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Underwater 3D reconstruction is essential for marine surveying, ecological

protection, and underwater engineering. Traditional methods, designed for air

environments, fail to account for underwater optical properties, leading to poor

detail retention, color reproduction, and visual consistency. In recent years, 3D

Gaussian Splatting (3DGS) has emerged as an efficient alternative, offering

improvements in both speed and quality. However, existing 3DGS methods

struggle to adaptively adjust point distribution based on scene complexity,

often resulting in inadequate detail reconstruction in complex areas and

inefficient resource usage in simpler ones. Additionally, depth variations in

underwater scenes affect image clarity, and current methods lack adaptive

depth-based rendering, leading to inconsistent clarity between near and

distant objects. Existing loss functions, primarily designed for air environments,

fail to address underwater challenges such as color distortion and structural

differences. To address these challenges, we propose an improved underwater

3DGaussian Splattingmethod combining complexity-adaptive point distribution,

depth-adaptive multi-scale radius rendering, and a tailored loss function for

underwater environments. Our method enhances reconstruction accuracy and

visual consistency. Experimental results on static and dynamic underwater

datasets show significant improvements in detail retention, rendering accuracy,

and stability compared to traditional methods, making it suitable for practical

underwater 3D reconstruction applications.
KEYWORDS

underwater 3D reconstruction, 3D Gaussian Splatting, water-adapted rendering,
dynamic underwater scenes, ocean observation
1 Introduction

In recent years, underwater scene analysis has attracted increasing attention. A variety

of methods have been proposed to address the challenges of underwater image processing,

such as underwater image captioning (Li et al., 2025) and underwater image enhancement

empowered by large foundation models (Wang et al., 2025). However, with the
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development of the field, underwater 3D reconstruction has become

a crucial research direction due to its ability to provide

comprehensive spatial information for underwater scene

understanding. High-precision 3D reconstruction technology can

support tasks such as seabed topography mapping, marine habitat

assessment, and underwater facility inspection, providing accurate

spatial data for marine scientific research and engineering (Hu et al.,

2023; Cutolo et al., 2024). In underwater environments, realtime 3D

reconstruction technology can also assist operators in better

identifying and locating target areas during remote monitoring or

robotic operations, significantly enhancing operational efficiency.

However, the unique optical characteristics of underwater

environments present significant challenges to imaging and 3D

reconstruction. The propagation of light in water is strongly

influenced by absorption and scattering, leading to image blurring

and severe color distortion. Light of different wavelengths attenuates

at varying rates, with red and yellow wavelengths disappearing

rapidly in shallow water (Lin et al., 2024a), significantly

complicating color restoration. As water depth increases, the light

attenuation effect becomes more pronounced, further reducing image

contrast and clarity, affecting object visibility and detail retention (Jia

et al., 2024). In addition, dynamic objects introduce further

challenges to 3D reconstruction. Their movement, shape changes,

and lighting fluctuations cause variations in the image’s geometric

structure and lighting, which hinder object recognition and detail

preservation (Hua et al., 2023; Rout et al., 2024). Especially around

fast-moving or changing objects, traditional underwater

reconstruction methods struggle to accurately extract and match

the features of these objects, leading to blurred, distorted, or

unrealistic reconstruction results. Therefore, effectively handling

dynamic objects under the influence of complex optical effects,

particularly in preserving their details, is a significant challenge in

underwater 3D reconstruction.

In recent years, Neural Radiance Fields (NeRF) methods have

made significant progress in 3D reconstruction and novel view

synthesis (Mildenhall et al., 2021). NeRF is a deep learning-based

method that generates high-quality images from different

viewpoints by modeling the scene’s density and color distribution.

Using a multi-layer perceptron (MLP), NeRF encodes the

viewpoint, position, and lighting information of each point in the

scene to synthesize realistic images. However, its high

computational complexity and training costs limit its use in real-

time applications, especially in resource-constrained environments,

where its efficiency and flexibility are significant challenges.

To address these inefficiencies, the 3D Gaussian Splatting

method was proposed as a more efficient alternative (Kerbl et al.,

2023). By representing the scene as a series of Gaussian distribution

points, 3DGS eliminates the need for NeRF ’s implicit

representation, resulting in faster rendering and greater editing

flexibility. However, current 3DGS methods are less effective in

underwater environments. The optical properties of water cause

significant imaging differences between near and distant objects,

and 3DGS lacks depth-adaptive rendering adjustments, leading to

poor visual consistency in underwater scenes with large depth

variations. Moreover, these methods, typically based on air
Frontiers in Marine Science 02
environment imaging assumptions, fail to address color shifts and

detail loss in underwater scenes, making it difficult to restore

realistic effects in underwater 3D reconstructions. These

limitations hinder the effectiveness of 3DGS for high-precision

underwater applications, particularly in marine engineering.

To address these issues, this paper proposes an improved

underwater 3D Gaussian Splatting method, as shown in Figure 1,

which effectively enhances detail retention and visual consistency of

underwater scenes by combining complexity-adaptive distribution,

depthadaptive multi-scale rendering, and a loss function specifically

designed for underwater environments. Specifically, the main

contributions of this paper include:
• Proposing a complexity-based Gaussian point

distribution optimization method: This method utilizes

gradient complexity information from images to adaptively

adjust the density distribution of Gaussian points, ensuring

sufficient reconstruction in detail rich areas while reducing

computational power consumption in simpler regions.

• Constructing a depth-adaptive multi-scale radius

rendering strategy: This strategy adaptively adjusts the

Gaussian point radius factor based on the scene pixel

depth, achieving high-resolution rendering for nearby

objects and blurring for distant water, thus enhancing the

visual consistency of the rendering results.

• Designing a loss function optimized for underwater

reconstruction: This function combines regularized L1

loss, regularized SSIM loss, and LPIPS perceptual loss,

which significantly improves color restoration and

structural detail performance in underwater images.
We evaluated the proposed method on the static underwater

dataset SeaThru-NeRF (Levy et al., 2023) and the dynamic

underwater dataset In-the-wild (Tang et al., 2024). Experimental

results demonstrate that, compared to existing NeRF and 3DGS-

based methods, the proposed approach offers significant advantages

in detail retention, rendering efficiency, and visual consistency,

highlighting its effectiveness and superiority in practical

underwater 3D reconstruction applications.
2 Related work

2.1 Challenges in underwater imaging and
3D reconstruction

The unique optical characteristics of underwater environments,

including light absorption, scattering, and wavelength-dependent

attenuation, significantly affect imaging quality, presenting a severe

challenge to the accuracy and effectiveness of underwater 3D

reconstruction (Li et al., 2024a). Additionally, the heterogeneity of

the underwater environment causes significant variations in the

complexity of imaging regions, making it difficult for traditional 3D

reconstruction methods to balance detail preservation and resource

utilization efficiency.
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Traditional underwater imaging and 3D reconstruction

methods typically rely on physical models, using color correction

and depth-dependent light compensation to improve image quality.

For example, some studies estimate light attenuation coefficients

based on underwater optical models to correct the color of

underwater images (Lin et al., 2024b).

However, traditional physics-based methods often require

accurate optical parameters for the water body, making it difficult

to adapt to dynamic and complex underwater environments.

Furthermore, these methods lack applicability in diverse

underwater scenes, particularly in environments with

continuously changing lighting conditions and water quality,

making it challenging to maintain stable imaging quality (Zhang

et al., 2024a).
2.2 NeRF-based underwater 3D
reconstruction methods

NeRF uses a multi-layer perceptron (MLP) to model the

relationship between viewpoint, position, and color density,

achieving high-quality view synthesis (Zhang et al., 2024b).

However, the base model of NeRF was primarily designed for air

environments and does not account for optical characteristics in

underwater environments, such as light attenuation and scattering

effects, leading to limitations when directly applied to

underwater scenes.

To address this issue, Deborah Levy et al. proposed SeaThru-

NeRF, which combines underwater optical models with NeRF to

compensate for underwater light attenuation characteristics,

enabling NeRF to better adapt to color restoration and detail

retention in underwater images (Levy et al., 2023). SeaThru-NeRF

estimates light attenuation using physical models, improving the

blue-green shift in underwater images and making significant

progress in color correction and detail restoration.

However, the performance of SeaThru-NeRF is still limited by

depth information and optical models, and its effectiveness remains

unstable in complex underwater environments. To further improve

the applicability of NeRF in underwater environments, WaterNeRF

(Sethuraman et al., 2023) combines physical models and data-

driven methods, dynamically modeling light attenuation and

scattering effects, achieving more stable color restoration and

scene detail representation. WaterNeRF not only provides higher

visual consistency in underwater scenes with large depth variations

but also further optimizes scene clarity through network training.
2.3 3D Gaussian Splatting and its progress
in underwater applications

NeRF-based underwater 3D reconstruction methods have made

significant progress in detail retention and visual quality. However,

their high computational complexity and sensitivity to data limit

their efficiency and applicability in practical scenarios. Deep

learning-based underwater NeRF methods typically require large
Frontiers in Marine Science 03
amounts of labeled data, with both training and rendering being

time-consuming, creating bottlenecks in real-time underwater

monitoring and surveying applications (Zhou et al., 2025). To

improve the computational efficiency of 3D reconstruction, the

3DGS method has emerged in recent years. 3DGS explicitly

represents the scene as a point cloud of Gaussian distributions,

enabling efficient rendering and detail representation. Compared to

NeRF’s implicit representation, this method significantly reduces

computational costs and is suitable for real-time applications (Luo

et al., 2024). However, traditional 3DGS methods assume an air

environment and lack adaptability to the unique optical

characteristics of underwater environments, leading to issues

such as color shift and detail blur when applied directly to

underwater scenes.

To improve the applicability of 3DGS in underwater

environments, Li et al. proposed WaterSplatting (Li et al., 2024b),

which integrates 3DGS with volumetric rendering to model

geometric structures efficiently and render high quality water

media. Experiments show that WaterSplatting improves the detail

representation of underwater scenes to some extent, producing

more realistic reconstruction results. Additionally, UW-GS (Wang

et al., 2024) further enhances the robustness of underwater

reconstruction by introducing a dynamic object handling

mechanism. The UW-GS method can identify and filter out

dynamic objects (e.g., fish), reducing interference from

moving objects and improving reconstruction stability in

complex environments.

Although 3DGS-based underwater methods have made

progress in color restoration, dynamic processing, and detail

retention, they still have limitations in adapting to complex

underwater environments . Therefore , enhancing the

environmental adaptability and rendering accuracy of 3DGS

methods has become a key research direction. To address this,

this paper proposes an improved underwater 3D Gaussian Splatting

method, which enhances detail retention and visual consistency by

introducing complexity-adaptive distribution, depth-adaptive

multi-scale rendering, and a loss function specifically designed for

underwater environments. This method not only retains the high

computational efficiency of 3DGS but also optimizes its adaptability

in underwater environments, providing a more efficient solution for

real-time underwater 3D reconstruction in marine engineering.
3 Materials and methods

This paper proposes an improved underwater 3DGS method,

aimed at enhancing the accuracy and resource utilization efficiency

of underwater 3D reconstruction. To address the complex optical

characteristics of underwater scenes and the varying detail demands

across different regions, the proposed method combines

complexity-adaptive Gaussian point distribution, depth-based

multi-scale Gaussian point radius rendering, and a loss function

specifically designed for underwater environments, achieving

higher quality reconstruction results. The overall process is

illustrated in the Figure 2.
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3.1 Complexity-based Gaussian point
distribution optimization

To improve detail retention and optimize resource allocation in

underwater 3D reconstruction, this paper proposes a complexity-

based Gaussian point distribution optimization method. This

method dynamically adjusts the distribution density of Gaussian

points in different regions by referencing the complexity map of the

image, allowing the points to adaptively concentrate in areas with

higher detail demands. The specific implementation process is

as follows:

Complexity Calculation: The complexity map C (x,y) is

generated based on the gradient information of the reference

image, where x and y represent pixel positions in the image.

Specifically, the Sobel operator is used to calculate the gradient

magnitude for each pixel in the image, which measures the

complexity of local regions.

The gradient magnitude G(x,y) is defined as Equation 1:

G(x, y) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ I
∂ x

� �2

+
∂ I
∂ y

� �2
s

(1)

where I(x, y) represents the pixel intensity of the image, and ∂I
∂x

and ∂I
∂y are the gradients in the horizontal and vertical directions,

respectively. The complexity map C(x, y) is the normalized form of

the gradient magnitude (x, y), used to represent the complexity of

different regions in the scene.

Complexity Region Division: High-complexity regions typically

include detail-rich parts, such as close-up reef structures or

swimming fish, which require complex rendering. Low-

complexity regions often correspond to flat or less textured areas,

such as large expanses of water. After generating the complexity

map, a complexity threshold is set to divide the image into high
Frontiers in Marine Science 04
complexity and low-complexity regions, effectively distinguishing

between regions with high and low detail demands.

Adaptive Gaussian Point Distribution: After dividing the

regions, Gaussian point density parameters Dhigh and Dlow are

defined. The Gaussian point positions are adaptively adjusted

based on the region’s complexity. The final set of Gaussian point

positions is as Equation 2:

P = pi pi ∈ High _ complexity _ region, i = 1,…,Dhigh

�� �
∪

�
pj
� ��pj ∈ Low _ complexity _ region, j = 1,…,Dlowg

(2)

Through this complexity-based adaptive Gaussian point

distribution optimization strategy, this paper allocates more

Gaussian points in detail-rich areas to improve reconstruction

accuracy, while reducing the distribution of Gaussian points in

simpler regions, thereby saving computational resources and

optimizing the overall effect of underwater 3D reconstruction.
3.2 Depth-adaptive multi-scale radius
rendering strategy

In the 3D Gaussian Splatting rasterization process, the scale

parameter Radii is used to control the spread of each 2D Gaussian

distribution, thus affecting the blurriness and coverage scale of the

Gaussian points on the image plane. During rendering, larger scale

values make the coverage area of the Gaussian points wider,

reducing computational load and weakening boundary details,

while smaller scale values limit the spread of Gaussian points,

enhancing detail preservation.

Furthermore, the scale parameter plays a key role in the fusion

effect between different depth layers. In the 2D projection of multi-

layer depth information, larger scale values help increase the
FIGURE 1

Schematic diagram of the Water-Adapted 3D Gaussian Splatting method proposed in this paper.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1573612
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fan et al. 10.3389/fmars.2025.1573612
smoothness of inter-layer transitions, while smaller scale values

preserve sharper boundary delineations. Therefore, we design an

adaptive scale adjustment strategy based on scene depth, allowing

closer objects to have higher clarity, while distant water exhibits a

more natural blur, thus achieving visual consistency and realism in

the rendered scene. To implement depth-adaptive adjustment, this

paper calculates the corresponding scale factor based on the depth

information of each pixel, which is used to dynamically control the

spread of Gaussian points. Specifically, the formula for calculating

the scale factor we designed is as Equation 3:

S(x, y) = 0:5 +
D(x, y)
Dmax

(3)

Where: S (x,y) is the scale factor at position (x,y), controlling the

spread of Gaussian points at that location. D (x,y) is the depth value

at position (x,y). Dmax is the maximum depth value in the scene,

used for normalizing the depth range. According to this formula, as

the depth increases, the scale factor is bounded within (0.5,1.5). In

this way, the scale factor for closer objects is smaller, leading to

higher resolution and clarity. For distant objects, the scale factor is

larger, which, for large water areas, results in an imaging effect that

aligns with natural visual depth perception without significantly

increasing computational cost.

Through this strategy, we dynamically adjusts the spread of

Gaussian points based on depth information, achieving visual
Frontiers in Marine Science 05
consistency in underwater scenes with significant depth

variat ions, thereby enhancing the real ism and detai l

representation of the reconstruction.
3.3 Underwater loss function design

To enhance color restoration, structural consistency, and detail

representation in underwater 3D reconstruction, this paper designs

a loss function specifically for underwater environments, combining

regularized L1 loss, regularized SSIM loss, and LPIPS perceptual

loss. This combined loss function helps suppress overfitting to

specific pixels or structures while capturing subtle perceptual

differences and structural features in underwater images, leading

to higher quality reconstruction results.

Regularized L1 loss: The regularized L1 loss calculates the pixel-

wise error between the predicted and ground truth images and

normalizes it in high-brightness areas to suppress overfitting in

specific pixel regions, enhancing overall color and brightness

consistency. Its formula is shown as Equation 4:

LR _ L1 =
1
No

N

i=1

Igt(i) − Ipred(i)

Igt(i) + e

�����
����� (4)

Here, Igt and Ipred represent the pixel values of the ground truth

image and the predicted image, respectively. N is the total number
FIGURE 2

Water-Adapted 3D Gaussian Splatting structure diagram.
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of pixels, and e is a small constant used to avoid division by

zero errors.

Regularized SSIM Loss: The regularized SSIM loss is used to

assess the local structural similarity of images and controls the

structural consistency of different pixel regions by normalization. It

reduces the influence of local high-contrast areas and enhances the

structural fidelity of the image. It is defined as Equation 5:

LR _ SSIM = 1 − SSIM
Igt

Ipred + e
,

Ipred
Ipred + e

 !
(5)

LPIPS Perceptual Loss: To further enhance the perceptual

realism of the image, this paper introduces the Learned

Perceptual Image Patch Similarity (LPIPS) perceptual loss. The

LPIPS perceptual loss relies on a pre-trained deep feature network,

which calculates the high-level feature differences between the

predicted and ground truth images to capture subtle structural

and detail differences perceived by the human eye. It is defined as

Equation 6:

LLPIPS =
1
No

N

i=1
f(Igt)(i) − f(Ipred)(i)
�� ��

2 (6)

Where f represents the feature maps of the deep feature network.

The combined loss function in this paper is a weighted

combination of the three aforementioned losses, balancing each

loss’s contribution to the total loss, ensuring color, structure, and

detail representation during the reconstruction process. The

combined loss function is defined as Equation 7:

L = (1 − l) · LR _ L1 + l · LR _ SSIM + a · LLPIPS (7)

Where the parameters l and a control the weights of the

individual losses, ensuring the balance of color, structure, and

detail representation during the reconstruction process.
4 Results

4.1 Experimental settings

Our code is based on WaterSplatting (Li et al., 2024b), which is

built upon the reconstructed version of 3DGS provided by

NeRFStudio. The experiments were run on a workstation

equipped with an NVIDIA RTX 4090 GPU, an Intel Core i5-

13490K processor, and 64GB of RAM. During the actual training,

the GPU memory usage was approximately 10GB. In the loss

function parameter settings, we set l = 0.2 and a = 0.05, and

used the pre-trained AlexNet network as the feature extractor for

LPIPS perceptual loss. Regarding the training parameters, the total

number of iterations was set to 15,000. The first 500 iterations were

used as a warm-up phase, primarily optimizing the model using

regularized L1 loss and regularized SSIM loss, adjusting the

initialized point cloud, and pre-training the MLP.
Frontiers in Marine Science 06
4.2 Datasets and baseline methods

We conducted experimental evaluations on two datasets:

SeaThru-NeRF (Levy et al., 2023) and In-the-Wild (Tang et al.,

2024). The SeaThruNeRF dataset includes three different marine

scenes, covering various water quality conditions and imaging

environments, ensuring the richness and diversity of the data,

which effectively validates the adaptability of our method in

different underwater environments. The In-the-Wild dataset

focuses on underwater scene reconstruction, encompassing

complex light attenuation effects, unstable scattering phenomena,

and the motion of underwater dynamic organisms. It aims to

address the unique challenges of underwater environments and

provides valuable test data for high-fidelity underwater

scene reconstruction.

In the comparative experiments, we selected several baseline

methods, including SeaThruNeRF (Levy et al., 2023), ZipNeRF

(Barron et al., 2023), DynamicNeRF (Gao et al., 2021), MIP-360

(Barron et al., 2022), Instant-NGP (Müller et al., 2022), 3DGS (Luo

et al., 2024), Tang et al (Tang et al., 2024), SeaSplat (Yang et al., 2024),

and WaterSplatting (Li et al., 2024b). Due to the innovative nature of

our research direction, some of the baseline methods come from

preprint papers, which are part of the cutting-edge work currently

under development in the field. Through these baseline methods, we

are able to comprehensively evaluate the performance and advantages

of the WA-GS method in underwater scene reconstruction.
4.3 Experimental results and analysis

The Table 1 shows the results of experiments on the SeaThru-

NeRF dataset. We compared the performance of the WA-GS

method with several baseline methods across multiple sequences.

PSNR is a traditional metric for measuring image quality, with

higher values indicating better reconstruction quality. WA-GS

shows excellent PSNR values of 30.43 on IUI3-RedSea and 30.07

on Panama. SSIM measures the structural similarity of images, with

higher values indicating stronger structural consistency and better

detail retention. WAGS achieves very high SSIM values across all

datasets, especially 0.938 on Panama and 0.891 on IUI3-RedSea,

demonstrating excellent structural consistency and detail retention.

LPIPS measures perceptual differences between images, with lower

values indicating that the image is closer to the real image in terms

of visual effect. Since we incorporated LPIPS loss into our loss

function, our method achieves the best LPIPS results across all

sequences. In the Panama scene, our LPIPS value (0.084) is much

lower than those of 3D GS (0.152) and SeaSplat (0.154), proving

that its underwater perception loss function can better suppress

vortex artifacts. Figure 3 shows a comparison of rendering effects

for three typical underwater scenes: Curaçao, IUI3 RedSea, and J.

Gradens RedSea. Figure 4 compares the output effects of different

rendering modes in the Panama scene.
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Additionally, our proposed method belongs to the 3DGS family,

offering a significant improvement in computational efficiency

compared to NeRF-based methods. In addition to static datasets,

we also conducted comparative experiments on the underwater

dataset In-the-Wild, which contains dynamic targets, and the

results are shown in the Table 2.

In the second set of experiments, the dataset includes dynamic

scenes, which involve motion and morphological changes of dynamic

objects, thereby presenting higher reconstruction difficulty. The

challenge of the Sardine sequence lies in the fact that each frame

contains a large number of swimming sardines, resulting in significant

variations in pixel depth and increased fitting complexity for

Gaussian-based algorithms. Benefiting from our designed Gaussian

point distribution optimization method and depthadaptive rendering
Frontiers in Marine Science 07
strategy, our algorithm partially eliminates interference from these

dynamic objects, achieving superior rendering results. The difficulty of

the Turtle sequence stems from the lack of sufficient varied viewing

angles for reconstruction, which causes most existing methods to fail

on this sequence. Although our approach cannot overcome limitations

in model completeness, it achieves better underwater visual

consistency through improved loss function design.

As shown in Table 2, WA-GS outperforms baselines across

metrics including PSNR, SSIM, and LPIPS, particularly on the

Composite, Coral, and Sardine datasets. In the Composite scene,

WA-GS has an LPIPS of 0.129, which is 25.4% lower than that of the

second - best method,WaterSplatting (0.173). This indicatesWA-GS’s

superior ability to model dynamic suspended particles and light

interactions. The SSIM of WAGS is 0.867, close to the theoretical
TABLE 1 Experimental results of SeaThru-NeRF dataset.

Dataset Curaçao IUI3-RedSea J.Gradens-RedSea Panama

TimeMethods\
Metrics

PSNR↑ SSIM↑ LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SeaThru-NeRF 30.48 0.873 0.210 25.91 0.785 0.304 21.84 0.767 0.249 27.85 0.834 0.224 10h

ZipNeRF 19.96 0.442 0.421 16.94 0.474 0.412 19.022 0.349 0.483 19.01 0.349 0.482 6h

3D Gaussian 28.31 0.873 0.221 22.98 0.843 0.246 21.49 0.854 0.216 29.20 0.893 0.152 18min

MIP-360 28.23 0.683 0.571 19.55 0.510 0.520 19.62 0.624 0.492 18.32 0.556 0.600 7h

Instant-NGP 27.66 0.684 0.606 20.85 0.519 0.623 23.19 0.726 0.459 21.85 0.604 0.595 5min

Tang et al. 30.03 0.828 0.238 22.70 0.624 0.348 25.81 0.853 0.183 23.75 0.687 0.263 45min

SeaSplat 30.30 0.900 0.194 26.67 0.872 0.208 22.70 0.873 0.179 28.76 0.902 0.154 1h25min

WA-GS(ours) 28.29 0.900 0.158 30.43 0.891 0.186 23.17 0.864 0.153 30.07 0.938 0.084 20min
fron
The bold values in the table represent the optimal values.
The meaning of ↑ is that the larger the value, the better the effect.The meaning of ↓ is that the smaller the value, the better the effect.
FIGURE 3

Results of RGB images rendering on Curacao, IUI3-RedSea, and J. radens-RedSea sequences.
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maximum, which confirms the effectiveness of the multi scale radius

strategy in reducing motion blur. WAGS also achieves the best results

in the Coral and Sardine scenes. Figure 5 demonstrates that WA-GS

significantly enhances underwater reconstruction quality, providing

finer detail recovery and better visual consistency, establishing itself as

a robust solution for dynamic underwater scenes. Figure 6 highlights

the robustness of our method on highly challenging sequences, with

superior performance in perceptual quality (LPIPS) and visual

consistency (SSIM).

4.4 Ablation study and computational cost

To further validate the independent contribution of each

innovation to the reconstruction performance, an ablation study

was designed to analyze the role of each innovative component. The
Frontiers in Marine Science 08
experiments were conducted on the Coral sequence of the In-the-

wild dataset, using WaterSplatting as the baseline method. The

results of the ablation study are shown in the Table 3.

The results in Table 3 demonstrate that the synergistic effect of the

components plays a crucial role in detail retention and visual

consistency, leading to a significant improvement in these aspects for

theWA-GS method compared to the baseline method. Although some

improvements have increased computation time, in underwater

reconstruction tasks, WA-GS has an LPIPS of 0.094, which is 48.9%

lower than the baseline (0.184), and an SSIM of 0.904, which is 5.2%

higher. Experiments show joint module optimization is key forWA-GS

high-fidelity reconstruction in complex underwater scenes. The

performance-cost tradeoff has significant engineering value.

Complexity based Gaussian point distribution optimization and the

new loss function slightly affect overhead. However, depth-adaptive
FIGURE 4

RGB rendering results on the Panama sequence. Eval gt indicates the real image, Eval rgb clear indicates the RGB image after underwater media is
removed, Eval rgb medium indicates the RGB image after considering the influence of underwater media, and Eval rgb indicates the standard RGB
image generated by the model.
TABLE 2 Experimental results of In-the-Wild dataset.

Dataset Composite Coral Turtle Sardine

Methods\Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SeaThru-NeRF 16.21 0.406 0.829 23.89 0.649 0.405 27.06 0.882 0.192 21.37 0.578 0.606

Instant-NGP 22.81 0.597 0.572 20.87 0.439 0.731 26.42 0.874 0.225 21.73 0.649 0.467

DynamicNeRF 16.27 0.739 0.476 17.77 0.542 0.826 23.31 0.837 0.426 19.70 0.676 0.690

Tang et al. 25.09 0.799 0.239 26.17 0.828 0.157 28.10 0.900 0.217 21.58 0.723 0.454

WaterSplatting 25.11 0.840 0.173 27.48 0.859 0.184 21.77 0.845 0.350 19.14 0.691 0.622

WA-GS(ours) 25.45 0.867 0.129 28.66 0.904 0.094 24.58 0.886 0.229 22.81 0.857 0.212
front
The bold values in the table represent the optimal values.
The meaning of ↑ is that the larger the value, the better the effect.The meaning of ↓ is that the smaller the value, the better the effect.
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FIGURE 5

3D reconstruction results and depth results on the ‘Composite’ and ‘Coral’ sequences. Our proposed WA-GS achieves better visual consistency and
reconstruction quality in complex underwater reconstruction tasks.
FIGURE 6

3D reconstruction results and depth results on the ‘Sardine’ and ‘Turtle’ sequences. Almost all existing methods fail to achieve good results on
“Turtle” sequence. Thanks to our improvements, results that should have been judged as ‘failures’ were successfully rendered.
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multi-scale rendering, which requires per-point depth-based scale

factor calculation, increases overhead and training time.
5 Discussion

This paper addresses the challenges in underwater 3D scene

reconstruction and proposes an innovative Water-Adapted 3D

Gaussian Splatting method, which effectively handles the

geometric structure of underwater scenes and the light scattering

effects of the water medium. Our method solves issues such as

blurring, color distortion, and detail loss in underwater imaging

through complexity-based Gaussian point distribution optimization

and depth-adaptive multi-scale rendering strategies, while

providing a significant improvement in computational efficiency

compared to traditional NeRF methods.

Experimental results show that the proposed method achieves

higher rendering quality than existing underwater reconstruction

methods on both static and dynamic scene datasets, and provides

real-time rendering performance. Furthermore, the innovative

strategies proposed in this paper have strong generalizability and can

be easily transferred to other 3DGS-based reconstruction frameworks.

Despite achieving good visual consistency and reconstruction

quality in underwater scenes, there are still many areas that require

further work in the future. The depth-adaptive multi-scale rendering

strategy introduces certain computational overhead. In practical

applications, especially when handling large-scale scenes or complex

dynamic environments, the computational burden may increase

significantly. We plan to optimize this strategy and enhance its

adaptability in realtime systems. Moreover, like most 3D Gaussian-

based reconstruction methods, our approach relies on initial sparse

point cloud information, which means it cannot directly generate

complete 3D reconstruction results from RGB images. To further

improve the flexibility of the system, we plan to explore ways to

generate high-quality reconstruction results directly from RGB images

without relying on COLMAP for sparse point cloud generation.

In view of growing ocean resource development and ecological

conservation needs, future underwater 3D reconstruction research

will center on:
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• Multimodal intelligent sensing: In complex underwater

conditions, single sensors are limited. Research will focus

on building a sound-light-magnetism cross-physical-field

sensing framework. Quantum sonar for lowlight distance

measurement, polarized light imaging for suppressing

scattering, and multispectral lidar for material structure

identification will be explored. Integration of these will

obtain comprehensive underwater scene data for 3D

reconstruction, enhancing accuracy and integrity.

• Dynamic scene generalization ability: Given the dynamic

nature of underwater scenes, work will involve using

diffusion models and engines like PhyNex to create a

dynamic light - field simulation platform. This will

generate pretraining data for complex scenarios. Deep

learning-based 3D reconstruction methods will be

developed to learn dynamic patterns, enabling accurate

real - time reconstruction for marine monitoring and

facility assessment.

• Standardization and interdisciplinary: Future research will

include formulating unified evaluation criteria for

underwater 3D reconstruction to standardize work and

accelerate iteration. As it spans multiple disciplines, efforts

will be made to develop a seabed digital twin platform

integrating multi-disciplinary knowledge for real-time

seabed health management, problem detection, and earth

science research support.
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