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Synthetic aperture radar (SAR) images have all-weather observation capabilities

and are crucial in ocean surveillance and maritime ship detection. However, their

inherent low resolution, scattered noise, and complex background interference

severely limit the accuracy of target detection. This paper proposes an innovative

framework that integrates super-resolution reconstruction and multi-scale

maritime ship detection to improve the accuracy of marine ship detection.

Firstly, a TaylorGAN super-resolution network is designed, and the TaylorShift

attention mechanism is introduced to enhance the generator’s ability to restore

the edge and texture details of the ship. The Taylor series approximation is

combined to optimize the attention calculation, and a multi-scale discriminator

module is designed to improve global consistency. Secondly, a hierarchical

multi-scale Mask R-CNN (HMS-MRCNN) detection method is proposed, which

significantly improves the multi-scale maritime ship detection problem through

the cross-layer fusion of shallow features (small targets) and deep features (large

targets). Experiments on SAR datasets show that TaylorGAN has achieved

significant improvements in both peak signal-to-noise ratio and structural

similarity indicators, outperforming the baseline model. After adding super-

resolution reconstruction, the average precision and recall of HMS-MRCNN

are also greatly improved.
KEYWORDS

synthetic aperture radar (SAR), super-resolution reconstruction, marine ship detection,
multiscale feature fusion, Mask R-CNN, TaylorShift attention mechanism
1 Introduction

Synthetic aperture radar (SAR) as an active microwave remote sensing imaging

technology, with its all-weather, all-day capability, and low dependence on weather and

lighting conditions, has important applications in the fields of marine surveillance, ship

detection, etc (Gao et al., 2024; Meng et al., 2024; Wu et al., 2024). SAR imagery is able to
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provide high-resolution data under complex weather conditions,

which makes it an ideal tool for monitoring ship activities at sea.

However, low-resolution SAR images can have an adverse effect on

the identification of marine vessels. Due to the low resolution of the

equipment and the complex imaging environment, low-resolution

images often lack sufficient details, especially in complex

backgrounds, and are often affected by scattering noise,

background clutter, etc (Li et al., 2023; Cao et al., 2024). Using

super-resolution reconstruction technology, more image details can

be restored without increasing the hardware costs. Therefore, the

development of a method that combines image super-resolution

reconstruction with target detection can not only improve the

utilization value of SAR images but also provide more efficient

technical support for ensuring maritime safety and monitoring

maritime traffic (Tang et al., 2024).

Super-resolution (SR) technology, as an effective means to

improve image quality, has received widespread attention in SAR

image processing (Jiang et al., 2024). SR algorithms for images are

mainly categorized into two types: traditional methods and

methods of deep learning. In traditional methods, interpolation

methods predict unknown pixel information based on known pixel

points to improve image resolution. Common interpolation

methods include nearest neighbor interpolation (Blu et al., 2004),

bilinear interpolation (Tong and Leung, 2007), and bicubic

interpolation (Chang et al., 2004). Although the interpolation

method is faster in reconstruction, it does not utilize a priori

knowledge in the low-resolution image, so the reconstructed

high-resolution image lacks the main texture information,

whereas in reconstruction-based methods a priori information is

introduced as constraints to reconstruct the image. The main

reconstruction-based methods are the convex set projection

method (Tom and Katsaggelos, 1996), the iterative inverse

projection method (Irani and Peleg, 1991), and the maximum a

posteriori probability estimation method (Liu and Sun, 2013).

Reconstruction-based methods have limited utilization of prior

knowledge, and learning-based methods, in order to improve this

problem, introduce external datasets for training in order to learn

more information about the image so that the reconstruction results

contain more high-frequency details. Learning-based methods can

be categorized into shallow learning methods and deep learning

methods. Shallow learning methods mainly include based sample

learning (Freeman et al., 2002), based neighborhood embedding

(Chang et al., 2004), and based sparse representation methods (Xu

et al., 2019). Shallow learning methods can achieve better results

when trained on small-scale datasets, but the learning ability of the

model needs to be improved. In recent years, deep learning-based

methods have made great breakthroughs in the work of super-

resolution reconstruction of images, and the deep learning methods

are mainly based on three types of baseline networks: convolutional

neural networks, generative adversarial networks, and attention

mechanism networks. In 2014, Dong et al. proposed a super-

resolution convolutional neural network (SRCNN), which is

firstly applied to SR reconstruction, and the network convolves

the input image through three layers (feature extraction and

representation layer, nonlinear mapping layer, and reconstruction
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layer), it realizes the mapping from low resolution to high

resolution, and the reconstruction effect on image resolution is

better than the traditional reconstruction methods (Dong et al.,

2014). In 2017, Legid et al. proposed the super-resolution generative

adversarial network (SRGAN), which is the first time that

generative adversarial networks (GANs) have been applied to the

field of SR reconstruction. The network makes good use of the

generative-adversarial properties of GAN networks, the generator

and discriminator are trained alternately until convergence, the

output shows more realistic texture details compared to traditional

reconstruction methods, and the resolution is significantly

improved visually (Ledig et al., 2017). In 2018, Zhang et al.

proposed the residual channel attention network (RCAN),

introduced the channel attention mechanism into the SR

reconstruction task, and designed a deep residual channel

convolutional network (Zhang et al., 2018). The network can

learn the information of different channels of the feature map, set

different weights for each channel, and finally reconstruct a high-

resolution image. In recent years, with the excellent performance of

Transformer in other image processing fields, scholars have begun

to pay attention to the combination of Transformer and SR tasks. In

2020, Yang et al. proposed a texture transformation network

(TTSR) for image super-resolution, which can combine low-

frequency and high-frequency information to learn the deep

correspondence of images, thereby stacking texture details in

high-resolution images across scales and enhancing the

reconstruction results (Yang et al., 2020). Due to the excellent

performance of deep learning in optical image super-resolution,

deep learning-based methods have been applied to SAR image

super-resolution reconstruction in recent years. In 2018, Wang et al.

directly applied the SRGAN network to the Terra-SAR dataset and

achieved excellent results in reconstruction accuracy and

computational efficiency (Wang et al., 2018). In 2019, Gu et al.

proposed a DGAN network for the super-resolution reconstruction

of pseudo-high-resolution SAR images, which effectively removed

noise from SAR images and improved the resolution of SAR images

(Gu et al., 2019). In 2020, Shen et al. used residual convolutional

neural networks to improve the spatial resolution of polarimetric

SAR images, which was superior to traditional methods in terms of

image detail preservation (Shen et al., 2020). In 2022, Smith et al.

proposed a SAR image super-resolution reconstruction method

based on residual convolutional neural networks, which was

superior to traditional methods in terms of reconstruction

accuracy and computational efficiency. This method combines

ViT with CNN for the super-resolution reconstruction of near-

field SAR images, enhancing the details of the generated images

(Smith et al., 2022). In 2023, Zhang et al. proposed a learnable

probabilistic degradation model, which introduces SAR noise before

the cycle-GAN framework, learns the relationship between low-

resolution and high-resolution SAR images, and improves the

resolution of SAR images (Zhang et al., 2023a). In 2024, Jiang

et al. proposed a lightweight super-resolution generative adversarial

network (LSRGAN), which improved the resolution of SAR images

by introducing deep separable convolution (DSConv) and SeLU

activation function, and constructed a lightweight residual module
frontiersin.org
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(LRM) to optimize the GAN network for SAR images (Jiang et al.,

2024). In addition, the feature learning capability of the model is

significantly improved by combining the optimized coordinated

attention (CA) module.

The biggest feature of the traditional SAR image ship detection

algorithm is manual extraction. The manual extraction process first

preprocesses the image to reduce the image noise; secondly, sea and

land segmentation is performed to prevent the near-coastal land

area from interfering with the ship detection; finally, the ship is

detected. The constant false alarm rate (CFAR) algorithm (Baldygo

et al., 1993) is one of the most classical methods in traditional SAR

target detection. The algorithm models the ocean background

clutter and distinguishes between target ships and background

noise. CFAR algorithm does not apply to complex ocean

backgrounds or ship targets with different directions, lengths, and

widths, and its generalization performance is poor. With the

development of artificial intelligence technology, target detection

methods based on deep learning are applied by researchers in the

field of SAR ship detection, which can be divided into one-stage and

two-stage methods. One-stage methods treat all regions of the

image as potential target regions and use only one deep

convolutional network to recognize the target, which is faster,

such as the YOLO series (Redmon, 2016; Ge, 2021). Two-stage

methods use region suggestion module or selective search method

to localize and recognize targets with higher accuracy (Su et al.,

2022), such as R-CNN (Girshick et al., 2014), Faster R-CNN (Ren,

2015), Cascade R-CNN (Cai and Vasconcelos, 2018), Grid R-CNN

(Lu et al., 2019), etc. Girshick et al. applied a convolutional neural

network (CNN) for the first time to the target detection task and

built an R-CNN network, thus achieving good results. Faster R-

CNN extracts candidate frames by regional recommendation

networks (RPN) and introduces a multi-task loss function, which

shows good performance in target detection. In addition,

researchers have proposed a large number of methods for the

problem of target detection in SAR images. In the same year, Sun

et al. (2021) proposed an anchor-free ship detection framework

named CP-FCOS, which employs a category-position module to

improve localization accuracy by guiding the position regression

branch using semantic classification features. Zhang et al. (2021)

proposed a novel quadruple pyramid network consisting of four

FPNs and conducted experiments on five common SAR datasets,

achieving good results. The authors also verified that Quad-FPN has

good transferability. In 2022, Tang et al. proposed an algorithm

based on Faster R-CNN for target detection in SAR images by using

the Bhattacharyya distance (BD) instead of intersection over union

(IoU) to avoid the limitations of the commonly used intersection

over union ratio in target detection networks for small target

recognition, which was evaluated on the LS-SSDD-v1.0 dataset

and achieved significant detection results (Tang et al., 2022). In

2023, Zhang et al. proposed the SCSA-Net to address the effects of

complex noise and land background interference on target

detection in SAR images and also proposed the global average

precision loss (GAP loss) to solve the “fractional bias” problem

(Zhang et al., 2023b). In 2024, Yasir et al. (2024a) proposed the
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lightweight YOLOShipTracker model, which was optimized for

YOLOv8n via the HGNetv2 reconciliation header and combined

with a novel multi-target tracking technique (C-BIoU) to enable

efficient, real-time tracking of ships in short-duration SAR image

sequences. In the same year, Yasir et al. (2024b) also developed

SwinYOLOv7, which combines YOLOv7 with the Swin

Transformer and the CBAM Attention Module to demonstrate

excellent performance in a variety of SAR datasets, especially in

cluttered and near-shore environments. In addition, MGSFA-Net, a

multi-scale global scattering feature association network for SAR

ship identification, is introduced by Zhang et al. (2024). Their

method can effectively capture the intrinsic physical scattering

features and significantly improve the identification performance

even with limited training data. However, the SAR image itself has

limited resolution, which makes it difficult to present key details

such as ship contours and deck structures, which will affect the

detection algorithm’s complete identification of targets. At the same

time, the existing target detection methods still have the problem of

lack of balance when facing multi-scale targets, which makes it

difficult to take into account the small and large targets, resulting in

some scale targets being missed.

In order to solve the abovementioned problems, this paper

proposes a hierarchical multi-scale marine ship detection method

based on Mask R-CNN to accurately detect ships and combines the

TaylorGAN super-resolution reconstruction algorithm to enhance

the resolution of SAR images.

The main contributions of this paper are as follows:
1. The TaylorGAN super-resolution reconstruction algorithm

is proposed by introducing the TaylorShift attention

mechanism in the GAN network to improve the

resolution of ship image details, especially to enhance the

sharpness of ship edges;

2. A hierarchical multi-scale marine ship detection method

based on Mask R-CNN is proposed. Different

convolutional layers are used to extract the large and

small target features of SAR images, respectively. The

extracted features are introduced into the RoI Align layer.

The multi-scale features are balanced through L2

normalization to improve the detection accuracy.

3. The problem of insufficient detection of small targets is

solved by fusing multi-scale feature information to avoid

the degradation of detection accuracy due to low resolution.
The subsequent sections of the paper are organized as follows:

Section 2 presents a detailed description of the proposed

framework, including the TaylorGAN-based super-resolution

reconstruction method and the HMS-MRCNN multi-scale ship

detection architecture. Section 3 introduces the SAR datasets used

in this study, elaborates on the experimental setup, outlines the

evaluation metrics, analyzes the detection performance across

various models, and reports results from comprehensive ablation

studies. Section 4 concludes the paper by summarizing the major

findings and highlighting potential directions for future research.
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2 Methodology

This section first describes the TaylorGAN super-resolution

reconstruction network. Secondly, the hierarchical multi-scale

Mask R-CNN architecture proposed in this study is described

in detail.
2.1 Super-resolution reconstruction
network architecture

Existing super-resolution reconstruction algorithms are often

faced with the problems of blurred edges and degraded structures

when directly applied to SAR images, which make it difficult to meet

the needs offine reconstruction. For this reason, this paper proposes

a network structure called TaylorGAN to improve the super-

resolution quality of SAR images, and the overall architecture is

shown in Figure 1, including a generator and a discriminator.

The generator takes a low-resolution SAR image as inputs and

gradually restores the resolution of the image through the multilayer

TaylorShift attentional module and the step-by-step upsampling

structure while enhancing the ability to model the global structure

and local details of the image. Although the TaylorShift mechanism

itself does not directly enhance the image details, the model can

effectively capture the high-frequency regions such as hull contours

and edges with the help of the hierarchical upsampling and feature

fusion structure so as to realize high-quality detail reproduction.

The discriminator adopts a multi-scale structure design,

combined with the TaylorShift attention module, to extract

features at multiple spatial resolutions, perceive the differences

between local details and the global structure of the image, and
Frontiers in Marine Science 04
ultimately output the true/false prediction results through the

classification header and to effectively optimize the training

direction of the generator.

2.1.1 Generator
The upper part of Figure 1 is the generator of TaylorGAN,

which can be divided into three main modules: input module,

feature extraction module, and image reconstruction module. The

low-resolution SAR image is used as input, denoted as ILR ∈
RC�H�W, where C represents the number of image channels, and

H and W represent the height and width of the image, respectively.

First, the initial features are extracted by the embedding module

composed of convolutional layers and ReLU activation function,

and it is represented as x0 ∈ RC�H�W. Subsequently, the embedded

features are processed by the layer Grid TaylorShift Block, and the

attention mechanism is used to capture the long-distance

dependencies in the image and model the local semantic

information. The TaylorShift attention mechanism replaces the

Softmax function by Taylor series expansion, greatly reducing the

computational complexity until the resolution is increased to IHR ∈
RC�Kh�Kw. In order to gradually improve the image resolution, the

generator designs multiple upsampling modules to improve the

reconstruction accuracy by gradually expanding the spatial scale.

After each level of upsampling, the TaylorShift attention module is

stacked to further enhance the feature representation ability,

especially the modeling ability of high-frequency details such as

edges and contours, thereby improving the clarity and structural

consistency of the generated image. Finally, through a set of

convolutional layers and Tanh activation functions, the feature

map is mapped to the output image at the target resolution ISR ∈
RC�Rh�Rw, and r is the magnification factor.
FIGURE 1

TaylorGAN network architecture.
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2.1.2 Discriminator
The lower part of Figure 1 shows the discriminator of

TaylorGAN, whose input is the super-resolution SAR image

generated by the generator. To achieve multi-scale discrimination,

the image is divided into three blocks of different scales (P, 2P, and

4P), corresponding to the feature sequences of y0 ∈ RC�H
P�W

P , y1 ∈
RC�H

2P�W
2P ,   and y2 ∈ RC�H

4P�W
4P , respectively. Each set of sequences is

sent to the corresponding TaylorShift block through linear mapping

to extract semantic features at different scales. Finally, the

discriminator uses a downsampling module to reduce the

resolution of the feature map, and the connection block fuses

features of different scales so that the model can perceive the

global structure and local details of the image at the same time.

To evaluate the overall authenticity of the image, a [CLS] tag is

added at the end of the discriminator. This tag interacts with all

image tokens through a multi-layer attention mechanism, and only

the output features of this tag are used as the classifier input so that

the discriminator can comprehensively judge the global consistency

and detail rationality of the image. Finally, the real/generated

discrimination result is output through the classification head to

assist the generator in optimizing the image quality.

2.1.3 TaylorShift attention mechanism
The traditional self-attention mechanism has a computational

bottleneck, and its time and space complexity are both O(N2),

where N is the length of the token sequence (that is, the number of

patches in the image). When processing high-resolution images

(such as 256 × 256), the memory usage and inference time increase

dramatically, which seriously restricts the scalability of the model.

TaylorShift (Nauen et al., 2025) Attention Mechanisms is a variant

of Transformer that approximates the exponential operations in a

Softmax function by Taylor series expansion. The TaylorShift

attention mechanisms are categorized into direct TaylorShift and

efficient TaylorShift.

1. Direct-TaylorShift

The Taylor approximation is applied to Softmax in Taylor-

Softmax to avoid the computation of the exponential function, and

the k-order (kth) Taylor expansion formula is Equation 1:

exp(x) ≈ o
k

n=0

xn

n !
(1)

The Taylor-Softmax formula is Equation 2:

T − SM(K)(QKT ) = normalize o
k

n=0

(QKT )n

n !

� �
(2)

In Direct-TaylorShift, Taylor-Softmax is used directly instead of

Softmax to compute the attention weights and multiply the computed

result with the value matrix V. The formula is Equation 3:

Y =
ok

n=0
(QKT )n

n !

� �
V

oi ok
n=0

(QKT )ni
n !

� � (3)
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Y is the outputs, and o
i
o
k

n=0

(QKT )ni
n !

� �
is the same Taylor

expansion operation performed on each line of QKT , and

normalization is performed on each line. The denominator

ensures that the output is normalized across tokens, making the

weights valid for each token. This expression is suitable for

scenarios with a small number of tokens (such as 32 × 32 and

below). It significantly reduces the reliance on exponential functions

and is faster to calculate, but the computational complexity is O(

N2d).

2. Efficient-TaylorShift

For further optimization, TaylorShift introduced an efficient

implementation form Efficient-TaylorShift. If the length of the

feature sequence exceeds a certain threshold, it is more

appropriate to use Efficient-TaylorShift. It is performed by

assigning Taylor-Softmax values to the matrices Q and K and

moving the normalization operation after multiplying it with the

value matrix V. The formula for normalization is Equations 4–6:

Ynom = 1 + QKT +
1
2
(QKT )⊙ 2

� �
V (4)

Ydenom = 1 + QKT +
1
2
(QKT )⊙ 2

� �
1N (5)

Y =
Ynom

Ydenom
(6)

ȯ denotes Hadamard multiplication (element-level

multiplication), 1N denotes a vector of length N with all ones.

Ynom denotes the weighted attention score, and Ydenom denotes the

value used for normalization.

By changing the calculation order, Efficient-TaylorShift

reduces the computational complexity of traditional attention

from O(N2) to O(Nd3), which is suitable for processing tens of

thousands of tokens in high-resolution images. The reduction in

computational complexity enables the model to better capture

global dependencies and improve the integrity and consistency of

image structure.

In this paper, the TaylorShift attention mechanism is integrated

into two different module structures: TaylorShift Block and Grid

TaylorShift Block, which correspond to two application scenarios of

sequence modeling and spatial modeling, respectively. TaylorShift

Block is suitable for processing flattened image patch token

sequences. The input is a one-dimensional token sequence. The

module calculates the long-distance dependencies between different

tokens through TaylorShift attention to model the overall semantic

information of the image. In contrast, Grid TaylorShift Block is

designed for feature map input that retains the spatial structure of

two-dimensional images. The module calculates self-attention along

the row and column directions of the image, respectively, to more

efficiently capture local spatial relationships in the image, such as

edge and texture information.
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2.2 HMS-MRCNN

The paper proposed a hierarchical multi-scale SAR image

marine ship detection method based on Mask R-CNN as shown

in Figure 2, which is mainly divided into three parts, i.e., the feature

extraction module, the region suggestion network, and the

prediction module. The feature extraction and fusion module is

used to extract the multiscale features of the ship in the SAR image

and fuse the different features. The region suggestion network is

used to identify potential regions of interest. The prediction module

classifies and regresses the candidate boxes and outputs the final

bounding box.

2.2.1 Feature extraction module
In the feature extraction module, the SAR images are fed into

the network, and the features are first extracted by a backbone

network consisting of five convolutional layers that capture the

multi-scale features of the ship. Conv1 and Conv2 are feature

preprocessing modules in the initial stage of the model. They are

mainly used for preliminary feature encoding and spatial

downsampling of the input SAR images, helping the model to

extract clearer local structural information from the original images.

The two middle layers are shallow convolution layers (Conv3–

Conv4), which mainly capture the local structural information of

small-scale ships. The last layer is a deep convolution layer (Conv5)

used to obtain high-level semantic features and contextual
Frontiers in Marine Science 06
relationships of the image. The output feature maps of Conv3

and Conv4 are subjected to 2 × 2 maximum pooling operations to

reduce their spatial size so that they maintain the same spatial

resolution as the large-scale ship feature maps (such as the feature

maps of Conv5). In order to eliminate the numerical differences

between feature maps of different layers, the spliced feature maps

need to be L2-normalized to ensure that the numerical range of each

feature is consistent.

The pooled small-scale feature map, together with the deep

feature map (Conv5 output), is input into RoI Align for

further processing.
2.2.2 Regional recommended networks—RPNs
The feature maps extracted by the convolutional layers are fed

into the RPN, where the small ship feature maps are sequentially

passed through cascading convolutional layers of sizes 1 and 3 to

ensure that the feature maps can be matched with the output

features of the backbone network. The RPN recognizes the ship

features of the SAR image for bounding box regression and

generates a set of RoI that are considered as possible ship

locations, which include the ship regions in the SAR image of the

SAR image for the bounding box regression values. In addition, the

RPN needs to determine whether each RoI contains a ship and the

precise location of the ship.

RPN uses a 3 × 3 convolutional filter to scan the entire feature

map. At each ship location in the feature map, RPN generates
FIGURE 2

HMS-MRCNN network architecture.
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multiple anchor boxes with different aspect ratios, which are used to

capture ship targets of different sizes and shapes. After generating

the anchor boxes, RPN performs two steps: target discrimination

and bounding box regression. In the target discrimination task,

RPN determines whether the anchor box contains a ship target or

not and applies a binary classification method to marine ship

detection, i.e., whether the anchor box contains a ship or not, and

scores it. RPN performs an accurate bounding box regression task

(Bbox) on the anchor boxes that are judged to be ships, adjusting

the sizes and shapes of the boxes to better fit the ship targets.

2.2.3 Forecasting module
The low-level feature map and the output results of the five-

layer convolution are fused through RoI Align. RoI Align first

divides each RoI into a fixed number of sub-regions. In each sub-

region, RoI Align uses bilinear interpolation to extract image

features. These feature blocks are spliced together to form a

unified feature map. On this basis, L2 normalization is performed

to ensure that the features between different RoI are numerically

consistent. The spliced and normalized feature maps are further

processed through a 1 × 1 convolution layer. The processed feature

maps will be used for target classification (Softmax) and bounding

box regression (Bbox) tasks. The classification task is responsible for

determining whether each RoI contains a target, and the bounding

box regression further accurately adjusts the position of the

candidate box to ensure that the final output bounding box is

more accurate.
2.3 Loss function

2.3.1 Super-resolution reconstruction loss
function

The generated network loss function LSR can be divided into

three parts: the traditional pixel-by-pixel difference MSE-based loss

LSRpix , the content-aware loss L
SR
vgg , and the adversarial loss LSRadv based

on the VGG (Mateen et al., 2018) network.

Define the low-resolution image as LHR, the corresponding

high-resolution image as LHR, and the super-resolution

reconstructed image as LHR; the super-resolution magnification is

r, andW×H and rW � rH are used to denote the size of the LLR and

LHR images, respectively, while G denotes the super-resolution

reconstruction process of the generator, and D denotes the

authenticity process of the discriminator.

The formula for the MSE pixel loss LSRpix is Equation 7:

LSRpix =
1

r2WH o
rW

x=1
o
rH

y=1
(IHRx,y − ISRx,y)

2 (7)

The formula for perceived loss LSRvgg is Equation 8:

Lvgg =
1

Wi,jHi,j
o
Wi,j

x=1
o
Hi,j

y=1
(∅ij (I

HR)x,y −∅ij (I
SR)x,y)

2 (8)

where ∅ij denotes the feature mapping map between the i-th

largest pooling layer and the j-th convolutional layer in the VGG
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model, and (i,j) is the corresponding feature map dimension. Wi,j

and Hi,j denote the dimensions of the current layers of the VGG19

network, respectively.

Against loss LSRadv The formula is Equation 9:

LSRadv = −E½log(D(ISR))� (9)

Because GAN needs to play a game between the generative

network and the adversarial network in training, the reconstruction

results are prone to the “artifacts” phenomenon because of the poor

stability of its network training and the difficulty of convergence of

the model. To address the abovementioned problems, this paper

combines the reconstruction quality evaluation index Structural

Similarity Index (SSIM) to introduce the structural loss function

LSRSSIM , whose formula is Equation 10:

LSRSSIM = 1 − E o
i
SSIMi

" #
(10)

where SSIMi is the structural similarity between the i-th batch of

reconstructed super-resolution image ISR of the generative network

and the reference high-resolution image IHR.

Therefore, the loss function of TaylorGAN is Equation 11:

LSR = LSRvgg + lLSRadv + hLSRpix + xLSRSSIM (11)

l, h, and x represent the weights of adversarial loss, pixel-level

loss, and structural similarity loss, respectively.

2.3.2 Marine ship detection loss function
The marine ship detection loss function is Equation 12:

Lc = Lcls + lLreg (12)

where Lcls and Lreg denote the classifier loss and the bounding

box regression loss, respectively, and l is the weight parameter. The

focal loss function is used for the classification loss, and the formula

is Equation 13:

Lcls = −o
i
ai(1 − pi)

g log(pi) (13)

g is used to control the weights of easily categorized samples,

and ai is used to solve the problem of category imbalance.

For the bounding box regression loss function, we use the CIoU

(complete intersection over union) loss function. CIoU is an

extension of IOU, which takes the center offset of the bounding

box as well as the aspect ratio into account, and it is suitable for

high-precision marine ship detection with Equation 14:

Lreg = 1 − IoU + a
r2(b, bgt)

c2
+ bv (14)

where IoU is used to compute the intersection and concurrency

ratio between the prediction frame b and the real frame bgt , r2(b,

bgt) is the Euclidean distance between the prediction frame and the

center point of the real frame, c2 is the length of the diagonal of the

smallest outer rectangle,  v denotes the consistency of the aspect

ratio, and a , and b are used to regulate the hyperparameters of

the loss.
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3 Experimental results

This section first introduces the SAR image dataset used in this

study, then describes the evaluation indicators used in the

experiment, and finally gives a comprehensive analysis of the

experimental results.
3.1 Datasets

The SSDD dataset (SAR Ship Detection Dataset) was originally

proposed by Li et al. (2017) and contains 1,160 SAR image slices,

each with a resolution of 500 × 500 pixels. The dataset uses data

from multiple satellite sources such as Sentinel-1, TerraSAR-X, and

RadarSat-2. In order to improve the computational efficiency, these

image slices are resized to 256 × 256 pixels. The selected data is

divided into three subsets: training set (70%), validation set (10%),

and test set (20%).

The SAR-Ship dataset (Wang et al., 2019) contains 102 images

from China’s Gaofen-3 satellite and 108 images from Sentinel-1.

The dataset contains 43,819 ship slices, each with a resolution of 256

× 256 pixels. This paper selects 3,000 data slices for super-resolution

and target detection experiments and divides these slices into three

subsets: training set (70%), validation set (10%), and test set (20%).
3.2 Evaluation metrics

In the super-resolution experiment, this paper uses peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM), and MSE

to evaluate the experimental effect of super-resolution

reconstruction. This paper takes the original image of each

dataset as a high-resolution image and obtains the corresponding

low-resolution image through bicubic interpolation.

PSNR is defined by MSE, which is calculated as shown in

Equation 15:

MSE(ISR, IHR) =
1
mn o

m−1

i=0
o
n−1

j=0
½IHR(i, j) − ISR(i, j)�2 (15)

IHR and ISR are high-resolution SAR images and super-

resolution SAR images, respectively, both of which have the

dimensions m� n.

The formula for PSNR is Equation 16:

PSNR(ISR, IHR) = 10 · log10
MAX2

MSE(ISR, IHR)

� �
(16)

SSIM is based on three evaluation metrics: brightness, contrast,

and structure, with Equations 17–20:

l(x, y) =
2mxmy + C1

m2
x + m2

y + C1
(17)

c(x, y) =
2sxsy + C2

s 2
x + s 2

y + C2
(18)
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s(x, y) =
sxy + C3

sxsy + C3
(19)

SSIM(x, y) = ½l(x, y)�a · ½c(x, y)�b · ½s(x, y)�g (20)

a , b , g are used to adjust the brightness, contrast, and structure

of the weight look; when it is 1, SSIM can be simplified as shown in

Equation 21:

SSIM(x, y) =
(2mxmy + C1)(2sxy + C2)

(m2
x + m2

y + C1)(s 2
x + s 2

y + C2)
(21)

where mx and my denote the means, s 2
x and s 2

y denote the

variances. sxy denotes the covariance between x and y, and C1 =

(K1L)
2 and C2 = (K2L)

2 are used to ensure the stability of SSIM.

In marine ship detection experiments, this paper uses accuracy,

recall, and mean average precision mean (mAP) as evaluation

metrics. Recall is defined as shown in Equation 22:

Recall =
TP

TP + FN
(22)

TP is true positives, which denotes the number of correct

positive samples, and FN is false negatives, which denotes the

number of incorrect negative samples. Recall is used to measure

the detection model’s rate of checking completeness. Precision is

defined as shown in Equation 23:

Precision =
TP

TP + FP
(23)

FP stands for false positives and denotes the number of false

positive samples. Precision is used to measure the model’s checking

accuracy, which is related to the false alarm probability Pf. mAP is

defined as shown in Equation 24:

mAP =
Z 1

0
p(r)dr (24)

r denotes recall, P denotes precision, and p(r) denotes the

precision–recall curve (P–R curve). The computational process of

mAP is essentially to find the area under the PRC curve. Because

mAP considers both recall and precision, it has been chosen as the

sole core measure of detection accuracy.
3.3 Experimental details

In this paper, NVIDIA GTX 4090 GPU is used to train the

network model. The training process parameters for the super-

resolution reconstruction experiments are set as follows: the initial

learning rate is 2e-4, and the learning rate decays by half after 50

iterations. The optimizer is Adam, the batch size is 8, and the total

number of epochs is 100. The training process parameters for the

marine ship detection experiment are set as follows: the initial

learning rate is 0.01, and the final learning rate is reduced to 1e-3.

The input image size is 256×256, the optimizer is Adam, and the

batch size is 8, with 150 iterations. The software applications used

included Pytorch version 1.12.0 with CUDA 12.4 and Python 3.9.
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3.4 Experimental results of super-
resolution reconstruction of SAR images

In order to evaluate the excellent performance of TaylorGAN in

the super-resolution reconstruction of SAR images, we compare it

with other super-resolution reconstruction models, and the results

of the comparison are analyzed by evaluating the metrics and visual

effects. The comparison methods include bicubic, SRCNN, SRGAN,

LSRGAN, and cycle-GAN.

3.4.1 Quantitative results
As shown in Table 1, the performance of six super-resolution

methods is evaluated across two SAR datasets, SSDD and Ship-SAR,

under an amplification factor of 4. The results indicate that

TaylorGAN achieves consistent improvements across all

evaluation metrics, outperforming both GAN-based and non-

GAN-based baselines.

On the SSDD dataset, TaylorGAN attains the highest PSNR

(25.43 dB) and SSIM (0.7931), alongside the lowest MSE (0.2481).

Among GAN-based models, it surpasses LSRGAN—the second best

performer—by 1.31 dB in PSNR, 0.0423 in SSIM, and a 0.0102

reduction in MSE. Compared to Cycle-GAN, TaylorGAN shows

more pronounced enhancements, with a 4.09-dB gain in PSNR,

0.2766 in SSIM, and 0.0072 lower MSE. Notably, when

benchmarked against non-GAN approaches such as SRCNN,

TaylorGAN yields an increase of 3.07 dB in PSNR, 0.1765 in

SSIM, and 0.0229 decrease in MSE, reflecting its superior

capability in structure preservation and noise suppression.

On the Ship-SAR dataset, similar trends are observed.

TaylorGAN has a PSNR of 24.55 dB, a SSIM of 0.7721, and an

MSE of 0.2030, outperforming other methods in all indicators.

Compared with GAN-based models, TaylorGAN surpasses

LSRGAN by 1.51 dB, 0.0754, and 0.0121 in PSNR, SSIM, and

MSE, respectively. In addition, compared with Cycle-GAN,

TaylorGAN improves by 2.75 dB, 0.2339, and 0.0468 in the three

indicators, respectively. Compared with the non-GAN baseline

SRCNN, its improvement is also very significant, with a PSNR

increase of 2.00 dB, a SSIM increase of 0.0991, and an MSE

reduction of 0.0254.
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3.4.2 Qualitative results
Figures 3 and 4 qualitatively compare the super-resolution

reconstruction results on the SSDD and SAR-Ship datasets,

respectively. These figures show the visual effects of different

models on improving the resolution of SAR images. As shown in

the figure, TaylorGAN is able to consistently generate images with

clearer textures and higher visual fidelity than other methods. In

particular, TaylorGAN is able to effectively recover the structural

details of the ship and suppress background noise, showing its

advantage in recovering fine-grained features. In contrast, non-

GAN-based models such as bicubic interpolation and SRCNN

produce significantly blurred results. Although SRCNN was

originally proposed for the super-resolution reconstruction of

natural images, it does not generalize well on SAR data due to its

simple structure and limited ability to model high-frequency

components. GAN-based models, such as SRGAN, LSRGAN, and

cycle-GAN, provide better performance than non-GAN baselines

by generating clearer contours and richer textures. However, these

methods often suffer from artifacts or excessive noise. Overall,

the visual results in Figures 3 and 4 demonstrate the superior

perceptual quality of TaylorGAN across different SAR image

scenarios, further confirming its effectiveness in high-fidelity SAR

image reconstruction tasks.
3.5 Experimental results of marine ship
detection for SAR images

To verify the effectiveness of the proposed HMS-MRCNN

method, this paper compares it with several representative object

detection algorithms, including YOLO v8, Quad-FPN (Zhang et al.,

2021), Faster R-CNN, Cascade R-CNN, and Grid R-CNN. In

addition, this paper also tests high-resolution images without

super-resolution reconstruction methods to evaluate the

contribution of SR methods.

3.5.1 Quantitative results
Table 2 presents the quantitative comparison of the proposed

HMS-MRCNN framework against several object detection models

on the SSDD and Ship-SAR datasets. The evaluation metrics

include precision, recall, and mAP50, which comprehensively

reflect the accuracy and robustness of each method.

On the SSDD dataset, the proposed HMS-MRCNN (SR)

achieves the highest performance in all metrics, with accuracy of

93.0%, recall of 90.3%, and mAP50 of 93.1%. These values exceed

those of the high-resolution input version (HMS-MRCNN (HR)) as

well as other traditional detectors. Notably, the mAP50 of HMS-

MRCNN (SR) is improved by 1.9% compared to Quad-FPN,

demonstrating the effectiveness of integrated super-resolution

reconstruction in enhancing detection results.

On the Ship-SAR dataset, the proposed method maintains its

leading position, achieving an accuracy level of 91.9%, recall of

93.0%, and mAP50 of 92.6%. This performance exceeds that of

Quad-FPN and other classic detectors.
TABLE 1 Comparison of the metrics of different methods at an
amplification factor of 4.

Method
SSDD Ship-SAR

PSNR SSIM MSE PSNR SSIM MSE

Bicubic 19.51 0.3713 0.2594 20.43 0.4065 0.2619

SRCNN 22.36 0.6176 0.2710 22.56 0.6730 0.2284

SRGAN 23.31 0.7146 0.2519 21.68 0.5211 0.2405

LSRGAN 24.12 0.7508 0.2373 23.04 0.6970 0.2151

Cycle-GAN 21.34 0.5175 0.2413 21.80 0.5382 0.2498

TaylorGAN 25.43 0.7931 0.2481 24.55 0.7721 0.2030
The best results are indicated in bold.
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Overall, the experimental results verify that the proposed HMS-

MRCNN (SR) not only improves the average detection accuracy but

also enhances its stability at different scales and scene complexity,

making it very suitable for practical SAR-based ship detection tasks.

3.5.2 Qualitative results
Figures 5 and 6 qualitatively compare the detection results of

different target detection algorithms on the SSDD and SAR-Ship

datasets. The methods include YOLO v8, Quad-FPN (Zhang et al.,

2021), Faster R-CNN, Cascade R-CNN, Grid R-CNN, and HMS-

MRCNN. Red circles indicate missed detections, and yellow circles

indicate incorrectly detected target objects.

As can be seen from the figure, YOLO v8 and Faster R-CNN are

prone to more false positives or missed detections, especially when

detecting small or low-contrast ships. Quad-FPN shows higher
Frontiers in Marine Science 10
positioning accuracy and recall rate than traditional models, but

it occasionally produces false detections in complex near-shore

scenes or cluttered wave backgrounds. Cascade R-CNN and Grid R-

CNN also have more missed detections and false detections.

In contrast, HMS-MRCNN, proposed in this paper, shows

obvious advantages in detection results. In particular, after using

TaylorGAN to reconstruct the image for super-resolution, HMS-

MRCNN can better detect the target ship.

3.6 Ablation experiments

To evaluate the contribution of key structural components in the

proposed TaylorGAN, this paper conducts ablation experiments

focusing on two core modules: the TaylorShift Attention (TSA)

module and the feature fusion (FF) module. The TSA module is
LR HR bicubic SRCNN

000018 from SSDD SRGAN LSRGAN Cycle-GAN TaylorGAN

LR HR bicubic SRCNN

000068 from SSDD SRGAN LSRGAN Cycle-GAN TaylorGAN

LR HR bicubic SRCNN

LR HR bicubu ic SRCNNNN

000018 frff om SSDD SRGANAA LSRGANAA Cycle-GANAA TaylorGANAA

LR HR bicubic SRCNN

000068 frff om SSDD SRGANAA LSRGANAA Cycle-GANAA TaylorGANAA

LR HR bicubu ic SRCNNNN

000636 from SSDD SRGAN LSRGAN Cycle-GAN TaylorGAN

FIGURE 3

Comparison results of the super-resolution reconstruction of the SSDD dataset.
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designed to enhance the network’s global and local modeling capability

through a position-aware attention mechanism, while the FF module

facilitates the integration of multi-scale features to recover high-

frequency structures such as ship contours and edges.

As shown in Table 3, this paper begins with a baseline

configuration that excludes both TSA and FF modules. This version

achieves relatively low performance (20.89 dB PSNR and 0.5852 SSIM

on SSDD), indicating its limited capability in recovering structural and

fine-grained details. Introducing the TSA module alone yields a

noticeable improvement, increasing PSNR by 1.51 dB and SSIM by
Frontiers in Marine Science 11
0.0177 on SSDD. This again demonstrates the effectiveness of

TaylorShift attention in enhancing feature representation, even

without structural fusion.

When both modules are integrated, the model achieves its

highest performance, with 25.43 dB PSNR and 0.7931 SSIM on

SSDD and 24.55 dB PSNR and 0.7721 SSIM on Ship-SAR. This final

configuration outperforms all ablated variants, confirming that the

combination of attention-based modeling and feature fusion

significantly improves image quality, especially in restoring high-

frequency textures under complex SAR imaging conditions.
TABLE 2 Comparative experimental results.

Method
SSDD Ship-SAR

Precision Recall mAP50 Precision Recall mAP50

YOLO v8 87.8 81.9 89.9 80.1 85.3 83.6

Quad-FPN 90.6 88.4 91.2 89.3 91.7 90.5

Faster R-CNN 87.4 86.0 87.2 84.5 84.1 83.1

Cascade R-CNN 91.7 86.5 88.3 87.7 83.0 84.8

Grid R-CNN 88.4 87.0 87.9 81.5 82.3 81.9

HMS-MRCNN (HR) 91.9 89.7 92.5 90.8 89.9 91.3

HMS-MRCNN (SR) 93.0 90.3 93.1 91.9 93.0 92.6
The best results are indicated in bold.
LR HR bicubic SRCNN
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FIGURE 4

Comparison results of the super-resolution reconstruction of the SAR-Ship dataset.
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To evaluate the contribution of each module to detection

performance, this paper conducts a controlled ablation study

analyzing the impact of the DCR (feature imitation) and DCN

(deformable convolution) modules within the HMS-MRCNN

framework. The DCR module enhances semantic-level feature

representation, while the DCN module improves spatial

adaptability. The performance metrics of each module configuration

are detailed in Table 4.
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As shown in Table 4, the DCR module alone yields notable

improvements in recall, while the DCNmodule contributes more to

precision and localization. However, the combination of DCR and

DCN achieves higher overall performance than either module

individually, demonstrating their complementary strengths. The

full model, integrating both modules, significantly enhances

detection accuracy on both SSDD and Ship-SAR datasets.

These results indicate that fusing semantic feature imitation

with spatially adaptive convolution can effectively enhance network

robustness and accuracy under complex SAR imaging conditions.
4 Conclusion

Given the challenges of low resolution of SAR images and the

susceptibility of marine ship detection to noise and multi-scale

target interference, this paper proposes a “super-resolution

reconstruction-multi-scale detection” collaborative optimization

solution. The main contributions are as follows:
FIGURE 6

Comparison of the detection results of each model for the SAR-Ship dataset.
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R-CNN
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MRCNN (HR)

HMS-

MRCNN (SR)

FIGURE 5

Comparison of the detection results of each model for the SSDD dataset.
TABLE 3 Ablation experiment results of different blocks of TaylorGAN.

TSA FF
SSDD Ship-SAR

PSNR SSIM PSNR SSIM

20.89 0.5852 21.07 0.5631

✓ 22.40 0.6029 22.46 0.6234

✓ ✓ 25.43 0.7931 24.55 0.7721
The best results are indicated in bold.
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TaylorGAN super-resolution network: It aims to recover high-

frequency detail information from low-resolution SAR images. The

method works by feeding the low-resolution image into the

generator taking the corresponding high-resolution image as

the target of discriminator learning and continuously optimizing

the generator through adversarial training so that its output image is

closer to the real high-resolution image in terms of structural clarity

and detail restoration. In order to enhance the detail modeling

ability, TaylorGAN introduces the TaylorShift attention

mechanism, replacing the traditional Softmax operation with

Taylor series expansion, which improves the ability to recover

high-frequency details (e.g., ship contours, deck structures).

Experiments prove that TaylorGAN significantly outperforms

mainstream models such as SRGAN and cycle-GAN in terms of

PSNR, SSIM, and subjective visual quality.

HMS-MRCNN multi-scale detection framework: HMS-

MRCNN is designed for marine ship detection, extracting small

target details from shallow layers (Conv3-4) and capturing global

semantic context from deep layers (Conv5). Through feature map

downsampling and L2 normalization, the model achieves accurate

cross-scale feature alignment. Experiments show that HMS-

MRCNN (SR) achieves 93.1% mAP50 accuracy on SSDD and

92.6% mAP50 accuracy on Ship-SAR, outperforming traditional

detectors such as Faster R-CNN and Grid R-CNN.

End-to-end performance verification: The combination of

super-resolution reconstruction and marine ship detection

improves the mAP50 of ship image detection by 0.6% and 1.3%

on the SSDD and Ship-SAR datasets, indicating that the resolution

improvement d irec t ly improves the per formance of

downstream tasks.
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TABLE 4 Ablation experiment results of different blocks of HMS-MRCNN.
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✓ 92.1 88.6 92.2 90.0 92.1 91.0

✓ ✓ 93.0 90.3 93.1 91.9 93.0 92.6
The best results are indicated in bold.
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