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Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China, 4Key Laboratory of
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In saline-alkaline water, carbonate alkalinity (CA) stands as the predominant

detrimental environmental element impacting aquatic fauna. As amultifunctional

organ, the gill plays a key role in the regulation of energymetabolism in shrimp. In

this study, the low-salinity cultured Litopenaeus vannamei was exposed to CA

stress for a period of 7 days, and then the stress was relieved and recovered for 7

days. The study examined the alterations in the gill energy metabolism following

exposure to CA stress and subsequent recovery, analyzing these changes

through different biological functional aspects. The results demonstrated that

CA stress led to alterations in the gill histomorphology and disrupted the balance

of energy metabolism-related parameters. In detail, after CA stress, carbohydrate

metabolism related indexes, the pyruvate (PYR) content showed increases, as did

the relative expression of the hk, pk, and pdh genes, while the glucose (GLU) and

lactate (LAC) content and the expression of the idh gene were slightly decreased;

lipid metabolism related indexes, such as the triglycerides (TG) content and the

expression of the ampk gene were slightly increased, and the expressions of the

srebp, acc, and fas genes were increased significantly; tricarboxylic acid (TCA)

cycle related indexes, such as the expressions of the cs, odh, and sdh genes were

up-regulated, whereas the expressions of the mdh and idh genes were

significantly down-regulated, the expression of the fh gene was slightly

decreased in regulation; electron transfer chain related indexes, such as the

expressions of the ndh, cytc, coi, cco, and atph genes were significantly

increased. Collectively, these alterations jointly affected the energy metabolism

homeostasis. After the CA stress was relieved, while certain physiological

parameters demonstrated improvement, they did not completely revert to the

levels seen in the control group. The findings indicated that CA stress exerted an
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adverse effect on the histomorphology and energy metabolism in the gills of

shrimp, likely by disrupting the functions of glycolysis, lipid metabolism, TCA

cycle, and electron transport chain, which may further affect the growth and

survival of the shrimp.
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1 Introduction

Litopenaeus vannamei, commonly known as the Pacific white

shrimp, holds significant economic value globally, which can provide

high-quality protein for human diets (Duan et al., 2020; Liu et al., 2024).

The L. vannamei is characterized by rapid growth, high stress resistance,

and broad salinity tolerance, attributes that facilitate its cultivation

across diverse environments (Zhang et al., 2024a). Currently, the

resources for shrimp farming are becoming increasingly strained, and

it is urgent to expand the culture space. In which, the saline-alkali

aquaculture of shrimp has great development potential. The global

saline-alkaline land area is 950million hectares, accounting for one third

of the land area (Sumner and Naidu, 1998), and it is currently in the

initial phase of development and utilization, and developing saline-

alkaline aquaculture is an important way to expand the aquaculture

space. The water quality of saline-alkaline water is complex, which can

be divided into carbonate, sulfate, and chloride types according to ion

content and ratio (Liu et al., 2022). Among them, carbonate alkalinity

(CA), as a significant environmental stress factor in saline-alkaline

water, jeopardizes the growth, development, and survival of shrimp, and

the life activities of shrimp are subject to compounded toxic effects (Yao

et al., 2010a; Xu et al., 2024). For example, under low salinity conditions

(3.29-4.84‰), the safe concentration of CA for L. vannamei larvae was

reported to be 2.90mmol/L (Yang et al., 2004). Reports indicate that CA

stress significantly impacts the survival rate and metabolic functions of

shrimp (Yao et al., 2010b; Zhang et al., 2024b, c; Duan et al., 2023; Yang

et al., 2006; Song et al., 2024). Therefore, exploring the metabolic

strategy of shrimp to cope with CA stress is helpful to develop anti-

stress methods for shrimp saline-alkaline aquaculture.

The energy metabolism plays an important role in aquatic animals

coping with stress. CA stress induces glycogen decomposition, inhibits

lipid synthesis, and interferes with glycerol phospholipid metabolism

in L. vannamei (Zhang et al., 2024b, c). CA stress can activate mTOR

and AMPK signaling (Shi et al., 2024) and induce transcriptome

changes in catabolism, immune response, circulatory function, and

lipid metabolism of L. vannamei (Zhang et al., 2023; Song et al., 2024).

CA stress triggers changes in substance transport, metabolic processes,

and amino acid synthesis in the hepatopancreas of L. vannamei (Duan

et al., 2023) and causes L. vannamei to have aberrant lipid metabolism

(Shi et al., 2023; Huang et al., 2019). When Exopalaemon carinicauda

is under CA stress, its hepatopancreas mainly responds to stress

through linoleic acid and glycerophosphate metabolism, and cAMP
02
signaling (Qin et al., 2023), and obtains energy support by enriching

lipolysis, amino acid and carbohydrate metabolism (Qin et al., 2021).

In Fenneropenaeus chinensis, it can counteract the osmotic imbalance

induced by CA stress through the augmentation of energy metabolism

in the hepatopancreas (Gao et al., 2024). However, there are few

studies on the energy metabolism changes of L. vannamei under CA

stress, it is of great significance to explore how the shrimp regulates

energy metabolism to cope with CA stress and recovery process.

Gills are very important for the regulation of respiration and

osmosis, which are closely related to energy metabolism (Duan

et al., 2018; Zhu et al., 2024). In the saline-alkali aquaculture of

shrimp, the gills are inevitably subjected to stress due to their direct

exposure to a highly alkaline environment. Our previous study

found that CA had a negative effect on the physiological

homeostasis of L. vannamei (Xiao et al., 2024). The stress of

aquatic organisms is a highly energy-consuming process;

therefore, we speculate that CA stress will affect the energy

metabolism in the gills of L. vannamei. As the main organ for gas

exchange, the gills are exposed to water with a large surface area.

When faced with CA stress, ion transport in the gills is affected,

which affects the penetration and acid-base balance of shrimp. In

order to restore this balance, the gills need to consume more energy.

Consequently, in this study, after being cultivated in low-salinity

circumstances and after being exposed to CA stress for 7 days, L.

vannamei had a 7-day recovery period. The energy metabolism

characteristics of the gills of L. vannamei were then carefully

investigated at various biological function levels during CA stress

and recovery, including the carbohydrate metabolism, lipid

metabolism, tricarboxylic acid (TCA) cycle, and electron transfer

chain. By exploring the energy metabolism strategy of shrimp to

cope with CA stress, the result of this study is helpful to develop

anti-stress methods for shrimp aquaculture in saline-alkali water,

and provides an important scientific basis for shrimp farming.
2 Materials and methods

2.1 Shrimp and culture conditions

In this study, the healthy L. vannamei were obtained from an

indoor pond at the Shenzhen Base of South China Sea Fisheries

Research Institute, Chinese Academy of Fishery Sciences
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(Shenzhen, China), averaging weight was 9.6 ± 0.4 g. The shrimp

were acclimated for 7 days in a 300 L experimental tank before the

stress test. The water temperature in the tank was 25 ± 0.5°C, the pH

was kept at 8.2 ± 0.2, and the salinity was kept at 3‰, and for 24 h,

the aeration was maintained. Every day, fresh water was added.

Shrimp were fed 5% of their body weight according to the feeding

condition every day. Uneaten feed and waste were promptly

removed to ensure water cleanliness.
2.2 CA stress exposure and sample
collection

This study encompassed a 7-day CA stress experiment, followed

by a 7-day recovery period. After 7 days of acclimatization to the

experimental conditions, the shrimp were randomly divided into one

of two groups: the CA group or the control (CK) group, the pH of the

CK group was 8.2 ± 0.2, and that of the CA group was 8.4 ± 0.2. Each

group had 3 parallel tanks, each with 50 shrimp. The CA stress

experiment then proceeds for 7 days, during which the CK group was

maintained in normal water with a salinity of 3‰ without sodium

bicarbonate addition; the CA group was added sodium bicarbonate to

3‰ low salinity rearing water to make its concentration as 5 mmol/L.

The water of all the tanks was changed every day. Before water

changes, the necessary experimental water for the CK and CA groups

was pre-prepared. Throughout the stress period, all culture

conditions remained identical to those during the acclimation

period, with the sole exception being the varying CA concentration

in the water. According to the basic research and experimental data of

Duan et al. (2023) and Song et al. (2024), we chose 7 days to carry out

the short-term reaction and recovery process experiment for the

organisms. After 7 days of CA stress, the CA stress was relieved and a

new RCA group was set up (that is, the culture water of the CA group

was replaced by normal 3‰ low salinity water). Subsequently, 15

shrimp from each tank in the CA group were cultured under normal

conditions for an additional 7 days.

On day 7 of the exposure to stress and day 7 of the recuperation,

the gills of samples were collected from each tank. Specifically, the

gills of three shrimp from each tank were collected and fixed in 4%

paraformaldehyde (Beijing Labgic Technology Co. Ltd., Beijing,

China) for histological analysis. The gills of three shrimp from each

tank were collected and mixed in RNA protection solution

(RNAFollow, New Saimei Biotech Co., Ltd., Suzhou, China) at 4°

C for 24 h and then stored at -80°C for gene expression analysis.

The gills of five shrimp from each tank were collected, mixed, and

stored at -80°C for the determination of biochemical indexes. The

sampling method and sample number in CA stress and recovery

stages were consistent.
2.3 Histomorphological analysis

The gill tissue samples underwent fixation in a 4%

paraformaldehyde solution for a period of 24 h. Subsequently, the

fixed tissue was placed in 70%, 80%, 90%, and 100% alcohol solutions
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in turn for gradient dehydration. Subsequently, the dehydrated gill

tissue was immersed in xylene to achieve transparency, after which the

transparent tissue block was embedded in paraffin for further

processing. After that, the embedded tissue was cut into 4 mm
pieces using a Leica RM2016 microtome (Shanghai, China);

subsequently, H&E was used to stain the samples. Finally, a

microscope was used to view and take pictures of the stained

sections (Nikon, Tokyo, Japan).
2.4 Biochemical indexes determination

After thawing the frozen gill tissue at -80°C, the tissue weight was

about 0.1 g, and the tissue homogenate was prepared according to the

ratio of m (tissue): V (physiological saline) = 1:9, which was

mechanically homogenized under the condition of an ice-water bath

and centrifuged for 15 minutes at 3500 rpm using a centrifuge. The

supernatant was then moved to a test tube and stored at -80°C for later

use. The identical kit made by Nanjing Jiancheng Bioengineering

Institute, China (Nanjing, China), was used to measure all

biochemical indexes, including glucose (GLU), pyruvate (PYR),

lactate (LAC), triglycerides (TG), and total ATPase (ATPase). The

measurement procedure was carried out following the steps of the kit.
2.5 Gene expression analysis

Total RNA was extracted from gill tissues using the TRIzol

reagent. The residual genomic DNA was then removed using RQ1

RNase-Free DNase. A Nanodrop 2000 spectrophotometer was used

to assess the concentration and purity of the extracted RNA

(MPBIO, Irvine, CA, USA). In the meanwhile, 1% agarose gel

electrophoresis was performed to verify the integrity of the RNA.

Following purification, the Servicebio® RT First Strand cDNA

Synthesis Kit (Servicebio, Wuhan, China) was used to reverse-

transcribe the RNA into cDNA. After that, the produced cDNA was

kept for further examination at -80°C.

To measure gene expression changes, the fluorescent real-time

quantitative PCR (qPCR) approach was adopted. The NCBI database

was used to get the nucleotide sequences of the target genes in L.

vannamei, with b-actin serving as the internal reference gene. The

qPCR primers were designed using Primer Premier 5.0 software

(Supplementary Table S1). Melting curve and amplification studies

were used to confirm their effectiveness and specificity. Using the

SGExcel Fast SYBR qPCRMix (Sangon Biotech, Shanghai, China) and

a real-time quantitative PCR instrument (CG-02 Heal Force,

Shanghai, China), the qPCR experiments were conducted. 7.5 mL of

SYBR Green mix, 1.0 mL of cDNA, 0.6 mL of each primer at a

concentration of 10 mmol/L, and 5.3 mL of sterile deionized water were
all included in the qPCR reaction system. After an initial 30-second

denaturation step at 95°C, the thermal cycling protocol consisted of 40

cycles of 5-second exposure at 95°C followed by 30-second incubation

at 60°C. The relative levels of mRNA were calculated according to

Livak and Schmittgen (2001) and presented as the fold change relative

to the CK group.
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2.6 Statistical analysis

The mean ± standard error (SE) was used to express all data.

Using the LSD and Duncan post-hoc tests, a one-way analysis of

variance (ANOVA) was carried out using the statistical analysis

program SPSS 26.0. Significant differences were defined as those

with P < 0.05.
3 Results

3.1 The histomorphological changes
of the gills

In the CK group, the gill tissue was orderly arranged, and

the cuticle appeared smooth (Figure 1A). In the stress phase,

compared to the CK group, the gill tissue boundaries became

blurred. The diaphragm widened, the subcutaneous space

became narrowed, and the number of hemocytes decreased.

Additionally, cavity vacuolation increased; the gill tissue was

severely constricted, and the gill tissue blood vessels were

deformed (Figure 1B).

In the recovery phase, relative to the CA group, the gill

boundary was clear, and the subcutaneous space was narrowed.

However, the gill blood vessels remained deformed, and the

diaphragm was narrowed. Moreover, the number of blood cells

increased, although the cuticle showed damage (Figure 1C).
3.2 Alterations in carbohydrate
metabolism-related biochemical indicators
in the gills

In the stress phase, compared to the CK group, the content of

the GLU exhibited no significant variation in the CA group (P >

0.05); however, the content of the PYR increased significantly (P <

0.05). The content of the LAC decreased, however, this change was

not statistically significant (P > 0.05) (Figure 2).
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In the recovery phase, relative to the CA group, the content of

the GLU was significantly increased in the RCA group (P < 0.05)

and significantly higher than that in the CK group (P < 0.05); the

content of the PYR was decreased significantly in the RCA group

(P < 0.05) and returned to the level of the CK group; the content of

the LAC was increased in the RCA group and was higher than that

in the CK group, but there was no significant difference (P > 0.05).
3.3 Alterations in the expression levels of
genes related to carbohydrate metabolism
in the gills

In the stress phase, compared to the CK group, the mRNA

relative expression levels of the carbohydrate metabolism related

genes, such as the pyruvate kinase (pk) and pyruvate dehydrogenase

(pdh) genes were increased significantly in the CA group (P < 0.05);

the mRNA relative expression of the hexokinase (hk) gene was

slightly increased in the CA group, but they was no significant

difference (P > 0.05); while that of the lactate dehydrogenase (ldh)

gene was decreased slightly in the CA group, but they was no

significant difference (P > 0.05) (Figure 3).

In the recovery phase, relative to the CA group, the mRNA

relative expression levels of the pk and hk genes were increased

significantly in the RCA group (P < 0.05) and higher than that in the

CK group (P < 0.05); the mRNA relative expression of the pdh gene

was decreased significantly in the RCA group (P < 0.05) and

returned to the level of the CK group; the mRNA relative

expression of the ldh gene was increased slightly in the RCA

group, but they was no significant difference (P > 0.05) and

returned to the level of the CK group (P > 0.05).
3.4 Alterations in lipid metabolism-related
indices in the gills

In the stress phase, compared to the CK group, in the CA group,

the content of the TG and the relative mRNA expression level of the
FIGURE 1

Changes in the histomorphology of the gills of L. vannamei after CA stress and recovery. (A) The CK group; (B) The CA group; (C) The RCA group. a:
cuticle; b: subcutaneous space; c: epithelial cells; d: in-gill blood vessels; e: out-gill blood vessels; f: septum; g: hemocytes; h: vesicles; 400×
magnification. Notes: CK, control; CA, 5 mmol/L CA stress; RCA, recovery.
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adenosine 5’-monophosphate (AMP)-activated protein kinase

(ampk) gene was slightly increased, however, no significant

differences were noted (P > 0.05) (Figures 4A, B); the mRNA

relative expressions of the cholesterol regulatory element binding

protein (srebp), acetyl-CoA carboxylase (acc), and fatty acid

synthetase (fas) genes were significantly increased in the CA

group (P < 0.05) (Figure 4B).

In the recovery phase, relative to the CA group, in the RCA

group, the content of TG showed no significant change and stayed

higher than in the CK group, but there was no significant difference

(P > 0.05). However, a significant difference (P < 0.05) was observed

in the relative mRNA expression level of the ampk gene between the

RCA and CK groups. While the RCA group showed no significant

change in the srebp, acc, and fas gene expression levels (P > 0.05),

these were still significantly higher compared to the CK group

(P < 0.05).
Frontiers in Marine Science 05
3.5 Alterations in the expression levels of
genes related to tricarboxylic acid cycle in
the gills

In the stress phase, compared to the CK group, the mRNA

relative expression levels of the malate dehydrogenase (mdh) and

isocitrate dehydrogenase (idh) genes were decreased significantly in

the CA group (P < 0.05), while the mRNA relative expressions of the

citrate synthase 1 (cs), oxoglutarate dehydrogenase (odh), and

succinate dehydrogenase (sdh) genes were increased significantly

(P < 0.05); the mRNA relative expression level of the fumarase (fh)

gene was decreased slightly in the CA group, but there was no

significant difference (P > 0.05) (Figure 5).

In the recovery phase, relative to the CA group, the mRNA

relative expression levels of the mdh, sdh, and fh genes were

increased significantly in the RCA group, and higher than those

in the CK group (P < 0.05); the mRNA relative expression of the cs

gene was decreased significantly in the RCA group (P < 0.05), and

returned to the level of the CK group; the mRNA relative expression

of the idh gene was increased slightly in the RCA group and

returned to the level of the CK group, but there was no

significant difference (P > 0.05); the mRNA relative expression of

the odh gene was not obviously change in the RCA group, but it was

still significantly higher than that in the CK group (P < 0.05).
3.6 Alterations in the electron transport
chain related indexes in the gills

In the stress phase, compared to the CK group, the mRNA relative

expression levels of the NADH dehydrogenase (ndh), cytochrome C

(cytc), cytochrome oxidase I (coi), cytochrome c oxidase (cco), and ATP

synthase (atph) genes were significantly increased in the CA group (P <

0.05); the activity of ATPase showed an upward trend in the CA group,

but there was no significant difference (P > 0.05) (Figure 6).
FIGURE 3

Changes in the mRNA relative expression levels of carbohydrate
metabolism related genes in the gills of L. vannamei after CA stress
and recovery. Different letters on the bar show significant
differences (P < 0.05) between different groups. Hexokinase (hk);
pyruvate kinase (pk); pyruvate dehydrogenase (pdh); lactate
dehydrogenase (ldh).
FIGURE 2

Changes in the carbohydrate metabolism related biochemistry indexes in the gills of L. vannamei after CA stress and recovery. (A) Glucose (GLU)
content; (B) Pyruvate (PYR) content; (C) Lactate (LAC) content. Different letters on the bar show significant differences (P < 0.05) between
different groups.
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In the recovery phase, relative to the CA group, the activity of

the ATPase was decreased slightly in the RCA group and lower than

that in the CK group, but there was no significant difference (P >

0.05). The relative mRNA expression levels of the ndh and atph

genes increased further, surpassing those in the CK group (P <

0.05). The relative mRNA expressions of the cytc, coi, and cco genes

were decreased significantly in the RCA group (P < 0.05), but they

were still significantly higher than those in the CK group (P < 0.05).
4 Discussion

Around the world, saline-alkaline water is common, and one of

its essential components is CA. Shrimp metabolic pathways may be

impacted by CA stress, which may potentially result in mortality

(Yao et al., 2010b; Song et al., 2024; Zhang et al., 2024b, c; Duan

et al., 2023). It was found that the elevated level of the LAC in the
Frontiers in Marine Science 06
hepatopancreas of L. vannamei indicated that the organism may use

anaerobic respiration and metabolism to generate energy to cope

with CA stress (Duan et al., 2023). It was reported that acute

alkalinity stress damaged the gill structure of L. vannamei (Zhang

et al., 2024b). Similar in the present study, under low-salinity

conditions, the morphological structure of the gills in L.

vannamei was affected by CA stress. In the recovery phase, the

gill of shrimp began to repair itself; although there were positive

changes, it still did not fully return to normal state. The

histomorphological changes of the gills would further affect its

physiological homeostasis. Cell stress in organisms is a highly

energy-consuming process. However, the effects of CA stress on

energy metabolism in the gills of L. vannamei are not well

understood. Therefore, we carried out a thorough analysis to look

at the changes in energy metabolism in the gills of L. vannamei

following CA stress and during the recovery phase, assessing these

changes across multiple dimensions of biological function.

Energy metabolism is a process in which nutrients in the

organism are catalyzed to release energy through various

enzymes. Glycolysis functions as the main energy provider for the

physiological activities of organisms (Chen et al., 2023; Jenkins

et al., 2011). The hk starts glycolysis by phosphorylating hexose, and

the pk catalyzes the last step of glycolysis, producing PYR and ATP,

while the pdh is capable of catalyzing the conversion of PYR to

acetyl-CoA through decarboxylation (Godoy-Lugo et al., 2019; Li

et al., 2024). The ldh is an important coenzyme in carbohydrate

metabolism that can catalyze the conversion of PYR to LAC (Shan

et al., 2019). It was found that the carbohydrate catabolism of L.

vannamei was enhanced under calcium stress (Zhang et al., 2024b).

In the present study, after CA stress, the increased PYR content and

higher expression of the hk, pk, and pdh genes indicated activation

of glycolysis. Specifically, the up-regulation of the hk and pk

accelerated the conversion of GLU to PYR, while the pdh

promoted the conversion of PYR to acetyl coenzyme A, thus

producing Adenosine triphosphate (ATP), with the PYR content

being directed towards alternative metabolic pathways instead of
FIGURE 4

Changes in the lipid metabolism related indices in the gills of L. vannamei after CA stress and recovery. (A) Triglyceride (TG) content; (B) The mRNA
relative expression levels of lipid metabolism related gene expression. Different letters on the bar show significant differences (P < 0.05) between
different groups. Adenosine 5’-monophosphate (AMP)-activated protein kinase (ampk); cholesterol regulatory element binding protein (srebp);
acetyl-CoA carboxylase (acc); fatty acid synthetase (fas).
FIGURE 5

Changes in the mRNA relative expression levels of tricarboxylic acid
cycle related genes in the gills of L. vannamei after CA stress and
recovery. Different letters on the bar show significant differences
(P < 0.05) between different groups. Malate dehydrogenase (mdh);
citrate synthase 1 (cs); isocitrate dehydrogenase (idh); oxoglutarate
dehydrogenase (odh); succinate dehydrogenase (sdh); fumarase (fh).
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being converted to the LAC content. This redirection likely

provided the energy necessary for shrimp to withstand CA stress.

The activation of glycolysis allowed for a rapid supply of ATP,

which was crucial for maintaining cellular functions and supporting

stress responses. In the recovery phase, the content of GLU and the

expression of the hk and pk genes higher than in the CK group,

indicating that glycolysis continued to provide energy, while the

content of PYR and LAC and the expression level of the pdh gene

recovered to those of the CK group, indicating that the

gluconeogenesis pathway was relatively stable in the recovery

phase, which was helpful to maintain the balance between the

gluconeogenesis pathway and the glycolytic metabolism pathway.

This balance ensured that energy production remains sufficient to

support cellular repair and normal physiological functions. It has

been found that the over-activation of glycolysis may lead to

decrease in energy utilization efficiency and affect the growth and

immune response of shrimp (Cruz-Moreno et al., 2024).

Lipid metabolism can supply energy for physiological activities,

thereby facilitating adaptation to environmental stress (Lee et al.,

2018; Qin et al., 2023; Duan et al., 2024b). The ampk can promote

fatty acid oxidation and facilitate ATP production (Krishan et al.,

2014). The enrichment of the ampk signaling pathway in E.

carinicauda after CA stress for 24 h is helpful to maintain energy

stability (Qin et al., 2023). In the present study, after CA stress, the

slightly increased expression of the ampk gene suggested that the

function of fatty acid oxidative catabolism was starting to activate.

In the recovery phase, the expression level of the ampk gene was

upregulated and exceeded the CK level, indicated that fatty acid

oxidative catabolism was activated and had not yet returned to a

normal state. This sustained activation suggested that lipid

metabolism continued to contribute to the energy supply of the

shrimp during recovery, supporting their ability to cope with

prolonged stress effects. The TG is mainly used to store lipid

energy (Lu et al., 2023). The srebp, acc, and fas are key regulatory

enzymes in fatty acid biosynthesis (Shi et al., 2021). Under acute
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alkalinity stress, the lipid anabolism of L. vannamei was found to be

suppressed (Zhang et al., 2024b). CA affects differentially expressed

genes related to intestinal lipid metabolism in L. vannamei (Song

et al., 2024). In the present study, after CA stress, the increase of TG

content and the expression levels of genes linked to lipid

metabolism, including srebp, acc, and fas, suggested that CA

stress might promote the expression of the acc and fas by

activating SREBP signaling pathway, thus enhancing fatty acid

synthesis. In the recovery phase, the TG content and the

expression levels of srebp, acc and fas genes were still higher than

those in the CK group, indicating that the lipid anabolic activity of

the organism was still functioning and had not returned to normal.

Excessive activation of lipid metabolism would lead to abnormal

accumulation of lipid in shrimp, thus disrupting its normal

physiological function.

The TCA cycle is the final metabolic pathway of the nutrients

and the hub of substance metabolism, which provides energy for life

activities through the oxidation of acetyl-CoA (Arnold and Finley,

2023). The mdh, cs, idh, sdh, and fh proteins are key enzymes of the

TCA cycle (Nunes-Nesi et al., 2013; Nan et al., 2024). It was found

that the malic acid level of Eriocheir sinensis increased under CA

stress (Yang et al., 2019). Similarly, CA stress inhibited the TCA

cycle in the gills of E. sinensis (Wang et al., 2024). In addition, the

TCA cycle was enhanced in the gill of L. vannamei under CA stress

(Zhang et al., 2024b). In the present study, after CA stress, the mdh

and idh genes had lower expression levels, while the cs, odh, and sdh

genes displayed higher expression levels. Down-regulation of key

genes such asmdh and idh would reduce the efficiency of circulation

and lead to the decrease of ATP production. This implied that CA

stress disrupted the functional balance of the TCA cycle in the gills

of shrimp, thereby affecting the energy source required to withstand

CA stress, insufficient energy supply would affect the growth,

immune response and overall health of shrimp. It was found that

the expression changes of key enzymes in TCA cycle can affect the

metabolic pattern and energy production of shrimp (Duan et al.,
FIGURE 6

Changes in the electron transport chain related indexes in the gills of L. vannamei after CA stress and recovery. (A) The mRNA relative expression
levels of electron transport chain-related genes; (B) Total ATPase (ATPase) activity. Different letters on the bar show significant differences (P < 0.05)
between different groups. NADH dehydrogenase (ndh); cytochrome C (cytc); cytochrome oxidase I (coi); cytochrome c oxidase (cco); ATP
synthase (atph).
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2024b). In addition, the disorder of TCA cycle may also lead to the

increase of intracellular oxidative stress levels, further weakening

the antioxidant capacity and immune function of shrimp (Duan

et al., 2024a). In the recovery phase, the relative expression levels of

the cs and idh genes recovered to the level of the CK group, while

the levels of the mdh, odh, sdh, and fh genes were still significantly

higher than those of the CK group, indicating that the function of

the TCA cycle in the gills recovered to some extent, but the whole

was still not restored to a normal state.

Electron transfer is a key step in converting energy to support

cellular activity. The electron donors and acceptors form electron

transport chains that pass through redox potentials (Yu et al.,

2024). In the electron transport chain, ndh acts as the starting

enzyme, and cco serves as the final enzyme (Maclean et al., 2022);

the atph is capable of catalyzing ATP synthesis (Fernández-

Vizarra and Ugalde, 2022); two important proteins that act as

electron transporters are coi and cytc (Fernandez-Vizarra et al.,

2022). In the present study, after CA stress, the up-regulation of

the ndh and cco genes after CA stress indicated that the initiation

and termination steps of electron transport chain may be

enhanced and the electron flow may be increased. The high

expression of the cytc, coi, and atph genes and slowly increasing

ATPase activity further ensured effective electron transfer, thus

activating the electron transfer chain of gill to generate energy to

cope with CA stress. In the recovery phase, the expression levels of

these genes remained noticeably higher than those of the CK

group, while ATPase activity was downregulated. This indicated

that the electron transport chain in the shrimp gills was still highly
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active and did not normalize. This might be due to the negative

effects caused by CA stress not having been completely eliminated

and the body still needing an energy supply to defend against

stress. In the future, we can continue to study extending the

recovery period and monitoring key physiological and metabolic

indicators for a longer time to determine the time required for

complete recovery.
5 Conclusions

This study revealed that CA stress could affect the

histomorphology structure and the energy metabolism

homeostasis of the gills of L. vannamei and could not be

completely recovered to the normal state within a short time. The

specific performance was as follows (Figure 7): In the process of CA

stress, the activation of carbohydrate metabolism and fatty acid

synthesis in the gills of shrimp, along with the stimulation of the

electron transport chain function, facilitated the generation of

energy substances. Conversely, CA stress disrupted the

equilibrium of the TCA cycle function in the gills, thus

interfering with energy metabolism. After relieving stress,

although some indexes could be restored to the control level,

glycolysis, the TCA cycle, lipid metabolism, and the electron

transfer chain function had not returned to a normal state,

indicating that energy metabolism was still in a state of high

expression. The results showed that energy metabolism played an

important role in the response of shrimp gill tissue to CA stress.
FIGURE 7

The deduced possible mechanism of the detrimental effects of CA stress on the energy metabolism homeostasis in the gills of L. vannamei. Cr,
cytochrome C reductase.
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