonstrated that kriging, combined with spatially

balanced data in the modelling process, can result in robust
FIGURE 6

Combined density habitat maps for the habitat classes predicted in this study using kriging interpolation for (a) summer, and (b) winter 2016.
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outcomes. By leveraging a spatially comprehensive dataset, kriging

was able to effectively capture spatial patterns and reduce

uncertainty. This underscores the importance of dataset quality

(van der Reijden et al., 2021) and spatial balance in influencing the

success of geostatistical models and highlights that with adequate

data, kriging remains a valuable tool for marine habitat mapping.

Future developments to enhance the model outputs could

incorporate positive outcomes of the other techniques tested,

particularly satellite remote sensing and predictive modelling, at a

range of scales that may enhance confidence estimates (Diaz et al.,

2004; Mastrantonis et al., 2024a; Misiuk and Brown, 2024).

Improvements in resolution and the frequency of satellite passes

(e.g., 1 to 2 passes per week for Sentinel 2), enables better definition

of homogenous habitat categories across large spatial extents in shallow

(<5m) areas by providing a larger repository of imagery to improve the

chances of obtaining less turbid, cloud-free imagery (Kuhwald et al.,

2022). For example, in our study satellite remote sensing demonstrated

strong performance in distinguishing between sand and SAV. The use

of ensemble models could further improve certainty of mapped spatial

extents (Hossain et al., 2020) However, ensuring compatibility between

the model designs and interpretation as well as the quality of training

and testing data sets is critical.

Satellite remote sensing offered effective broad scale mapping

capabilities for the study area, particularly when ground-truthed

using the ≥25% SAV threshold. Both Landsat-8 and Sentinel-2

achieved moderate to high accuracy (75.9% to 81.6%), like other

satellite subtidal mapping studies (Rowan and Kalacska, 2021). Yet,

underperformed considerably when attempting to further distinguish

between habitat like seagrass and macroalgae (kappa <0.12), reflecting

challenges in classifying complex habitats from airborne sensors

(Wicaksono et al., 2019; Bannari et al., 2022). Off-the-shelf remote

sensing tools, while effective for terrestrial landscapes where artefacts

such as atmospheric distortion and shadowing are easier to correct,

often struggle in aquatic environments due to the dynamic nature of

water surfaces, subsurface conditions and depth (Dahdouh-Guebas,

2002; Franklin, 2010). Seasonal variations in turbidity and sensor

resolution were shown to influence performance in this study,

reducing the reliability of remote sensing for fine scale habitat

differentiation compared to the geostatistical modelling approach.

These limitations highlight the need for advanced preprocessing

techniques and site-specific calibrations to improve classification

accuracy in heterogeneous aquatic systems.

Random Forest predictive models also estimated habitat densities

of seagrass and SAV well. While they exhibited moderate predictive

errors (e.g., RMSE of 10.25% to 23.56% across seasons and habitats),

they provided detailed density estimates that complement the

geostatistical approach. However, the binary presence/absence

models, while achieving high sensitivity, struggled with specificity

and false positives. Several factors can contribute to an increase in

false positives, including spatial autocorrelation, imbalanced datasets

and sampling bias (Legendre and Fortin, 1989; Bradter et al., 2022).

The two most likely causes in the current study are the widespread

prevalence of suitable conditions, which leads the model to overpredict

presence, and the lack of key predictors variables that could improve

model specificity. Ephemeral seagrasses that are prevalent in this study
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area tend to have high spatial and temporal variability, with their

distribution often occupying a fraction of suitable habitat available,

with processes like dispersal and recruitment influencing distribution

within suitable habitat (Hovey et al., 2015). When important

environmental or ecological covariates are missing, the model may

also struggle to correctly distinguish between suitable and unsuitable

habitats, leading to high false positive rates. Incorporating ecologically

relevant predictors, such as substrate type, wave energy/

hydrodynamics, temperature and benthic light availability, as well as

addressing spatial and temporal variability to improve the specificity of

predictive models (Fox et al., 2017), will enhance predictive modelling

utility for management.

Acoustic sounding at 200 kHz showed promise for mapping broad

substrate features, with kappa values reaching 0.80 and high

classification accuracy (85% to 93%). This aligns with other studies

that showed the 200 kHz distinguishes sediment types and bare

substrates from vegetated substrates best (Freitas et al., 2003;

Quintino et al., 2010). However, its application for detailed mapping

of the sparse benthic biota in the study area was limited by inconsistent

alignment with ecological datasets and the high costs associated with

surveying such extensive areas. Acoustic mapping generally works

better in high density habitats, as dense biological or physical structures

(e.g., dense seagrass beds, coral reefs) produce stronger and more

consistent acoustic signals that can be more easily differentiated from

the surrounding substrate (Gumusay et al., 2019). In contrast, low

density habitats often produce weaker or less distinct signals, making it

more challenging to interpret the data accurately (Foster et al., 2009).

Our findings indicate that while this method effectively detects broad

substrate patterns, acoustic sounding alone is insufficient for accurately

mapping sparse benthic biota, in part due to the high cost, the need for

extensive validation and depth restrictions in this study area.
4.2 Describing and quantifying broad
habitats of EGPMF nursery grounds and
season changes

While the primary aim of our study was to evaluate ‘off the

shelf’ habitat mapping techniques based on confidence matrices to

inform EBFM, a valuable by-product was the development of a set

of seasonal broad scale habitat maps for the study area. Previous

assessments of broadscale habitat abundance and density (McCook

et al., 1995; Loneragan et al., 2013; Cartwright et al., 2023), or

mapped spatial extents of seagrass (Loneragan et al., 2003), have

been both spatial and temporally limited. Our study covered over

50% more area than previously mapped distributions, incorporated

seasonal comparisons, and provides estimates of habitat

distribution with statistical confidence.

Our study also provided valuable insights into seasonal habitat

changes within the EGPMF nursery area. Notably, SAV exhibited

greater density and spatial coverage in winter compared to summer. A

previous survey of areas within the EGPMF nursery area, which did not

make seasonal comparison of macroalgae, found that only 12 of 119

sites surveyed (<10%) had macroalgal cover exceeding 2% in winter

(June 1999). However, that study was conducted approximately three
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months after a category five tropical cyclone which potentially

impacted habitat composition (Loneragan et al., 2003). In contrast,

our findings, suggest that macroalgae in Exmouth Gulf expand in

cooler and more turbid conditions during winter (Cartwright et al.,

2021), indicating that macroalgae in Exmouth Gulf may be less affected

by turbidity but more sensitive to temperature. However, seagrass was

more widely distributed in summer (308.4 km²) than in winter (209.9

km²), with the most notable seasonal shifts occurring at lower densities

(10–20%). This contrasts with the previous study which observed a

decline in extent from summer to winter (Loneragan et al., 2003).

Generally, turbidity within Exmouth Gulf is lower in summer,

particularly in the lower Gulf (our study area) (Cartwright et al.,

2021). Along with increased sunlight, low turbidity is likely to facilitate

seagrass expansion in summer before declining in response to rising

turbidity and cooler waters in autumn. As the earlier study was

conducted shortly after a cyclone and did not include confidence

matrices on the spatial assessments, it is difficult to determine if the

observed differences reflect ecological patterns or methodological

variation (Loneragan et al., 2003). Disaggregating the environmental

drivers of habitat changes (e.g., light, temperature), will further inform

fishery and habitat associations for this area.
4.3 Habitat mapping application for
management

Our study establishes a valuable baseline for mapping habitat

classes relevant to the EGPMF and its nursery area. We also

demonstrate the importance of evaluating spatial mapping

techniques within the specific context of a study area or fishery

resource by incorporating confidence measures to ensure the most

reliable spatial outputs are used to inform EBFM (McKee et al., 2021;

Davies et al., 2023). For the EGPMF nursery area, while the

geostatistical kriging model’s kappa and RMSE values indicate

moderate to strong reliability, the observed variance between the

presence/absence and percentage density models suggests these

spatial maps are best suited for describing broad habitat extents and

capturing larger scale shifts. The techniques trialled in this study faced

limitations when quantifying the spatial distribution of less common

habitats with confidence (e.g., reef and filter feeders) or attempting to

disaggregate the broad habitat categories (seagrass and macroalgae) to

the genus or species level. Incorporating more rapid analysis of in-situ

habitat image data through automated image analysis [e.g (Beijbom

et al., 2015; González-Rivero et al., 2020)] may reduce the bottleneck in

analysis and allow for the increased collection and evaluation of ground

truth habitat data to better inform and validate models. This is critical

for improving marine habitat mapping outputs, with improved

resolution and associated confidences.

In our study, the ability to disaggregate data across different

modelling techniques was also constrained by the limited ecological

data available for the study area (Fitzpatrick et al., 2019; Sutton and

Shaw, 2021). However, Exmouth Gulf has recently received increased

scientific attention, increasing the availability of environmental

predictors (Cartwright et al., 2021; Lebrec et al., 2021; Cartwright

et al., 2023). With the continued requirement for sustainable

management of Exmouth Gulf for a range of users e.g., EGPMF and
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other commercial, recreational and customary fisheries (Kangas et al.,

2015; Banks and McLoughlin, 2017; DPIRD, 2020), conservation

sector, and potential industrial development (Sutton and Shaw,

2021), the range of datasets available to inform predictive models

will continue to expand. Adopting an iterative approach to integrating

these data sources into future habitat mapping could further improve

accuracy and enable finer scale and more resolute habitat mapping

(Lecours et al., 2015; Bean et al., 2017). This approach would provide a

more dynamic and comprehensive framework for habitat assessments,

ensuring that management decisions are better informed and more

adaptable to changing ecological and socio-economic contexts.
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