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GAB-YOLO: a lightweight deep
learning model for real-time
detection of abnormal behaviors
in juvenile greater amberjack fish
Mingxin Liu1,2, Chun Zhang1 and Cong Lin1,2*

1School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China,
2Guangdong Provincial Key Laboratory of Inteligent Equipment for South China Sea Marine Ranching,
Zhanjiang, China
With the growing global population and economic development, the demand for

sashimi has increased, presenting both new opportunities and challenges for

aquaculture. As a key species for sashimi, Greater Amberjack faces significant

potential in aquaculture but is also vulnerable to temperature fluctuations,

particularly during its juvenile stage, which can lead to abnormal behaviors.

These behavioral anomalies, if undetected, can impede growth and result in

substantial economic losses. Traditional methods for detecting abnormal

behavior rely heavily on manual inspection, a process that is time-consuming

and labor-intensive. Meanwhile, existing automated detection algorithms often

struggle with a trade-off between detection accuracy andmodel size. To address

this issue, we propose a precise and lightweight model for detecting Greater

Amberjack’s abnormal behaviors, based on the YOLOv8n architecture (named

GAB-YOLO). First, we introduce the SobelMaxDS module, designed to enhance

the network’s ability to extract edge and spatial features, thereby enabling more

effective capture of the fish’s behavioral contours and preserving rich target

information. This enhancement improves the model’s robustness against

challenges such as image blurring, occlusion, and false detections in complex

environments. Additionally, the PMSRNet module is integrated into the backbone

network to replace C2f, improving the model’s feature extraction capabilities

through multi-scale feature fusion and enhanced spatial information capture,

which aids in the accurate localization of the fish target.Furthermore, by

incorporating shared decoupled heads for classification and regression

features, alongside GroupConv and DBB(Diverse Branch Block) modules in the

detection head, we significantly reduce the model’s parameter count while

simultaneously improving its accuracy and robustness. Finally, the introduction

of the Wise-ShapeIoU loss function further accelerates the model’s convergence

and optimization process. Experimental results demonstrate that, compared to

the original model, the number of parameters and FLOPs are reduced by 36.7%

and 28.4%, respectively, while the Precision is increased by 5.1%. The model
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achieves a detection speed of 172 frames per second, outperforming other

mainstream detection models. This study addresses the real-time detection

requirements for Greater Amberjack’s abnormal behaviors in aquaculture and

offers considerable practical value for fish farming operations.
KEYWORDS

deep learning, abnormal behavior detection, greater amberjack, aquaculture, YOLOv8,
real-time monitoring
1 Introduction

Greater Amberjack (Seriola dumerili) is a species of fish

primarily found in the upper layers of the ocean, distributed

mainly in tropical and subtropical waters (Shi et al., 2024). Due

to its excellent meat quality and nutritional value, particularly as

sushi and sashimi, Greater Amberjack is highly valued by

consumers, and its market demand has significantly increased in

recent years (Pinheiro et al., 2024). This species is also known for its

rapid growth and strong adaptability to various environmental

conditions, making it a prime candidate for deep-sea cage

farming (Tone et al., 2022). However, before being transferred to

cage farming systems, juvenile fish must be raised in recirculating

aquaculture systems until they reach a certain size, which requires

precise monitoring of their health status (Barany et al., 2021).In

industrial aquaculture, high-density fish farming, combined with

the complex and uncontrollable underwater environment, can

expose juvenile fish to a variety of abnormal conditions such as

diseases, hypoxia, pollution, parasites, and temperature

fluctuations, all of which can lead to abnormal behaviors. These

abnormal behaviors may result in a decline in both the quantity and

quality of the fish, causing substantial economic losses to the

aquaculture industry (Zhao et al., 2021). Therefore, it is essential

to detect abnormal behaviors in fish quickly and accurately to

mitigate these risks and ensure the sustainable development

of aquaculture.

For aquaculture operators, timely health monitoring of fish

populations is critical (Mandal and Ghosh, 2024). However,

traditional farming methods often rely on manual observation,

which is not only inefficient but also difficult to maintain on a 24/

7 basis. This results in missed detections of abnormal behavior,

potentially leading to large-scale fish mortality and significant

financial losses (Li et al., 2024b). In recent years, with the

advancement of computer vision technology and the rise of

intelligent aquaculture, many researchers have applied computer

vision techniques to aquaculture (Liu et al., 2023). By utilizing

computer analysis and processing of images or videos, some of the

drawbacks of traditional methods can be overcome, ultimately

reducing economic losses. For example, Yu et al. (2021) employed

Harris corner detection to extract specific behavioral features,

followed by the Lucas-Kanade optical flow method to determine
02
the swimming speed of carp in sub-images, allowing them to assess

whether the swimming speed of the fish school was abnormal.

However, this approach relies on traditional computer vision

techniques that require manual feature extraction algorithms and

have certain limitations. These methods often struggle with large,

diverse datasets and complex recognition tasks, leading to

suboptimal performance and accuracy in practical applications.

Moreover, in high-density aquaculture, issues such as overlapping

individuals, partial occlusions, and image blurring caused by rapid

fish movement frequently arise. Consequently, it is necessary to

explore more advanced and effective techniques.

Deep learning, a machine learning technique based on neural

networks, has proven to be highly effective in extracting high-level

features for recognition and classification. It demonstrates strong

performance and robustness, making it widely applicable for

detecting abnormal fish behavior (Kaur et al., 2023; Yang et al.,

2021). The rapid development of deep learning has opened new

possibilities for fish behavior detection. In recent years, numerous

visual models have emerged that help address many challenges in

aquaculture (Zhao et al., 2025). For example, Chen et al. (2022)

introduced a two-stage, ImageNet-pretrained deep learning model

to identify abnormal appearances in three types of grouper fish.

Their model achieved high accuracy in classifying abnormal and

normal fish. However, this study focused primarily on detecting

specific external appearance features of the fish and neglected the

health-related information conveyed by their behavior. Although

the two-stage algorithm is effective, it is difficult to achieve real-time

performance on devices with limited computational resources. In

contrast, single-stage algorithms, such as those in the YOLO series

(Jiang et al., 2022), predict directly on images, eliminating the

candidate region generation phase. This results in higher speeds

and gradually superior accuracy compared to two-stage algorithms.

To detect dead fish based on belly-up behavior, Zhou et al. (2025)

employed an improved lightweight CSPDarknet53 as the backbone

network to reduce the number of parameters. By integrating a

ReLUMemristor-like activation function into the YOLOv4 model,

they improved the accuracy of dead fish detection. However, a

limitation of this approach is that it can only detect dead fish and

cannot predict the health condition of fish before they die.

In aquaculture, the high density of fish often leads to

overlapping and partial occlusion among individuals. Wang et al.
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(2022b) proposed an improved YOLOv5 model for detecting and

tracking abnormal fish behavior. By integrating diverse features and

adding feature maps, this model demonstrated enhanced detection

of small targets within fish schools, significantly improving its

effectiveness in ideal environments. However, further

improvements are required to boost detection accuracy in

complex industrial aquaculture settings. Subsequently, to address

issues such as image blurring induced by the swift movement of fish

in dynamic environments, Wang et al. (2022a) proposed an

enhanced architecture based on YOLOv5. This approach

integrates a multi-head attention mechanism into the backbone

network, combines BiFPN (Bidirectional Feature Pyramid

Network) for weighted feature fusion, and employs CARAFE

(ContentAware ReAssembly of FEatures) upsampling operators to

replace conventional upsampling methods. These improvements

enhanced the model’s feature extraction and fusion, enabling it to

better handle challenges such as small target sizes, severe occlusion,

and blurring in real-world fish school images; however, its ability to

capture the edges and fine details offish remains insufficient. Li et al.

(2024a) and colleagues designed a multi-task learning network,

YOLO-FD, for detecting fish infected with Nocardiosis through

segmentation and detection. However, this approach has limited

applicability since it is specifically designed for detecting

Nocardiosis infections and lacks generalization for other types of

fish health conditions. On the other hand, Wang et al. (2023)

applied an improved YOLOX-S algorithm to detect abnormal fish

behavior in complex aquatic environments. They enhanced

detection accuracy by integrating coordinate attention, but this

increase in network weight and parameters reduced the detection

speed, making it unsuitable for real-time applications (Zhao et al.,

2024). proposed a fish behavior recognition and visualization

framework based on the Slowfast network and spatiotemporal

graph convolution networks (ST-GCN), which improved the

ability to detect abnormal behaviors from spatial information.

However, the technology proposed in these studies is limited

because it only addresses the extraction of spatiotemporal

network features while neglecting the extraction of image contour

edge information. Furthermore, all these studies are designed to

distinguish between normal and abnormal fish schools, lacking the

capability to specifically detect and analyze various types of

abnormal behaviors.

Based on the above analysis, in practical aquaculture, fish

schools often exhibit high-density aggregation with significant

overlap among individuals, resulting in severe occlusion of some

fish. Moreover, due to water current interference, camera shake, and

rapid fish movement in underwater environments, images

frequently suffer from motion blur and dynamic scene changes,

which greatly increase the difficulty of object detection. Existing

object detection methods—such as the traditional YOLO series and

Faster R-CNN—generally struggle with insufficient edge

information extraction (Lin et al., 2025), blurred local features,

and difficulties in handling multi-scale targets under these

conditions, leading to a significant decline in both detection

precision and recall in high-density, dynamic, and heavily

occluded scenarios. Furthermore, achieving a balance between
Frontiers in Marine Science 03
precision and model size remains challenging, as current models

often fail to maintain high accuracy while delivering rapid

detection. To address these issues, this study focuses on Greater

Amberjack fish and proposes an improved YOLOv8 model—GAB-

YOLO—for real-time detection of abnormal behaviors in juvenile

Greater Amberjack under different temperature conditions. The

main contributions of this study are as follows: (1) To address the

boundary and motion blur caused by fish swimming in water, we

design the SobelMax module to enhance the network’s ability to

extract edge and spatial features, enabling the model to better

capture the contours of fish behavior and retain rich target

information, thereby improving its ability to detect boundary and

motion blur in images.

(2) The proposed PMSRNet module enhances the model’s

detection capability in complex environments by incorporating

multi-scale feature fusion and capturing rich spatial information,

which helps tackle challenges such as fish body deformation,

occlusion, and false detections.

(3) To balance the trade-off between accuracy and model size,

we introduce the RLSHead detection head, which not only reduces

the parameter count in the decoupled heads but also enhances the

model’s global perception of target information, allowing for more

accurate detection of small targets without introducing additional

inference delay.

The structure of this paper is as follows: Section 2 introduces the

model used in this experiment. Section 3 details the experimental

setup and dataset construction. Section 4 presents the experimental

results and discusses the findings. Finally, Section 5 outlines the

conclusions and future directions for this research.
2 Methods

This study proposes a lightweight GAB-YOLO model for real-

time monitoring of abnormal behaviors in Greater Amberjack fish in

response to temperature changes, as illustrated in Figure 1. Initially,

the SobelMax feature extraction module is designed to replace certain

convolution (Conv) modules. This module uses the Sobel operator to

extract edge features, which are then integrated with the broader

spatial information to provide richer semantic context.Next, the

PMSRNet module reduces the number of channels in the feature

map by half, splitting the feature map into two branches. One branch

performs complex multi-scale convolutions, while the other passes

the features directly through. These two branches are then combined

to integrate all features, thereby enhancing the model’s performance

while maintaining its lightweight structure. Additionally, shared

parameter techniques are employed, introducing GroupNorm

convolution and the reparameterizable DBB(Diverse Branch Block)

module. These innovations help reduce the number of parameters in

the detection head, lower the model’s storage and computation

requirements, and improve detection accuracy without adding

significant computational cost. Finally, the Wise-ShapeIoU loss

function is introduced to replace CIoU, improving the accuracy of

bounding box regression. This adjustment allows the model to

capture target location information more effectively and improves
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its bounding box prediction accuracy, enhancing both performance

and robustness. A detailed explanation of these modules will be

provided in the following subsection.
2.1 SobelMax

In actual fish aquaculture, due to insufficient underwater

illumination or turbid water conditions, highspeed fish movement

often causes significant boundary and motion blur in the captured

images, which greatly impedes timely detection and accurate

assessment of fish behavior. Traditional object detection models

generally struggle to precisely capture fish contours under such

conditions. Moreover, the first two layers of YOLOv8, which

primarily extract low-level features such as edges, textures, and

perform downsampling, exhibit poor performance when processing

blurred images. To address this problem, we designed a structure

named SobelMax to replace two convolution modules in the

backbone, as shown in Figure 2.

When fish swim in water, boundary and motion blurring between

the foreground and background can occur, affecting the capture of

behavioral features. By using the SobelConv branch to extract edge

information (Hu et al., 2024; Gao et al., 2010), we enhance the edge
Frontiers in Marine Science 04
details in the image, making the fish behavior contours more distinct

and improving feature extraction (Vincent and Folorunso, 2009). The

SobelConv branch effectively compensates for the detail loss that often

occurs when the original convolution modules process image edges.

Additionally, this method provides some resistance to noise. We apply

the Sobel operator to two 3D convolution layers, which highlight points

with significant brightness changes along the horizontal and vertical

edges of the image. This significantly reduces the boundary andmotion

blurring caused by the fish swimming in complex environments, while

preserving essential structural features in the image. The SobelConv

structure is shown in Figure 3.

In addition to edge information, spatial information within the

image is equally crucial. To address this, we employ a max-pooling

convolutional method in a parallel branch to preserve critical

information in fish behavior feature maps. This approach enables the

detector to learn richer image feature representations, thereby

preventing false detection issues caused by positional shifts of fish in

video sequences. Finally, the features extracted from both branches are

fused to enrich the target feature representation.Through this feature

fusion mechanism, the model’s robustness and detection accuracy are

significantly enhanced, effectively mitigating edge blur and motion blur

artifacts arising during image acquisition. This advancement thereby

achieves efficient object detection in complex underwater environments.
FIGURE 1

GAB-YOLO structure.
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2.2 PMSRNet

In high-density aquaculture environments, fish schools are

arranged extremely densely, resulting in severe occlusion that

poses a significant challenge for object detection. To enhance the

extraction of fish features, YOLOv8n incorporates the C2f module,
Frontiers in Marine Science 05
which reinforces feature extraction by increasing the number of

bottleneck structures. However, this design inevitably introduces

redundancy in feature maps and channel information, thereby

impacting the overall efficiency and accuracy of the model.

Therefore, drawing inspiration from the design philosophy of

GhostNet, we propose a new structure called the multi-scale

feature PMSRNet, whose architecture is shown in Figure 4.

Han et al. (2020) proposed GhostNet, a lightweight backbone

network that utilizes traditional convolutions to extract rich feature

information and incorporates efficient linear transformations to

generate redundant features. Its architecture is illustrated

in Figure 5.

However, the Ghost module mainly relies on linear

transformations to generate “ghost” features, which may result in

insufficient feature diversity when processing complex images,

particularly limiting its ability to capture fine details of multi-

scale targets. To address this limitation, we incorporated the

efficient feature generation concept of GhostNet into PMSRNet

and further optimized the learning strategy for multi-scale features.

By deeply coupling and fusing features from different scales,

PMSRNet significantly enhances the model’s ability to detect fish

targets in complex underwater environments. Specifically, to

address issues such as morphological deformation, occlusion, and

misdetections that frequently occur during fish movement, we

divide the input feature maps into two parts during the feature

processing stage. One part undergoes multi-scale convolution

operations, focusing on extracting local details to strengthen the

feature representation (Lin et al., 2024), thereby enabling the

model to capture subtle yet critical textures and edge information

in fish behavior (Wang et al., 2016; Xiao et al., 2025). The other part

directly retains the original features to ensure that key information

is preserved, preventing the loss of small target details during the

downsampling process. Finally, a 1x1 convolution layer fuses

the features from different scales, while a residual connection

adds the input features back to the processed features. This

mechanism effectively retains the original information and

introduces new multi-scale information, improving the model’s

ability to represent complex features. By optimizing the use of

computational resources, this approach reduces unnecessary
FIGURE 2

The structure of SobelMax.
FIGURE 3

The SobelConv structures.
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computations and memory access, while lowering the overall model

complexity. Moreover, the enhanced feature fusion allows the

model to more accurately detect abnormal behavior, improving

its ability to handle challenges like fish body deformation, occlusion,

and false detection in complex environments.
2.3 RLSHead

YOLOv8 introduces a decoupled Head architecture that separates

the classification and detection processes, which enhances its detection

performance. However, this design results in a substantial increase in
Frontiers in Marine Science 06
the number of parameters, with the head section alone consisting of 12

layers. Each of the three detection heads includes two 3x3 convolutions

and one 1x1 convolution, which could make it challenging to fully

leverage YOLOv8’s performance advantages in resource-constrained

environments. Furthermore, this separation limits information flow

between the two components. To address this challenge, we propose a

redesigned, reparameterized lightweight shared convolution detection

head, called RLSHead (Reparameterized Shared Lightweight Head),

which reduces the number of parameters and computational load, thus

improving the model’s speed while maintaining high detection

accuracy. The structure of the RLSHead detection head is shown

in Figure 6.
FIGURE 5

Illustration of Ghost.
FIGURE 4

Illustration of the network structure of PMSRNet.
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After the three feature layers from the neck are passed into the

detection head, each branch first undergoes a 1x1 CGS convolution.

The CGS module replaces the Batch Normalization (BN) layer in

the original CBS convolution module with a Group Normalization

(GN) layer (Wu and He, 2018). While BN normalizes by calculating

statistics based on the batch size, this can become unstable for small

batches, leading to higher error rates. GN overcomes this issue by

grouping feature channels and calculating the mean and variance

within each group, making normalization independent of the batch

size. This ensures stable accuracy across varying batch sizes.

The CGS module standardizes the number of channels, and then

all the feature layers are merged into the shared convolution DBB

(Ding et al., 2021) for feature extraction. Shared convolutions

significantly reduce the parameter count, making the model more

lightweight. However, using shared parameters could limit the model’s

ability to capture complex patterns, as different features might require

different convolution kernels. To mitigate this limitation, we

incorporate reparameterized convolution DBB, as shown in Figure 7.

Introducing more learnable parameters allows the network to

extract features more effectively, improving its global understanding

of target information. This makes the model more accurate when

dealing with small targets, compensating for any potential accuracy

loss due to the lightweight design. Furthermore, reparameterized

convolutions improve parameter utilization significantly and,

during inference, perform similarly to standard convolutions,

offering a lossless optimization solution. Additionally, to address

the issue of varying target scales detected by each detection head, we

use a scale layer on the regression branch’s output to rescale features
Frontiers in Marine Science 07
(Tan and Le, 2019), allowing the model to locate fish targets of

different sizes. This reparameterized shared convolution structure

reduces the model’s parameter count and computational cost while

improving performance.
2.4 Wise-ShapeIoU

In industrial aquaculture environments, residual feed and fish

waste often cause water turbidity, resulting in low-quality images

with unavoidable poor samples. This decreases the model’s ability to

generalize. Therefore, a well-designed loss function is crucial for

improving detection accuracy and avoiding false or missed

detections. YOLOv8 utilizes Distribution Focal Loss (DFL) (Li

et al., 2020) and CIoU loss (Zheng et al., 2020) for bounding box

regression. While the CIoU loss function considers the overlap area,

centroid distance, and aspect ratio in bounding box regression, it

exacerbates the penalty for low-quality samples, especially when

there are low-quality samples in the training set. This results in the

penalty not reflecting the true difference between the ground truth

and predicted bounding boxes. The formula for CIoU is shown in

Equations (1–3).

LCIOU = 1 − IoU +
r2(b, bgt)

(wc)2 + (hc)2
+ av, (1)

a =
v

(1 − IoU) + v
, (2)
FIGURE 6

RLSHead module details.
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v =
4
p2 ((arctan 

wgt

hgt
) − arctan 

w
h
)2, (3)

In the formula,b and bgt represent the centroids of the anchor

box and the target box, respectively. r2(b,bgt) represents the

Euclidean distance between the centroids of the anchor box and

the target box. c is the diagonal length of the minimum bounding

box enclosing both the anchor and target. a is the weight parameter,

and v is the consistency of the aspect ratio between the two boxes.

wgt and hgt represent the width and height of the anchor

box, respectively.

To accelerate convergence and improve detection accuracy, this

study introduces the WIoU loss function (Tong et al., 2023) to

replace CIoU. Unlike traditional loss functions with fixed focusing

mechanisms, WIoU considers aspect ratio, centroid distance, and

overlap area, and incorporates a dynamic, nonmonotonic focusing

mechanism. This helps balance the weights between high and low-

quality samples during bounding box regression. In the current

version, we use WIoUv3, which adds a non-monotonic focusing

coefficient to WIoUv1. The formulas are as follows (Equations 4–6):

LWIoUv1 = RWIoULIoU , (4)

RWIoU = exp  (
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )*
), (5)
Frontiers in Marine Science 08
LIoU = 1 − IoU , (6)

x and y are the coordinates of the center of the anchor box, and

xgt and ygt represent the coordinates of the center of the target box.

Wg and Hg are the width and height of the minimum bounding

rectangle that encloses both the anchor and target boxes. RWIoU

primarily focuses on the center distance between the anchor and

target boxes. For anchor boxes with lower overlap with the target,

RWIoU becomes larger.

To better reduce the gradient loss from low-quality samples,

dynamic non-monotonic modulation is introduced to create

WIoUv3. This method improves the focus on correct samples and

prevents large harmful gradients from low-quality samples. The

non-monotonic modulation factor is derived from the anchor box’s

outlier degree and adjusted using hyperparameters, which enhances

the model’s accuracy. As shown in Equations (7–8), L∗IoU represents

the monotonic focus factor, b is the outlier degree of the anchor

box, a and d are hyperparameters, and r is the non-monotonic

focus factor.

LWIoUv3 = rLWIoUv1, r =
b

dab−a , (7)

b =
L*IoU
LIoU

∈ ½0, +∞), (8)
FIGURE 7

DBB module structure diagram.
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In fish behavior detection, fish close to the camera appear

larger in the image, while those farther away appear smaller. In

the images or sequences for detection, fish often exhibit

variations in scale. The challenge of bounding box scale variation

is one of the primary difficulties in fish behavior detection. To

adjust the inherent attributes of bounding boxes, such as shape

and size, and to enhance the model’s generalization capability

across different scenes and its effective deployment in various

environments, this study incorporates Shape-IoU (Zhang and

Zhang, 2023) into WIoUv3. The Shape-IoU loss function

integrates geometric constraints to further refine the accuracy of

bounding box regression. The specific formulas are presented in

Equations 9–12.

IoU =
B ∩ Bgtj j
B ∪ Bgtj j , (9)

ww =
2� wgtscale

wgtscale + hgt
scale , hh =

2� hgt
scale

wgtscale + hgt
scale , (10)

distanceshape = hh� (xc − xgtc )2

c2
+ ww � (yc − ygtc )2

c2
, (11)

Wshape = o
t=w,h

(1 − e−wt )q , q = 4, (12)

In the formula, B represents the predicted bounding box, and

Bgt represents the ground truth bounding box. Scale is the scaling

factor, which is related to the size of the targets in the dataset. ww

and hh represent the weight coefficients in the horizontal and

vertical directions, respectively, and their values depend on the

shape of the ground truth box. distanceshape represents the

distance between the center of the predicted bounding box and

the center of the actual ground truth box. wgt and hgt are the width

and height of the ground truth bounding box. When estimating

the distance loss, the horizontal and vertical weight constraints of

the ground truth bounding box are incorporated. Ωshape denotes

the shape loss, which is also derived from SIoU (Gevorgyan, 2022).

The bounding box regression loss function is expressed as

Equation 13.

LShape−IoU =  1 − IoU + distanceshape + 0:5 �Ω
shape, (13)

Finally, we combine Wise-IoU and Shape-IoU to propose a new

loss function, Wise-ShapeIoU. Wise-IoU reduces the impact of low-

quality samples on bounding box regression, and Shape-IoU

accounts for the effect of shape and aspect ratio on localization

accuracy. The Wise-ShapeIoU loss function improves the detection

of fish behavior, achieving more accurate localization by addressing

the diversity of scales, shapes, and features. Its complete

mathematical formulation is formally defined in Equation 14.

LWise−ShapeIoU = LWIoUv3 � (1 − IoU + distanceshape +  0:5 

�Wshape ) : (14)
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3 Materials

3.1 The aquaculture management of
greater amberjack

The experiments in this study were conducted at the Zhanjiang

Bay Laboratory in Zhanjiang, Guangdong Province, using a total of

200 greater amberjack fish as experimental subjects. These fish were

temporarily housed in several recirculating water tanks (50 cm × 50

cm × 40 cm), each with a water capacity of approximately 100 liters.

Prior to the experiment, the fish were acclimated to the

experimental environment for one week to adjust to the new

conditions. During the experimental period, the researchers fed

the fish twice a day, once in the morning and once in the evening, to

ensure their health and promote normal growth.

To maintain optimal water quality, each tank was equipped

with an automated recirculation system that efficiently removed fish

excrement. After being processed by a biological filter, the water was

returned to the tank. The dissolved oxygen level in the water was

maintained above 8.0 mg/L using an oxygen pump to ensure the

fish school grew in an ideal water quality environment. The initial

water temperature was set to 20°C and kept stable by a control

system. Feeding was discontinued 24 hours before the experiment

to ensure the fish were in optimal health.
3.2 Experimental design and operation

The experimental setup included 20 recirculating water tanks, a

computer, a Tplink network camera, and a camera mount. Each

camera had a resolution of 2560×1440 and was capable of capturing

video at 25 frames per second. The researchers designed five sets of

temperature experiments, each consisting of four water tanks, with

10 fish in each tank, ensuring a moderate fish school density that

would not interfere with the experimental results. The initial water

temperature was set to 20°C and gradually increased via the heating

system, with target temperatures set to 21°C, 24°C, 27°C, 30°C, and

33°C to observe the behavioral changes of the fish under different

temperature conditions (Wiles et al., 2020).

The water temperature for each experimental group was controlled

by the system, with the temperature increasing by 1°C every 4 hours

until the target temperature was reached. Experimental data were

recorded using Tplink’s TL-IPC44B series network cameras, and all

video footage was stored on a Hikvision DVR. The cameras were

positioned directly in front of the tanks and carefully adjusted to ensure

full coverage of the tank’s activity area. After the experiment, the video

footage was reviewed to analyze the behavior of the fish and further

investigate the effects of temperature variations on their activity.The

experimental setup is shown in Figure 8.
3.3 Observation of anomalous behavior

As ectothermic animals, fish experience body temperature

fluctuations in response to changes in water temperature, which
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directly impacts their physiological activities and behavioral

patterns (Abram et al., 2017). Juvenile fish, in particular, exhibit

lower vitality and are highly sensitive to water temperature changes,

often manifesting distinct abnormal behaviors (Li et al., 2022;

Trippel, 1995). This experiment aims to observe behavioral

changes in fish under varying temperature conditions, facilitating

the early detection of potential health risks and preventing large-

scale mortality events.

In low-temperature environments, Greater Amberjack exhibit a

marked reduction in activity levels. Many fish remain stationary at

the bottom of the tank for prolonged periods, with minimal

movement, and some display irregular swimming patterns.

Conversely, in high-temperature environments, certain fish

exhibit upward swimming behavior, tilting their heads upward,

likely in an attempt to find more comfortable positions in response

to excessive water temperatures. These observed abnormal

behaviors not only provide critical training data for object

detection algorithms but also offer practical insights for

temperature regulation in aquaculture management.
3.4 DataSets

The image dataset for object detection in this study was derived

from videos recorded during experiments. A TP-Link TL-IPC44B

camera (resolution: 2560×1440, frame rate: 25 FPS) was positioned

vertically to cover the entire activity area of the aquarium. Continuous

30-day recordings encompassed fish behaviors during morning and

evening periods, including hypoxia-associated swimming patterns

(characterized by upward orientation with head toward the tank

surface) and benthic resting behavior (defined as stationary

positioning at the tank bottom exceeding 30 seconds). Videos were

captured at 20 frames per second (FPS). Key frames were extracted at

2-second intervals from each video, followed by manual screening and

image normalization to 640×640 resolution, ultimately yielding 1,312

images for model training.Given the homogeneous experimental

background, multiple data augmentation techniques were

implemented to enhance dataset diversity. These included affine

transformations, random cropping, horizontal flipping, Gaussian

noise injection, and random adjustments to brightness and contrast.

Through thesemethods, the dataset was augmented to 2,893 images for
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subsequent analysis.To ensure the effectiveness of training our deep

learning model, the collected dataset of fish abnormal behavior images

was randomly divided into training, validation, and testing sets using a

7:2:1 ratio. The training set is used to continuously update and optimize

model parameters, the validation set serves to evaluate performance

and adjust hyperparameters during training, and the testing set is

employed to assess the model’s generalization ability upon completion

of training. All image data were annotated using the LabelImg tool,

which included the target locations of abnormal fish behavior. After the

annotations were completed, XML files were generated. These

annotation data provided the necessary foundation for subsequent

deep learningmodel training, aiding in improving themodel’s accuracy

and robustness.
3.5 Experimental environment and
parameter settings

All experiments were conducted on the same computer, with

hardware configuration including a 13th Gen Intel(R) Core(TM) i7-

13700KF processor and NVIDIA GeForce RTX 4070 Ti SUPER

GPU, and the operating system was Windows 10. To thoroughly

evaluate the model’s performance, the experiment ran for a total of

300 training epochs, with a batch size of 32 and a learning rate set to

0.01. The SGD optimizer was used to optimize the training process,

ensuring the model meets the fast detection requirements while

maintaining high accuracy.

By training the fish behavior data under different temperature

conditions, the experiment aimed to achieve high detection

accuracy to enable real-time monitoring of abnormal fish

behavior and provide alerts. This training process is of great

significance for validating the application of object detection

algorithms in real-world aquaculture environments.
4 Results and analysis

4.1 Evaluation metrics

In this study, the proposed model is comprehensively evaluated

using six established metrics: Precision
FIGURE 8

Images of different behaviors captured by camera.
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(P), Recall (R), mean Average Precision (mAP), Giga Floating-

point Operations (GFLOPs), parameter count, and Frames Per

Second (FPS). Specifically, P quantifies the classification accuracy

of positive samples, while R measures their retrieval effectiveness.

The mAP metric provides a holistic assessment of detection

precision across all object categories. Computational complexity is

characterized by GFLOPs, and model compactness is reflected in

the parameter count. Additionally, FPS serves as a critical indicator

of real-time processing capability. These metrics collectively align

with standard evaluation protocols for object detection tasks. The

formulas are as follows: Equations 15–18.

Precision =
TP

TP + FP
, (15)

Recall =
TP

TP + FN
, (16)

AP =
Z 1

0
P(r) dr, (17)

mAP = o
k
i=1APi
k

: (18)
4.2 Comparison of model improvements

The complex underwater environment and high fish density are

critical factors affecting aquatic target detection. When the density

of the fish school is too high, occlusion between the fish and motion

blur caused by rapid swimming can make the target difficult to

identify, reducing the performance of detection algorithms.

Moreover, unclear images of fish schools and the varying sizes of

the targets further complicate fish school detection. In this study, we
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performed a detailed comparison of the Precision and mAP@50 for

detecting two abnormal behaviors using the GAB-YOLO and

YOLOv8n models. The experimental results are presented in

Figure 9. Compared to the original model, GAB-YOLO

significantly improved the detection accuracy, with Precision for

the two abnormal behaviors increasing by 2.9% and 7.3%,

respectively. For mAP@50, our model showed an improvement in

detecting “hypoxic behavior” (increased from 91.1% to 91.9%, a

0.8% increase) and in detecting Bottom-lying behavior (from 87.7%

to 88.1%, a 0.4% increase). These improvements demonstrate that

our model offers higher accuracy in detecting these two abnormal

behaviors in Greater Amberjack (Seriola dumerili). Additionally,

the overall accuracy has been enhanced, indicating that our efforts

in optimizing the model for the aquaculture environment of Greater

Amberjack have been successful.
4.3 Ablation experiments

GAB-YOLO is based on an improved YOLOv8 model. To

evaluate the accuracy of our proposed abnormal behavior

detection model, we performed validation in seven different ways

while maintaining consistent initial hyperparameters throughout

each training stage. The impact of adding different modules to

YOLOv8n’s performance is shown in Table 1.

We first introduced the SobelMax, PMSRNet, and RLSHead

modules into the model and compared the enhanced version with

the original model. The results showed an increase in detection

accuracy by 1.9%, 1.7%, and 0.8%, respectively, indicating

significant improvements from each module. The SobelMax and

PMSRNet modules contributed the most to the performance gains.

The SobelMax module extracts edge information from images and

integrates it with spatial data, allowing the model to better capture

fish behavior contours and retain rich target information.
FIGURE 9

(a, b) respectively illustrate the precision and mAP@50 comparisons between Ours and YOLOv8n.
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This improvement enhances the model’s ability to handle

boundary and motion blur, as well as to detect occluded and

overlapping targets in complex underwater environments. The

PMSRNet module, based on partial convolution, applies

multiscale convolutions to part of the information, enriching the

model’s ability to extract fine details. The remaining information is

passed directly, retaining the richness of the original features,

and then fused together. This approach enhances the model’s

ability to detect various abnormal behaviors in fish schools and

reduces redundancy.

The RLSHeadmodule not only improved detection accuracy but also

minimized model parameters, thanks to the use of shared convolution

and the introduction of the DBBmodule. The shared convolution allows

the model to interactively regress classification information while making

the model more lightweight. Meanwhile, the DBB module extracts both

low-level and high-level feature maps from the input image and fuses

them, utilizing the image’s fine details and semantic data to prevent

accuracy loss and improve small target detection.

Building on the advantages of the lightweight RLSHead module, we

incorporated the PMSRNet and SobelMax modules. Experiments show

that these three modules are highly complementary, significantly

improving the model’s accuracy, parameter size, and FLOPs.

Lastly, loss functions play an essential role in enhancing model

performance without introducing additional complexity. We introduced

Shape-IoU andWIoU, and the results showed that their combination can

better handle the diversity of scales, shapes, and features in fish behavior,

leading to more accurate localization without increasing complexity.

Ultimately, the GAB-YOLO model was developed, reducing the model’s

parameters and FLOPs by 36.7% and 28.4%, respectively, while

improving Precision by 5.1%. This demonstrates the significant impact

of the proposed improvements on model optimization.
4.4 Model comparison

To further evaluate the detection performance of the proposed

model, we compared it with several mainstream object detection
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algorithms, including SSD (Liu et al., 2016), RetinaNet (Lin, 2017),

Mobilenet_v3-YOLO (Howard et al., 2019; Bochkovskiy et al., 2020),

YOLOv5n, YOLOX-tiny, YOLOv7tiny, YOLOv9t (Wang et al.,

2025), YOLOv10n (Wang et al., 2024), and YOLOv11n (Khanam

and Hussain, 2024). The evaluation metrics included Precision,

Recall, mAP@50, Parameters, and FLOPs. The experimental results

are summarized in Table 2. All benchmark models were retrained

and fine-tuned under identical training protocols (SGD optimizer,

learning rate of 0.01, 300-epoch duration).

Compared to single-stage models like SSD and other YOLO

variants, our model showed clear improvements across all metrics.

Specifically, in terms of Precision, our model outperformed

Mobilenet_v3-YOLO by 12.1%, and exceeded YOLOv8n,

YOLOv5n, YOLOX-tiny, YOLOv7-tiny, YOLOv9t, YOLOv10n,

and YOLOv11n by 5.1%, 4.7%, 4.4%, 8.9%, 2.6%, 2.8%, and 4.3%,

respectively. In terms of Parameters, our model is smaller than all

other models, with a 36.7% reduction compared to the original

YOLOv8n. Regarding FLOPs, our model achieves 5.8G, a 28.4%

reduction from the original model. Overall, our model has significant

advantages in Precision, Parameters, and FLOPs.This study primarily

focuses on achieving a balance between detection accuracy and model

lightweight design. GAB-YOLO demonstrates remarkable efficiency

advantages: compared with the lightweight models YOLOX-tiny and

YOLOv7-tiny, it reduces computational load by 20.5% and 56.1%,

respectively, and decreases the parameter count by 62.0% and 69.4%.

Additionally, its frame rate is 157.6% higher than that of YOLOX-tiny

and 104% higher than that of YOLOv7-tiny. These improvements

significantly enhance detection speed and resource utilization,

making GAB-YOLO highly competitive for real-time monitoring

and edge device deployment, with overall performance that fully

meets practical application requirements.

To further evaluate the model’s detection capabilities across

different scenarios, we tested it under conditions such as occlusion,

varying target scales, and motion blur. As shown in Figure 10, the

detection performance comparison of different models reveals that,

in occlusion scenarios, YOLOv8n suffered from false negatives,

while GAB-YOLO showed better detection accuracy. In the varying
TABLE 1 Ablation study on detection performance and complexity, with the best results highlighted in bold, and the second-best results highlighted
in red.

SobelMax PMSRNet RLSHead Shape-IoU WIoU P (%) mAP@0.5
(%)

Parameters
(MB)

FLOPs (G)

83.4 89.4 3.0 8.1

✓ 85.3 89.0 3.0 8.3

✓ 85.1 89.6 2.6 7.1

✓ 84.2 89.4 2.4 6.5

✓ ✓ 86.5 89.7 2.0 7.5

✓ ✓ ✓ 88.1 90.3 1.9 5.8

✓ ✓ ✓ ✓ 87.0 89.3 1.9 5.8

✓ ✓ ✓ ✓ ✓ 88.5 90.0 1.9 5.8
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T
b

ABLE 2 Experimental results of Ours and other object detection models on the dataset presented in this paper, with the best results highlighted in
old, and the second-best results highlighted in red.

Models P (%) R (%) mAP@0.5
(%)

mAP@
[0.5:0.95] (%)

Parameters
(MB)

FLOPs (G) FPS (f · s−1)

SSD 86.3 59.3 82.9 51.7 26.4 116.2 195

RetinaNet 88.1 59.3 81.0 45.2 36.2 206.0 61

Mobilenet_v3-
YOLO

76.4 40.9 64.8 59.1 2.3 5.4 76

YOLOv5n 83.8 83.2 88.1 65.8 2.5 7.1 120

YOLOX-tiny 84.1 88.8 92.2 60.3 5.0 7.5 66

YOLOv7-tiny 79.6 80.5 87.1 60.9 6.2 13.2 84

YOLOv8n 83.4 82.7 89.4 64.6 3.0 8.1 158

YOLOv9t 85.9 80.7 87.8 67.8 2.6 10.7 49

YOLOv10n 85.7 82.7 90.7 68.2 2.7 8.4 114

YOLOv11n 84.2 82.2 89.2 68.3 2.6 6.3 95

GAB-YOLO(Ours) 88.5 77.0 90.0 66.8 1.9 5.8 172
F
rontiers in Marine Sci
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FIGURE 10

Comparison of detection results of YOLOv8n, YOLOv9t, YOLOv10n, YOLOv11n, and ours in various scenarios.
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target scale scenario, GAB-YOLO demonstrated superior accuracy.

For motion blur, YOLOv8n and YOLOv10n showed varying levels

of false negatives, while GAB-YOLO performed well. Figure 11

displays the loss curves for the training and validation sets of

YOLOv8n, YOLOv9t, YOLOv10n, YOLOv11n, and GAB-YOLO.

GAB-YOLO exhibits smaller losses across all aspects compared to

YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n, which indicates

that it effectively reduces false positives and false negatives, resulting

in improved recognition accuracy and regression performance.

Figure 12 compares Precision, Recall, mAP@0.5, and mAP@

[0.5:0.95] for YOLOv8n, YOLOv9t, YOLOv10n, YOLOv11n, and

GAB-YOLO, showing that GAB-YOLO significantly outperforms

the other models.
5 Conclusions

To address challenges such as occlusion, varying target scales,

motion blur, and the trade-off between accuracy and model size in

detecting abnormal behaviors of juvenile Greater Amberjack fish

in aquaculture, we propose a novel network structure,
Frontiers in Marine Science 14
GAB-YOLO, to detect hypoxic and bottom-lying behaviors

caused by temperature changes. By incorporating the SobelMax

and PMSRNet modules, along with WiseShapeIoU, into

YOLOv8n, we enhanced the model’s ability to extract edge and

spatial features, capture detailed information, and improve the

accuracy of bounding box regression. Additionally, the

lightweight RLSHead detection head was introduced, reducing

the model’s parameters and FLOPs by 36.7% and 28.4%,

respectively, while increasing Precision by 5.1%. Experimental

results show that the proposed algorithm can detect hypoxic and

bottom-lying behaviors of juvenile Greater Amberjack fish in real-

time. The lightweight design makes the algorithm suitable for

practical use in aquaculture environments. The model can be

deployed on a monitoring platform to identify and assess the

severity of abnormal behaviors in juvenile Greater Amberjack fish,

enabling aquaculture operators to take timely actions to reduce

such behaviors, thus improving yield and reducing losses. Future

research will focus on three major directions to further expand

and optimize the application potential of the GAB-YOLO model.

First, our current work primarily targets abnormal behavior

detection in juvenile Greater Amberjack, whose excellent
FIGURE 11

Comparison of bounding box loss, classification loss, and DFL loss values for different models on training and validation sets.
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performance is partly due to the uniformity in body shape and

behavior within this species. However, significant differences exist

among fish species in terms of morphology, swimming patterns,

and background conditions, which may limit the direct

applicability of the model to other species (e.g., tuna, grouper)

or to large-scale aquaculture scenarios (such as offshore cages or

recirculating water systems). To address this, we plan to pursue

cross-species detection by optimizing the SobelMaxDS module to

better adapt to the morphological characteristics of different fish,

incorporating dynamic deblurring convolution techniques to

alleviate motion blur caused by high-speed swimming, and

integrating domain adaptation methods to enhance the model’s

generalization ability in diverse aquaculture environments.

Second, considering the practical requirements for real-time

monitoring with low latency, we propose to adopt hierarchical

quantization and knowledge distillation strategies. In combination
Frontiers in Marine Science 15
with operator fusion optimization techniques (e.g., TensorRT)

and a co-design approach for hardware and software, our goal

is to achieve efficient, low-latency real-time detection on

embedded platforms such as Jetson Nano, thus meeting the

high-speed response demands of on-site applications.Finally, in

the area of multimodal behavior analysis, we plan to integrate

environmental sensor data—such as water temperature and

dissolved oxygen levels—and develop a fusion model based on

spatiotemporal attention mechanisms to establish dynamic

correlations between environmental parameters and behavioral

abnormalities. For instance, when dissolved oxygen levels drop

below a certain threshold, the model can autonomously increase

the detection weight for hypoxic behavior, while a joint

confidence calibration mechanism will be employed to reduce

false alarm rates, thereby further enhancing detection accuracy

and robustness.
FIGURE 12

Comparison of fit curves for precision, recall, mAP@0.5, and mAP@[0.5:0.95] for different models.
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