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Vector tracking loop of
shipborne satellite navigation
receiver based on Kalman
filter-divided difference filter for
anti-interference enhancement
Linjin Wu1, Wei Liu1, Yuan Hu2* and Shengzheng Wang1

1Merchant Marine College, Shanghai Maritime University, Shanghai, China, 2College of Engineering
Science and Technology, Shanghai Ocean University, Shanghai, China
Due to the complex and ever-changing maritime environment, ships heavily rely

on stable and reliable navigation systems during their voyages to ensure safe and

efficient navigation. However, during maritime navigation, satellite navigation

signals are often subject to interference and obstruction, leading to degraded

positioning accuracy or untrustworthy navigation data. To address the pressing

need for high-precision and reliable navigation in maritime applications, this

paper proposes a bidirectional smoothing filter vector tracking loop (VTL)

structure based on a combination of Kalman filter (KF) and a Divided Difference

filter (DDF). This approach enhances the responsiveness of the Kalman filter

under high-noise conditions, and significantly improves the accuracy and

robustness of the navigation system through bidirectional collaborative

filtering. In practical shipborne navigation experiments, the proposed method

was compared with the traditional Scalar Tracking Loops (STL), traditional VTL,

and KF-based VTL approaches. The results demonstrate that the proposed

method offers significant improvements in horizontal positioning and velocity

accuracy. Compared with the KF-based VTL method, the proposed approach

achieved an 83.20% enhancement in the positioning accuracy and a 60.00%

improvement in the horizontal velocity accuracy.
KEYWORDS

vector tracking loop, GNSS, Kalman filter, divided difference filter, reliable navigation
1 Introduction

Navigation safety has always been the paramount concern for mariners. Given the

complex and unpredictable nature of the maritime environment, factors such as weather,

tides, ocean currents, and other uncertainties pose significant challenges to safe navigation.

As a result, ships heavily depend on stable and reliable navigation systems during their

voyages. Advanced navigation technology not only delivers accurate positioning, heading,

and speed information but also assists vessels in avoiding potential hazards and enhancing
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navigation efficiency. Moreover, the integration and intelligent

evolution of modern navigation systems enable ships to maintain

safe passage even in adverse weather conditions, low visibility, or

intricate waterways. These advanced systems provide crucial

support for maritime safety. As a result, they help protect the

crew, secure the cargo , and ensure the s tabi l i ty of

shipping operations.

According to the performance standards for shipborne radio

navigation receivers set out in the IMO’s MSC.401(95) resolution,

the specifications outline the requirements for navigation

performance and reliability of shipborne satellite radio navigation

systems (Lacarra et al., 2019). The standards specify that shipborne

radio navigation systems must remain stable even when exposed to

electromagnetic interference occurring either inside or outside the

vessel. In addition, they should be able to continuously and reliably

deliver accurate navigation data.

With the rapid development of global shipping, the accuracy

and reliability of ship navigation systems have become increasingly

important. Traditional navigation systems face numerous

challenges in complex and variable environments. These

difficulties arise from the influence of maritime conditions and

obstacles such as bridges, which can disrupt signal reception and

reduce positioning accuracy (Niu et al., 2024). As the core

technology for modern ship navigation, satellite navigation

systems directly affect navigation safety and efficiency. However,

issues such as signal interference, obstructions, and multipath

effects in complex environments often lead to unstable navigation

signals and decline in system accuracy, thereby affecting the normal

operation of ships (Reda et al., 2024). Therefore, future

development of maritime navigation technology should focus on

achieving higher precision and reliability. This is not only an

essential requirement for improving navigation safety and

efficiency. It also serves as a critical safeguard against the

challenges posed by complex marine environments and extreme

weather conditions (Zhang et al., 2021). Chen et al. proposed a path

planning method based on Parallel Dense neural Network (PDNet)

to meet the complex path data collection requirements of

Autonomous Underwater Vehicle (AUV). Additionally, they

constructed a three-dimensional marine environment model

using real marine current data, which can fulfill the diverse

mission planning and data collection needs of AUVs (Chen et al.,

2024c). High-precision navigation technology can provide ships

with more accurate positioning and route planning, whereas highly

reliable systems ensure that navigation equipment remains stable

even in the presence of signal interference or harsh environments

(Perera and Guedes Soares, 2015). Therefore, research on high-

precision and highly reliable shipborne navigation technology

tailored to complex environments with signal interference is of

utmost significance.

Satellite navigation receivers achieve a stable navigation output

by continuously tracking radio frequency signals from navigation

satellites. Based on the independence of signals within the tracking

channels, signal-tracking loop methods can be categorized into

scalar tracking loops (STL) and vector tracking loops (VTL). Scalar

tracking is currently the most commonly used signal-tracking
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method for navigation receivers. The key feature is that the signal

channels for each satellite operate independently without mutual

interference. In environments with good signal quality and minimal

interference, scalar tracking delivers an excellent signal-tracking

performance. Additionally, owing to its low computational

complexity and simple structure, scalar tracking is widely adopted

in various types of navigation receivers (Gao et al., 2024). By

contrast, the vector tracking method processes all satellite signals

in a single integrative filter, thereby establishing interconnections

among the satellite signals. It leverages the relationship between the

satellite signal channels to estimate the navigation state. This

estimated information can be used to predict the motion

characteristics of the receiver. It can also be fed back into each

signal-tracking channel to assist in the stable tracking of the signal

loop (Sun et al., 2017). This approach enhances the stability and

robustness of the vector tracking signal loop, enabling reliable signal

channel tracking even in complex interference environments,

thereby ensuring navigation accuracy (Zhao et al., 2011).

Therefore, the vector tracking method has attracted widespread

attention in the academic community. This is due to its excellent

anti-interference capability and outstanding tracking performance

under weak signal conditions.

As the demand for high reliability and system stability in

navigation systems continues to grow, the focus of navigation

technology research has evolved accordingly. Over the past decade,

the vector tracking loop for satellite navigation signals has gradually

become a hot topic in academia owing to its superior anti-

interference capabilities and robust performance in weak-signal

environments. Researchers have been improving vector tracking

methods, continually exploring their potential applications in

complex environments to meet the higher requirements of modern

navigation systems in terms of accuracy, reliability and stability. Xu

et al. proposed a method for detecting and correcting non-line-of-

sight (NLOS) errors in satellite signals based on vector tracking. This

approach detects NLOS errors within the loop and corrects them

before the navigation estimator, thereby effectively improving the

positioning accuracy of the navigation system (Xu et al., 2020). Jia

et al. analyzed four potential error sources in vector tracking loops

and proposed a robust signal vector tracking loop structure based on

these findings (Jia et al., 2024). To address the issue of potential

spoofing attacks in GNSS navigation systems, Zhou et al. proposed a

detection-estimation-correction loop structure based on vector

tracking (Zhou et al., 2023). To verify task planning in complex

scenarios and the reliability of the system in complex environments,

Chen et al. thoroughly studied the dynamic real-time technology of

unmanned systems and proposed the robust VD-DDQN algorithm

(Chen et al., 2024b). By leveraging the Virtual Autocorrelation

Function (VACF) method, they successfully restored accurate

navigation and positioning results, ensuring system integrity and

reliability (Zhou et al., 2023). Abedi et al. introduced technical

improvements to the computational process of vector tracking to

address the challenge of the high computational complexity of vector

tracking. Their approach significantly reduced the computational

load while maintaining nearly the same level of accuracy, thereby

enhancing the real-time performance of the method (Abedi and
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Mosavi, 2022). To enhance the security of maritime communication

and the reliability of data transmission, Chen et al. proposed a joint

communication model based on DSF-ISS, effectively improving the

security and coverage of maritime network communication (Chen

et al., 2024a). In high-dynamic environments, vector tracking

methods also demonstrate good performance (Lashley et al., 2009).

Building on vector tracking, Tu et al. designed a vector carrier

structure for Doppler component calculations, which effectively

reduced signal tracking errors under high-dynamic conditions (Tu

et al., 2021).

In this study, we build on the excellent performance of the

vector tracking method in anti-jamming and weak signal

environments. We improve the traditional vector tracking loop

structure and propose a new algorithmic framework. This

framework is based on a bidirectional smoothing filter that

combines the Kalman Filter and the Divided Difference Filter

(KF-DDF). The following sections introduce the structure of the

proposed algorithm and describe the process of constructing its

mathematical model. Finally, they present an analysis of the results

obtained from an actual shipborne navigation experiment.
2 Algorithm framework

To enhance the safety of vessels during operation, this paper

focuses on reducing the impact of external electromagnetic

interference on onboard satellite navigation systems. For this

purpose, it proposes a carrier/code loop filter designed specifically for

complex electromagnetic environments. The filter combines a forward

KF with a backward DDF to improve tracking performance and

robustness. This innovative filter design aims to improve the anti-

jamming capability and positioning accuracy of shipborne satellite

navigation systems under harsh conditions to ensure the safety and

reliability of ship navigation.

Based on the proposed KF-DDF carrier/code loop filter, the

entire algorithm structure implements the positioning calculation

process of the Software-Defined Receiver (SDR). In this process, the

software-defined receiver no longer relies on hardware receivers but
Frontiers in Marine Science 03
fully utilizes the flexibility and programmability of the software. By

employing efficient algorithms and dynamic filtering strategies, the

positioning accuracy and anti-jamming capability were enhanced.

Specifically, the KF-DDF carrier/code loop filter, as the core

algorithm, combines the advantages of forward Kalman filtering

and backward differential filtering, thereby enabling real-time

tracking and optimization of the received signals(Q. Zhang et al.,

2022). This ensures that the navigation system operates stably in

complex electromagnetic environments, thereby improving the

robustness of the system. The workflow of the entire algorithm is

illustrated in Figure 1 (Hsu et al., 2015; Zhang et al., 2022).

Intermediate frequency (IF) signals are first allocated to different

vector tracking channels based on the signals received from different

satellites (Han et al., 2022). Each tracking channel is responsible for

tracking signal from a specific satellite. In each tracking channel, the

signal is sent to a correlator for processing. The correlator extracts

information such as phase, frequency, and time from the received

signal by matching it with a locally generated reference signal (Farhad

et al., 2021). The intermediate frequency (IF) signal is then sent to the

Integration and Dump (I&D) for integration processing, which

eliminates high-frequency noise in the signal and optimizes the

signal-to-noise ratio (SNR), thereby enhancing the tracking

performance of the signal. Next, the carrier/code discriminator

calculates the phase errors of the carrier and pseudo-code, and these

errors are used as measurement input parameters for the loop filter.

The pseudo-range error and pseudo-range rate error are calculated

using the loop filter and used as key measurement parameters for the

navigation processor. These are decisive factors affecting the accuracy

of the navigation system. Simultaneously, the output of the loop filter

serves as the control parameter for the carrier NCO, forming feedback

to achieve closed-loop tracking of the signal (Mu and Long, 2021). The

navigation filter based on the Extended Kalman filter (EKF) not only

computes the current position, velocity, and time information but also

estimates the navigation state parameters. By integrating the current

satellite ephemeris, it adjusts the control parameters of the pseudo-code

NCO, forming a closed-loop control for the pseudo-code signal.

The following sections introduce the basic principles of the

proposed method and the design process of its mathematical model.
FIGURE 1

Vector tracking algorithm structure.
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2.1 KF-DDF GNSS signal-tracking loop

The signal loop filter based on the KF-DDF proposed in this

study combines the advantages of both the KF and the DDF. The

aim is to improve the accuracy and robustness of the navigation

system by leveraging their bidirectional synergy. Specifically,

building on forward Kalman filtering, the filter further optimizes

the system’s prediction results by applying backward differential

filtering to the one-step prediction.

Studies have shown that the Kalman filter can provide an

accurate state estimation and demonstrates significant advantages

when dealing with linear dynamic models and Gaussian noise

systems. In these application scenarios, the Kalman filter

continuously optimizes system state estimation through recursive

prediction and update steps. Moreover, the Kalman filter operates

on the principle of real-time measurement updates and has

relatively low computational overhead. These characteristics make

it particularly well-suited for systems with high real-time

requirements and limited computational resources. Therefore, the

Kalman filter is widely applied in fields such as automatic control,

navigation, and communication, making it an essential tool for

solving complex linear dynamic estimation problems. The loop

filter model used in this study generally satisfies the assumptions of

the Kalman filter model: the system is linear and the noise follows a

Gaussian distribution (Yang et al., 2002).

However, when the system encounters sudden disturbances, the

Kalman filter may not respond promptly to changes in the state of

the system and adjust the estimates quickly, resulting in a certain

degree of latency. This latency arises from the Kalman filter’s

reliance on prediction and update mechanisms, which makes it

difficult to capture rapid system changes in real-time (Karlgaard

and Shen, 2013). When facing sudden disturbances, the filter may

require some time to “adapt” to the new system state, leading to

temporary degradation in the estimation accuracy. Especially in

shipborne satellite navigation systems, when the received

electromagnetic signals are interfered with, the state estimation in

the signal-tracking loop may deviate significantly from the actual

conditions. This deviation not only affects navigation accuracy but

also severely weakens the robustness of the system. As a result, the

navigation system can become unstable in complex electromagnetic

environments or under harsh operating conditions. This instability

may ultimately compromise safe and reliable navigation. Therefore,

to enhance the anti-jamming capabilities and robustness of the

navigation system, it is crucial to propose appropriate optimization

strategies to address this latency issue. These strategies should

ensure that the system can quickly adjust and restore normal

operation when sudden disturbances occur.

To achieve accurate prediction of state variables in the signal

loop and reduce the sensitivity of the system state estimation under

signal interference, this study implements targeted improvements

to the traditional KF system. Specifically, a DDF is introduced to

optimize the signal tracking loop, thereby enhancing the system’s

performance and stability in complex electromagnetic

environments (Karlgaard and Schaub, 2007).
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The principle of the DDF is based on predicting the system state by

observing the changes between the current measurement and previous

measurement (Xia et al., 2022). The core idea of this process is

differential processing, which involves modeling changes in the

system state rather than relying directly on absolute state values. This

method effectively removes noise and random interference, thereby

improving the prediction accuracy and system stability. In practical

applications, the advantage of the DDF filter lies in its ability to quickly

respond to changes in the system state, particularly when faced with

sudden disturbances. By using differential processing, the system can

effectively suppress the impact of interference on state estimation. In

addition, the DDF filter operates recursively during its usage, which

makes it particularly suitable for systems that require real-time

performance and high accuracy.

The proposed KF-DDF signal-loop filter introduces backward

differential filtering after forward filtering. This step further refines the

observation vector. Backward differential filtering effectively eliminates

or suppresses high-frequency noise. Thus enhances the noise

suppression and signal tracking capabilities of the system by analyzing

changes in the signal without relying heavily on the system model.

Additionally, the filter can capture and correct errors in the system

better, significantly improving the accuracy of the prediction results.
2.2 Design of forward KF filter

In the operation of the KF-DDF carrier and pseudo-code joint

signal-loop filter, the process starts with forward KF filtering. The

design of the mathematical model is as follows. In the designed

signal-tracking loop system model, Xi
KF represents a four-

dimensional observation vector consisting of the pseudo-code

phase error Dri (rad), carrier phase error Ds i (chips), carrier

frequency error Df i (Hz), and carrier frequency rate error D _f i

(Hz/s). Zi
KF represents a two-dimensional measurement vector

consisting of the average pseudo-code phase error Dri and

average carrier phase error Ds i. The system model in the discrete

state can be simplified as follows (Sun et al., 2014; Yang et al., 2021)

(Equations 1–4).

Xi
KF,k = FKF,k=k−1X

i
KF,k−1 +Wi

KF,k (1)

Zi
KF,k = HKF,kX

i
KF,k + Vi

KF,k (2)

Xi
KF = ½Dri,Ds i,Df i,D _f i� (3)

Zi
KF = ½Dri Ds i �T (4)

In the mathematical model of the system (Equation 1), FKF

represents the system’s state transitionmatrix for one step,WKF is the

system’s noise vector, HKF is the system’s measurement matrix, and

VKF is the measurement noise vector (Equation 2). Typically, both the

system noise WKF and measurement noise VKF are zero-mean

Gaussian white noise, following a normal distribution. In addition,

the notation i in the formula represents the current number of
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https://doi.org/10.3389/fmars.2025.1572695
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wu et al. 10.3389/fmars.2025.1572695
satellite tracking channels being processed. These physical quantities

can be abstractly described as follows (Heyne, 2007; Tripathy et al.,

2010) (Equations 5–8):

FKF =

1 0 bT 1
2 bT

2

0 1 2pT pT2

0 0 1 T

0 0 0 1

2
666664

3
777775 (5)

HKF =
1 0 − 1

2 bT
1
6 bT

2

0 1 −pT 1
3 pT

2

" #
(6)

E½WKF,k�¼ 0      E½WKF,k(WKF,k)
T � = QKF,k (7)

E½VKF,k� = 0      E½VKF,k(VKF,k)
T � = RKF,k (8)

where (Equations 5, 6), the coefficient b = fcode=fcarrier = 1=1540

represents the conversion factor from carrier cycles to code chips,

and T denotes the update interval of the signal loop filter data. QKF,k

represents the system noise matrix (Equation 7) and RKF represents

the noise measurement matrix for the current channel (Equation 8).

The average values of the carrier phase error and pseudo-code

phase error are output by the carrier/code loop discriminator, and

can be described as (Equations 9, 10):

D�ri =
1
2
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IE

2 + QE
2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IL

2 + QL
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IE

2 + QE
2

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IL2 + QL

2
p ) (9)

Ds = tan�1 (Qp=Ip) (10)

where, IE ,QE , IP ,QP , IL, andQL represent the coherent integration

values in the I and Q branches of the signal tracking channel allocated

to each satellite, corresponding to the early, prompt, and later codes,

respectively. These values are used to measure the phase and frequency

errors by comparing the different phases of the received signal with the

local reference signal, thereby enabling a more accurate estimation and

correction of the system state.

Next, the system adjusts the measurement noise in the forward

Kalman filtering process in real time based on the Carrier-to-Noise

Ratio (CNR) values of each signal tracking channel, thereby

improving the tracking accuracy of the signal. The mathematical

model can be expressed as (Equations 11, 12):

Ri
KF,k =

Ri
Dri 0

0 Ri
Ds i

" #
(11)

Ri
Dri = f2

Dri · t =
d0t

4tC=N0
i (1 + 2

(2−d0)tC=N0
i )

Ri
Ds i = f2

Ds i · t = t
2tC=N0

i (1 + 1
2tC=N0

i )

8<
: (12)

where the noise measurement matrix for the current channel

Ri
KF comprises Ri

Dri and Ri
Ds i . Specifically, Ri

Dri and Ri
Ds i are the

covariance matrices output by the pseudo-code loop discriminator

and carrier loop discriminator, respectively. Where t is the duration

of coherent integration and d0 is the chip width, equal to 0.5 chips.
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Based on the established system mathematical model, the update

process of the forward Kalman filter in linear discrete form can be

expressed as (Equation 13):

X̂ i
KF,k=k−1 = FKF,k=k−1X̂

i
KF,k−1

Pi
KF,k=k−1 = FKF,k=k−1P

i
KF,k−1F

T
KF,k=k−1 + Qi

KF,k

Ki
KF,k = Pi

KF,k−1H
T
KF,k(HKF,kP

i
KF,k−1H

T
KF,k + Ri

KF,k)

X̂ i
KF,k = X̂ i

KF,k−1 + Ki
KF,k(Z

i
KF,k − HKF,kX̂

i
KF,k=k−1)

P̂ i
KF,k = (I4�4 − Ki

KF,kHKF,k)P
i
KF,k=k−1

8>>>>>>>>>><
>>>>>>>>>>:

(13)

where X̂ i
KF,k−1 represents the system state estimate and Zi

KF,k

represents the system measurement at time k.
2.3 Design of backward DDF filter

After completing the forward filtering process, to improve

accuracy and enhance system robustness, the proposed method

uses the state prediction results and updated measurement noise

matrix as initial values for backward filtering estimation. The specific

mathematical model is as follows. The following discrete system is

analyzed (Subrahmanya and Shin, 2009) (Equations 14, 15):

Xi
DDF,k−1 = F(Xi

DDF,k,w
i
DDF,k, k) (14)

Yi
DDF,k = G(Xi

DDF,k, v
i
DDF,k, k) (15)

Similar with the forward Kalman filtering process, Xi
DDF is a 4-

dimensional state vector, wi
DDF is the system process noise vector,

and viDDF is the measurement noise vector. The subscript DDF

indicates that the current process is backward divided difference

filtering and i represents the satellite channel being tracked.

In this process, both the system process noise and measurement

noise are uncorrelated Gaussian white noise, and their

mathematical expectations and covariance matrices can be

expressed as (Equations 16, 17):

E½wi
DDF,k� = �wi

DDF,k D½(wi
DDF,k − �wi

DDF,k)(w
i
DDF,k − �wi

DDF,k)
T �

= Qi
DDF,k (16)

E½viDDF,k� = �viDDF,k  D½(viDDF,k − �viDDF,k)(v
i
DDF,k − �viDDF,k)

T �

= Ri
DDF,k (17)

Cholesky matrix decomposition is introduced in the calculation

process, and the formulas for decomposing the covariance matrices

are as follows (Equations 18, 19):

Pi
DDF,k = SiXDDF

(SiXDDF
)T (18)

Qi
DDF,k = SiwDDF

(SiwDDF
)T (19)

The formulas for the state prediction and its predicted

covariance matrix X̂ i
DDF,k−1=k and Pi

DDF,k−1=k in the filtering

process are as follows (Equations 20, 21):
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X̂ i
DDF,k−1=k = F(X̂ i

DDF,k,w
i
DDF,k, k) (20)

Pi
DDF,k−1=k = SiXDDF

(k − 1)(SiXDDF
(k − 1))T (21)

w h e r e ( E q u a t i o n 2 1 ) , SiXDDF
(k − 1) = ½

Si
XDDF X̂ DDF

(k − 1) SiXDDFwDDF
(k − 1) �, Si

XDDF X̂ DDF
(k − 1) and SiXDDFwDDF

(k

−1) aare equal to (Li et al., 2019) (Equations 22, 23):

SiXDDF X̂DDF
(k − 1) =

1
2h

½F(X̂ i
DDF,k + hSiXDDF ,j, �wDDF,k)

− F(X̂ i
DDF,k − hSiXDDF ,j, �wDDF,k)�

(22)

SiXDDFwDDF
(k − 1) =

1
2h

½F(X̂ i
DDF,k,wDDF,k + hSiwDDF ,j)

− F(X̂ i
DDF,k,wDDF,k − hSiwDDF ,j)�

(23)

In the above equations, SiXDDF ,j and SiwDDF ,j represent the column

of matrices SiXDDF
and SiwDDF

, respectively. In addition, h represents

the differential step size for each step. The system typically follows a

gaussian distribution, typically h =
ffiffiffi
3

p
(Xia et al., 2022).

In the signal loop tracking process, the system’s process noise is

additive noise; therefore, the covariance matrix can be simplified as

(Equation 24):

Pi
DDF,k−1=k = SiXDDF X̂ DDF

(SiXDDF X̂ DDF
)T + Qi

DDF,k−1 (24)

Next, the covariance matrix of the measurement noise is

decomposedusingCholeskydecomposition, expressedas (Equation25):

Ri
DDF,k−1 = SivDDF (S

i
vDDF )

T (25)

Similarly, the prediction of the observation vector and its

covariance matrix is updated as (Equations 26, 27):

Ŷ i
DDF,k−1=k = G(X̂ i

DDF,k−1=k, v
i
DDF,k−1, k = 1) (26)

Pvv
DDF,k−1

i = SiYDDF
(SiYDDF

)T

= ½ SiYDDF X̂ DDF
SiYDDFvDDF � · ½ SiYDDF X̂ DDF

SiYDDFvDDF �T (27)

where (Equation 27), Si
YDDF X̂ DDF

and SiYDDFvDDF are (Equations 28,

29):

SiYDDF X̂ DDF
=

1
2h

½G(X̂ i
DDF,k−1=k + hSiXDDF ,j, vDDF,k−1)

− G(X̂ i
DDF,k−1=k − hSiXDDF ,j, vDDF,k−1)�

(28)

SiYDDFvDDF =
1
2h

½G(X̂ i
DDF,k−1=k, vDDF,k−1 + hSiXDDF ,j)

− G(X̂ i
DDF,k−1=k, vDDF,k−1 − hSiXDDF ,j)�

(29)

The final expressions for Pvv
k−1

i and PXY
k−1

i can be simplified as

follows (Equations 30, 31):

Pvv
DDF,k−1

i = SiYDDF X̂ DDF
(SiYDDF X̂ DDF

)T + Ri
DDF,k−1 (30)

PXY
DDF,k−1

i = SiXDDF
(SiYDDF X̂ DDF

)T (31)
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Finally, the status update process is as follows (Equations 32–

34):

Ki
DDF,k−1 = PXY

DDF,k−1
i(Pvv

DDF,k−1
i)−1 (32)

X̂ i
DDF,k−1 = X̂ i

DDF,k−1=k + Ki
DDF,k−1(Y

i
DDF,k−1 − Ŷ i

DDF,k−1=k) (33)

P̂ i
DDF,k−1 = Pi

DDF,k−1=k − Ki
DDF,k−1P

vv
DDF,k−1

i(Ki
DDF,k−1)

T (34)

In the process of backward filtering, we use the one-step updated

state from the forward Kalman filter and adaptively computed system

noise matrix to achieve higher system error sensitivity and improved

reliability under interference conditions. After backward filtering is

completed, the next step is to perform data fusion.
2.4 Bidirectional filter smooth algorithm

Data fusion after bidirectional filtering aims to obtain a more

accurate and stable state estimation by combining the results of forward

and backward filters. In the data-fusion process, the two prediction

results are weighted and averaged to further correct and optimize the

system state, resulting in a globally optimal state estimate. This process

helps eliminate errors and delay effects in forward filtering, allowing the

system to better capture dynamic changes in the current state.

Especially in complex environments, such as when faced with

sudden system noise or strong interference, the fusion of the

bidirectional filter results can effectively suppress the impact of noise

and improve the robustness and stability of the system, ensuring that

the system maintains efficient operation under challenging conditions.

The data processing procedure is illustrated in Figure 2.

The mathematical model is as follows (Equations 35–37). The

results of forward and backward filtering are jointly considered, and

the global optimal estimates X̂ i
S,k and P̂

i
S,k are obtained through data

fusion. The calculation formulae are as follows (Chen et al., 2021):

Ei
KF,k = (P̂ i

KF,k)
�1

Ei
DDF,k−1 = (P̂ i

DDF,k−1)
�1

(
(35)

Ei
S,k = (Ei

KF,k + Ei
DDF,k)

−1 (36)

X̂ i
S,k = Ei

S,k(E
i
KF,kX̂

i
KF,k + Ei

DDF,k−1X̂
i
DDF,k−1) (37)

Finally, the updated global optimal solution is fed back into the

carrier and pseudocode tracking loops.
3 Experiments and analysis

3.1 Experiment description

To validate the effectiveness of the loop tracking method proposed

in this study and quantitatively evaluate and analyze its performance,

we designed and conducted a series of navigation experiments in real-

world scenarios. The primary objective of these experiments was to
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verify the superiority of the proposed method in improving the signal

tracking accuracy, enhancing the anti-interference capability, and

increasing the system robustness. Additionally, by comparing its

performance with different methods, the experiments aimed to

further quantify the improvements achieved. The data acquisition

and processing platform used in the experiment is shown in Figure 3.

In the experiment, we selected a rubber boat as the platform to

carry the experimental equipment, simulating the motion and

operational scenarios of a shipborne platform under real-world

conditions. The experimental equipment included a specialized

receiver for collecting GPS intermediate frequency (IF) signals, high-
Frontiers in Marine Science 07
precision navigation receiver module for real-time measurement and

recording of positioning information, two full-band measurement

antennas, and laptop for data storage and processing. This setup not

only meets the requirements of the experiment for signal acquisition,

but also provides comprehensive support for subsequent data analysis

and processing, ensuring the reliability and accuracy of the

experimental results. The performance parameters of the equipment

are presented in the Table 1.

In the experiment, we selected a river with a moderate width

and a complex environment to simulate the operating status of

ships in actual navigation. There are many bridges above the river in
E 2FIGUR

Data smooth processing flow.
FIGURE 3

Shipborne experimental platform.
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the experimental route. These bridges not only serve as a

reproduction of the actual scene but also play the role of satellite

signal obstructions in the experiment, which can effectively simulate

the obstruction and multipath effects in the signal propagation path.

By conducting experiments in such an environment, we can

comprehensively test the navigation accuracy and robustness of

different algorithm systems in complex environments. In addition,

the experiment simulated the changes in signal quality under

different degrees of obstruction by blocking the signal with

bridges of different widths to evaluate the adaptability and

performance of each system under harsh signal conditions,

thereby providing valuable reference data for practical
Frontiers in Marine Science 08
applications. The experimental trajectory is shown in Figure 4.

Specific scenarios of bridge obstructions are shown in Figures 5A-D.

The total length of the experimental path was 900 meters. During

the experiment, multiple bridges were crossed with widths of

approximately 57.31 meters, 20.74 meters, 13.26 meters, and 12.65

meters, respectively. During the experimental phase, the rubber boat

maintained a constant speed along the planned navigation trajectory.

This setup was designed to continuously collect navigation data and

to simulate the dynamic conditions of a shipborne platform during

real-world operations. During the experiment, navigation data

recorded by a high-precision Trimble BD-992 GNSS receiver was

used as the reference trajectory. These data were compared with

trajectories derived from different algorithms to evaluate the

navigation accuracy and performance of each method. The entire

experiment lasted for approximately 550 s.
3.2 The analysis of signal tracking loops

The number of interference-free satellite signals recorded

during the experiment is shown in Figure 6. This figure illustrates

the variation in the number of satellites captured by the receiver at

different time points, allowing for intuitive observation of how

signal occlusion and multipath effects impact satellite visibility and

navigation accuracy. When there is a bridge obstruction, the

number of interference-free satellite signals drops sharply, which

leads to a rapid decrease in the accuracy of the navigation system,

thereby affecting the reliability of the system.

In the initial stage of the experiment, six GPS satellites were

successfully acquired based on the elevation angle and signal-to-noise
TABLE 1 Devices parameters.

Equipment
type

Parameter Value
Sampling
frequency

Reference GNSS
Receiver
(Trimble BD-992)

Horizontal Position
Accuracy

0.25m

10Hz

Vertical Position
Accuracy

0.5m

Horizontal Velocity
Accuracy

0.007m/
sec

Vertical Velocity
Accuracy

0.020m/
sec

IF signal collector GPS L1 C/A 3.996MHz 1000Hz

Antennas

Gain 38 ± 2dB

/
Polarization Mode

Right-
handed
FIGURE 4

Experimental trajectory.
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ratio conditions, which served as the basis for the subsequent signal-loop

tracking process. The satellite acquisition results are shown in Figure 7.

CNR is a direct parameter that measures the quality of the

satellite signal received by the navigation receiver. By representing

the ratio of the satellite signal’s strength to the noise density, CNR is

an essential parameter for evaluating the reliability of the satellite

navigation system and the performance of the signal-tracking loops.

As shown in Figure 8, the CNR results obtained throughout the

experiment illustrate the signal quality of the captured satellites.
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Under complex environmental conditions, variations in the CNR

reveal the effects of signal blockage, multipath interference, and

electromagnetic disturbances, providing valuable insights for

optimizing navigation systems. Figure 8 shows the dynamic

changes in signal quality during the entire experiment.

As shown in Figure 8, it is evident that when the rubber boat

passes under bridges with signal obstruction, the CNR of the

satellite signals quickly drop below to 30 dB-Hz. This indicates

that the signal quality received by the receiver deteriorates
FIGURE 5

Four signal obstruction areas in the experimental scenario. (A) Bridge Obstruction Scenario 1. (B) Bridge Obstruction Scenario 2. (C) Bridge
Obstruction Scenario 3. (D) Bridge Obstruction Scenario 4.
FIGURE 6

Number of interference-free satellite signals.
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significantly owing to the severe obstruction. Under such

conditions, the navigation system may face difficulties in tracking

and may even risk losing the signal.

To further analyze the impact of environmental obstructions

and other factors on the pseudocode and carrier signals, as well as

their relationship with navigation accuracy, Figure 9 illustrates the

loop tracking performance of the PRN6 satellite during the
Frontiers in Marine Science 10
experiment. The single tracking conditions of the other satellites

are similar and are not detailed here. The comparison includes the

traditional STL, traditional VTL, Kalman filter-based VTL

algorithm, and method proposed in this study to evaluate the

performance of each method.

Figure 9 illustrates the signal loop-tracking performance of the

PRN6 GPS satellite. As shown in the figure, the tracking accuracy of
FIGURE 7

The acquisition result of satellite signals.
FIGURE 8

The result of CNR during the experiment.
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the carrier and code in the traditional STL and VTL algorithms are

significantly affected under signal interference conditions. In

particular, the traditional STL method experiences a gradual

divergence in the carrier and code phase errors when subjected to

severe signal obstruction. This accumulation of errors leads to

frequency tracking deviations, ultimately causing a signal loss of

lock at 241 s.

This observation highlights the limitations of the STL method in

handling signal interference in complex environments, whereas vector

tracking methods demonstrate certain advantages under challenging

and interference-prone conditions. Because of the loss-of-lock

phenomenon observed with the STL, subsequent experimental

analysis excludes discussions on the STL signal loop performance.

In addition, throughout the experiment, the method proposed

in this paper demonstrated higher signal tracking accuracy and

stronger signal loop stability when facing interference compared

with other methods. When encountering a signal blockage or

complex environmental interference, traditional methods often

experience a sharp decline in tracking accuracy or even signal

loss. Although the VTL method based on the Kalman filter (KF-

VTL) has significantly improved performance, it still has a

significant decline in accuracy when the signal is blocked. In

contrast, the proposed method can consistently maintain a high

tracking accuracy and ensure the stability of the signal loop, even

under significant interference. This provides a solid foundation for

achieving stable high-precision navigation.
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3.3 Positioning optimization results

The shipborne experimental navigation and positioning results

are shown in Figure 10. In this experiment, the high-precision

GNSS navigation receiver Trimble BD992 was used to generate the

reference trajectory, which is represented by the black line in the

figure. To evaluate the positioning performance of different

methods comprehensively, the experiment compared the results

of the traditional STL, traditional VTL, Kalman Filter based VTL

method (KF-VTL), and KF-DDF-based VTL method proposed in

this study. From the figure, it can be intuitively observed that the

performance of the different methods in terms of navigation

accuracy shows significant differences. The traditional STL and

VTL methods are easily affected by signal interference and

blockages in complex environments, resulting in deviations and

accuracy divergence in the positioning results. In particular, the

traditional STL method experienced signal loss during the

experiment, resulting in an inability to provide positioning

results. Although the KF-based VTL method improves

performance, it still shows a noticeable drop in accuracy under

signal blockage conditions. In contrast, the KF-DDF-based VTL

method proposed in this study demonstrated significant advantages

by consistently providing stable and high-accuracy navigation and

positioning results throughout the experiment, effectively

overcoming the negative impacts caused by signal interference

and blockage.
FIGURE 9

The signal loop tracking results of PRN6. (A) Carrier phase error of PRN 6, (B) Code phase error of PRN 6, (C) Carrier tracking frequency of PRN 6,
(D) Code phase tracking of PRN 6.
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The velocity results of the different methods under signal

obstruction conditions for the experimental rubber boat are

shown in Figure 11. It can be observed from the figure that at 47

s in the experiment, the rubber boat passed under a bridge where

the satellite signals experienced significant obstruction and

interference, causing a rapid decline in the navigation solution

performance of the traditional STL method. Starting at 50 s, the

velocity results began to diverge, exhibiting a noticeable instability.

This divergence indicates that the signal-tracking loop fails to

maintain accurate tracking under obstructed and interfered

conditions. Furthermore, owing to continuous signal obstruction,
Frontiers in Marine Science 12
the signal tracking loop of the traditional STL method completely

loosed lock at 241 s, making it incapable of continuing to track

satellite signals. This results in the failure of the navigation system,

and the speed solution outcomes lose all reference values.

The traditional VTL method exhibits significant velocity errors

in weak signal environments, particularly when signals are

obstructed or interfered with, resulting in noticeable instability in

the velocity outcomes. The KF-based VTL method improves the

velocity measurement accuracy compared with traditional methods

and mitigates the impact of signal interference. However, under

prolonged weak signals or severe obstructions, the velocity results
RE 10FIGU

Comparison of position results with different methods. (A) Overall diagram, (B) Zoomed-in diagram.
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still showed a decline in accuracy. In contrast, the proposed KF-

DDF based VTL method demonstrates the best velocity calculation

accuracy among all the compared methods. Even in weak signals or

obstructed environments, this method effectively reduces the

impact of signal interference on the navigation system, providing

more stable and accurate velocity results. This highlights the

excellent system robustness and ability to adapt to complex
Frontiers in Marine Science 13
environments, further validating the superior performance of the

proposed method in high-precision navigation applications.

The position and velocity errors are presented in Figures 12, 13,

respectively. From the results, it can be observed that the traditional

STL is severely affected in signal blockage environments, leading to

a signal loss of lock. This causes a significant increase in the position

and velocity errors, far exceeding the normal error range of the
FIGURE 11

Comparison of velocity results with different methods.
FIGURE 12

Horizontal position errors.
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tracking loop. At this point, the navigation system based on

traditional STL can no longer function properly.

Compared to traditional VTL and KF-VTL, the proposed KF-

DDF based VTL method demonstrates significant advantages in

terms of position and velocity accuracy. Specifically, the proposed

method improves the position accuracy by 90.33% compared to the

traditional VTL method and by 83.20% compared to the KF-based

VTL method. In terms of velocity accuracy, it achieves an

improvement of 96.83% over the traditional VTL method and

60.0% over the KF-based VTL method. The navigation error

results of the four comparison methods are presented in Table 2;

Figures 14, 15. These results indicate that the proposed method can

effectively overcome the adverse effects of signal blockages and
Frontiers in Marine Science 14
interference in complex environments, thereby significantly

improving the accuracy of the navigation system and

demonstrating higher robustness and stability.
3.4 Positioning experiment under ocean
navigation

In the marine navigation experiment, a satellite signal

reception scenario from an ocean-going vessel during its voyage

was selected as the test subject, with 600 consecutive seconds of

data extracted for analysis and evaluation. Through practical

marine environment experiments, the performance of the

proposed method in shipborne navigation applications can be

directly and effectively evaluated. Similarly, the experiment

compared several commonly used navigation signal tracking

methods, including the traditional scalar tracking (STL) method,

the traditional vector tracking (VTL) method, the FKF-VTL

method, and the proposed FK-DDF based VTL method. The

experimental path is shown in Figure 16.

The acquisition results of GPS navigation satellites in this

experiment are shown in Figure 17, with signals from a total of 8

satellites successfully captured. The signal loop tracking conditions

of satellites PRN6 and PRN11 were selected for analysis, as shown

in Figures 18, 19. It is evident that the satellite signals maintained
FIGURE 13

Horizontal velocity errors.
TABLE 2 Results of four different methods.

Method

Horizontal position
(m)

Horizontal velocity
(m/s)

RMSE Max error RMSE Max error

STL 39357.56 62071.77 5.37 236.99

VTL 14.99 152.12 3.78 31.58

KF-VTL 8.63 55.47 0.30 2.36

KFDDF-VTL 1.45 4.61 0.12 1.27
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stable reception throughout the entire experiment, and the system

rapidly achieved signal loop tracking shortly after the experiment

commenced. In addition to traditional scalar tracking methods,

vector tracking schemes also demonstrated superior signal tracking
Frontiers in Marine Science 15
performance. Through this comparative experiment, the navigation

accuracy performance of different methods can be further evaluated

under both ideal satellite signal reception conditions and real-world

marine signal environments.
RE 14FIGU

Horizontal position error bar chart.
FIGURE 15

Horizontal velocity error bar chart.
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As illustrated in Figures 20, 21, the comparative analysis of

positioning and velocity results demonstrates the performance of

different navigation methods, with corresponding error metrics

calculated and tabulated in Table 3. The error bar chart is plotted
Frontiers in Marine Science 16
as shown in Figures 22, 23. The results clearly indicate that under

favorable signal conditions, the proposed method maintains

consistently higher navigation accuracy compared to the other

three methods.
FIGURE 16

Experimental trajectory.
FIGURE 17

The acquisition result of satellite signals.
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FIGURE 18

The signal loop tracking results of PRN 6. (A) Carrier phase error of PRN 6, (B) Code phase error of PRN 6, (C) Carrier tracking frequency of PRN 6,
(D) Code phase tracking of PRN 6.
FIGURE 19

The signal loop tracking results of PRN 11. (A) Carrier phase error of PRN 11, (B) Code phase error of PRN 11, (C) Carrier tracking frequency of PRN
11, (D) Code phase tracking of PRN 11.
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FIGURE 20

Comparison of position results with different methods.
FIGURE 21

Comparison of velocity results with different methods.
TABLE 3 Results of four different methods.

Method
Horizontal position (m) Horizontal velocity (m/s)

RMSE Max error RMSE Max error

STL 19.372425 66.066718 0.327722 5.029268

VTL 7.802011 25.642542 0.039278 0.139945

KF-VTL 7.802258 25.653543 0.039277 0.139926

KFDDF-VTL 3.870023 8.611071 0.018638 0.067297
F
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4 Conclusion and discussion

In this study, an improved bidirectional filter VTL method

based on the fusion of Kalman filter and Divided Difference filter is

proposed to solve the problem of signal interference and occlusion
Frontiers in Marine Science 19
in satellite navigation systems in complex environments. The loop

filter mathematical model of the proposed method is derived in

detail, and the effectiveness of the proposed method is verified by

actual ship experiments. Compared with the navigation accuracy of

traditional VTL and KF-based VTL, the proposed method
FIGURE 22

Horizontal position error bar chart.
FIGURE 23

Horizontal velocity error bar chart.
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improved the horizontal position accuracy by 90.33% compared

with traditional VTL and 83.20%, KF-based VTL. The horizontal

velocity accuracy was improved by 96.83% and 60.0%, respectively.

Moreover, this paper conducted an experiment on shipborne

navigation systems in a marine environment, which fully

validated the effectiveness of the proposed method.

In addition, the KF-DDF based VTL method effectively

maintained the stability of the signal-tracking loop in weak signal

and interference environments. The experimental results showed

that this method significantly improved the accuracy, robustness,

and anti-interference capability of navigation systems, thereby

providing reliable technical support for the development of

high-precision shipborne navigation systems in complex

sailing environments.
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