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Shifts in marine bird abundance
and species composition
following the 2014−2016 Pacific
marine heatwave
Sarah A. Hoepfner, Anne L. Schaefer* and Mary Anne Bishop

Prince William Sound Science Center, Cordova, AK, United States
The 2014−2016 Pacific marine heatwave (PMH) was an intense and prolonged

environmental disturbance that significantly disrupted the marine food web,

leading to widespread ecological impacts. The PMH contributed tomajor shifts in

species distributions, mass mortalities, and reproductive failures among upper-

trophic level species, including a massive die-off of common murres (Uria aalge)

in the Gulf of Alaska (GOA). To assess the impact of the PMH on the winter marine

bird community in Prince William Sound (PWS), a large embayment in the

northern GOA, we analyzed changes in winter marine bird abundance and

species composition in a series of bays before and after the PMH. The overall

density of winter marine birds decreased and species composition significantly

changed in PWS following the PMH. Specifically, common murres, cormorants,

and loons decreased from pre-PMH survey densities, while marbled murrelet

(Brachyramphus marmoratus) densities increased. The post-PMH increase in

marbled murrelets, likely due to immigration, coincided with the rapid growth

and spatial expansion in the PWS Pacific herring (Clupea pallasii) young-of-the-

year population and with a smaller, 8-month marine heatwave across the

northern GOA. We suggest the mass mortality and lack of recovery by the

common murre population provided a competitive release enabling murrelets

to exploit a growing forage fish population, and that murrelets may be more

effective at shifting to warmer-water zooplankton during marine heatwave

events. These results highlight the persistent upper-trophic level changes

associated with the PMH and provide important insights into the ecological

consequences of environmental disturbances. This is increasingly relevant given

the predicted increase in frequency and intensity of marine heatwaves.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2025.1575748/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1575748/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1575748/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1575748/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1575748&domain=pdf&date_stamp=2025-05-12
mailto:aschaefer@pwssc.org
https://doi.org/10.3389/fmars.2025.1575748
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1575748
https://www.frontiersin.org/journals/marine-science


Hoepfner et al. 10.3389/fmars.2025.1575748
1 Introduction

Marine birds serve as valuable indicators of ecosystem

conditions since changes in their abundance or community

composition can signal broader changes in the marine food web

or ocean environment (e.g., Diamond and Devlin, 2003; Piatt et al.,

2007). Additionally, because marine birds feed on a variety of fish

and invertebrate species, their abundance and trends can indirectly

reflect the status of these prey populations (e.g., Dunphy et al., 2020;

Ramos and Furness, 2022). For species found in upper latitudes,

food availability during the winter is critical during the colder

months as conditions become harsher and there is less daylight for

foraging. During winter, some marine bird species tend to

congregate in waters closer to shore, such as shallow bays that

offer protection from wave exposure (Dawson et al., 2015; Stocking

et al., 2018; Schaefer and Bishop, 2023), while other marine bird

species travel farther offshore (e.g., >50 km) to take advantage of

foraging opportunities at continental shelves (Hunt et al., 2014;

Cushing et al., 2024).

Marine heatwaves are prolonged periods of anomalously high

ocean temperatures (Meehl and Tebaldi, 2004; Hobday et al., 2018)

that can impact marine species. Marine heatwaves have been

documented in the northeast Pacific Ocean since 1958 (Xu et al.,

2022) with the most extensive event occurring between 2014 and

2016. This heatwave stretched from the eastern Bering Sea south to

California. During this Pacific marine heatwave (PMH) event, sea

surface temperature (SST) anomalies reached record levels that

exceeded three standard deviations and were accompanied by high

subsurface sea temperatures (Di Lorenzo and Mantua, 2016). Since

then, another north Pacific heatwave occurred in 2019, but it was of

shorter duration, a smaller geographic extent (but included our

study area) and the warmer surface waters did not mix with cooler,

deeper waters (Amaya et al., 2020; Chen et al., 2021; Ross et al.,

2021; von Biela et al., 2022; R. Campbell pers. comm.). Such

warming events are predicted to increase in frequency and

intensity (Hobday et al., 2018; Oliver et al., 2018), therefore,

understanding the impacts of marine heatwaves on the ecosystem

is critical.

The 2014−2016 PMH caused cascading effects across all trophic

levels over a vast swath of the north Pacific Ocean (Suryan et al.,

2021). Phytoplankton production was reduced, and the largest

harmful algal bloom in recorded history extended from the Gulf

of Alaska (GOA) to the coast of California in 2015 (Leising et al.,

2015; McCabe et al., 2016). In areas along the northern GOA, the

overall forage fish population decreased (Arimitsu et al., 2021a;

Institute for Seabird Research and Conservation, 2023) and Pacific

sand lance (Ammodytes hexapterus), a key forage fish for marine

mammals and seabirds, also lost nutritional value (von Biela et al.,

2019; Suryan et al., 2021). Concurrently, marine bird and mammal

die-offs were documented. A die-off of planktivorous Cassin’s

auklets (Ptychoramphus aleuticus) occurred from British

Columbia to central California in the winter of 2014−2015 (Jones

et al., 2018). From the summer of 2015 into the spring of 2016,

approximately 62,000 dead or dying piscivorous common murres

(Uria aalge) were documented washed ashore from Alaska to
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California, with an estimated total loss of 4 million murres,

making it the most extensive avian mortality event on record

(Piatt et al., 2020; Renner et al., 2024). These seabird deaths were

attributed primarily to starvation due to the reduced forage

availability and the increased prevalence of low-calorie species

coinciding with a decline in high-quality forage. In addition, the

lack of forage led to an increase in pinniped mortality in southern

California (McClatchie et al., 2016), an unusually large die-off of

baleen whales in the GOA (Savage, 2017), and declines in

humpback whale (Megaptera novaeangliae) survival and

reproductive success in southeast Alaska (Gabriele et al., 2022).

Along portions of the northern GOA, documented impacts on

the marine bird community from the PMH included shifts in

species distribution and mass mortalities (Piatt et al., 2020;

Robinson et al., 2024b; Cushing et al., 2024). In Prince William

Sound (PWS), the epicenter of the common murre die-off (Piatt

et al., 2020) and where the PMH persisted for a year longer

(Campbell, 2023), the impacts on the marine bird community

have not yet been assessed. In light of the documented impacts of

the PMH on forage availability and quality, we hypothesized that

marine bird density would be lower in PWS following the PMH. In

this paper, we examined marine bird data collected from at-sea

surveys in PWS during the nonbreeding season over nine winters

prior to and after the 2014−2016 PMH to estimate marine bird

densities, detect shifts in community composition, and determine

which species were driving observed changes.
2 Materials and methods

2.1 Study area

Prince William Sound is a large embayment on the northern

GOA, primarily between 60 and 61°C N (Figure 1). The Sound is

separated from the GOA by large, mountainous islands, but is

influenced by hydrography from the GOA (Reister et al., 2024).

This region features large ice fields with tidewater glaciers and many

freshwater streams contributing to an influx of freshwater. The

coastline of PWS is rugged and includes many islands, deep fjords,

and shallow bays affecting currents and tides (see site description in

Gay and Vaughan, 2001). PWS provides protected wintering

habitat for over 20 species of marine birds (Lance et al., 2001;

Stocking et al., 2018; Schaefer and Bishop, 2023). In this study, we

surveyed a series of bays and fjords (hereafter referred to as bays)

ranging in maximum depths from 50 m to 300 m (Gay and

Vaughan, 2001).
2.2 Data collection and preparation

We conducted marine bird surveys in six PWS bays: Eaglek Bay,

Port Gravina, Simpson Bay, Whale Bay, Zaikof Bay, and Lower

Herring Bay (added in November 2009);. Bays were surveyed as

opposed to open-water areas as marine birds tend to concentrate in

these protected, nearshore locations during the winter (Stocking
frontiersin.org
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et al., 2018). These bays are important juvenile herring nursery bays

and have been included in other oceanographic and forage fish

surveys (e.g., Gay and Vaughan, 2001; Lewandoski and Bishop,

2018; McKinstry and Campbell, 2018; Schaefer et al., 2020). Surveys

took place during November and March for nine winters both prior

to and after the PMH (November 2007−March 2012 and March

2019−March 2022; Figure 1). From 2007−2012 (pre-PMH), our

marine bird surveys were conducted concurrently with surveys

designed to assess juvenile Pacific herring (Clupea pallasii)

biomass (Thorne, 2010) and herring energetics (Gorman et al.,

2018). The sampling design developed for hydroacoustic juvenile

herring surveys determined the locations and length of transects.

More recently (2019−2022; post-PMH), marine bird surveys were

repeated using the same survey methods and locations to provide

updates on seabird abundance, distribution, habitat use, and

community composition following the PMH (Schaefer and

Bishop, 2023).

Marine bird observations were conducted using established U.S.

Fish and Wildlife Service (USFWS) protocols (USFWS, 2007).

Using 10x binoculars, one observer recorded species identification

and the number of birds occurring within a strip transect width of

300 m (150 m on both sides and ahead of the boat) from a clear

observation platform 2.5 m above the water line. These strip-

transect surveys were conducted at standard survey speeds for

small vessels of 5–15 km h-1 (slower speeds during hydroacoustic

surveys), and we assumed all birds were detected at all speeds based

on previous research assessing flushing distances and diving times

(Lukacs et al., 2010). Observers used rangefinders to check distances

and were trained to estimate distances of birds from the center line

at 50 m increments. We assumed that no birds were attracted to or
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followed the survey vessel and that all birds within the transect strip

were counted. The observer recorded observations into a laptop

computer integrated with a global positioning system (GPS) using

the program DLOG (2007−2012; Ford Consulting, Portland, OR) or

SeaLog (2019−2022; ABR, Inc., Fairbanks, AK). These GPS-

integrated programs provided location data at 15–20 sec intervals

and for every entered observation. The observer also recorded in-

situ sea and weather conditions. Data processing was performed

using QA/QSea version 2.1 (Drew et al., 2023).
2.3 Statistical analyses

To calculate relative density (birds/km2), observations for each bay

survey were sorted into 14 taxonomic groups (Supplementary Table 1),

then summed and divided by sample area. Taxonomic groups were

grouped by similar species (e.g., loons, mergansers, murres) and

foraging strategies (i.e., shallow ducks forage at depths < 30 m and

deep ducks > 30 m). We excluded from our analyses surveys where

visibility conditions were rated as poor due to weather, glare, or sea

state (Beaufort scale > 3), as well as species groups contributing <1% of

observed birds over the study period (fewer than 98 birds). We

performed a three-way ANOVA to assess overall changes in marine

bird density by bay, period (pre-PMH, post-PMH), and month

(November, March). T-tests evaluated the significance of species-

specific density changes pre- and post-PMH, with a significance

level of > 0.05 being considered significant.

We performed an Analysis of Similarity (ANOSIM) to

determine statistically significant differences in species group

densities between bays, periods, and months. The ANOSIM
FIGURE 1

Bays surveyed in 2007−2012 (pre-Pacific marine heatwave) and 2019−2022 (post-Pacific marine heatwave) in Prince William Sound, Alaska. Survey
transects are shown by the black zig-zag lines within each bay.
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conducts a ranked dissimilarity matrix, with R values > 0.10

considered dissimilar and p-values < 0.05 indicating significance

(Legendre and Legendre, 2012). We then used a Bray-Curtis

similarity matrix and a non-parametric multi-dimensional scale

(nMDS) ordination plot to examine differences in marine bird

assemblages. We conducted pairwise comparisons (similarity

percentage, i.e., SIMPER) to identify which species contributed to

differences between bays, periods, and months. The nMDS

ordination plots were then generated to graphically represent the

separation between bays, time periods, and months, and boxplots

were used to highlight species-specific differences. We square root

transformed the density data included in the ANOSIM, nMDS

ordination plots, and SIMPER analyses to decrease the influence of

dominant taxa (Clarke and Warwick, 2001). We used R version

4.3.3 (R Core Team, 2023) and the package ‘vegan’ (Oksanen et al.,

2013) for all analyses.
3 Results

We completed 17 research cruises, surveying on average 22.4

km2 per cruise (Supplementary Table 2). Four bays (Eaglek,

Simpson, Whale, and Zaikof) were surveyed during every cruise,

while Port Gravina and Lower Herring Bay were surveyed 13 times

(Supplementary Table 2). In total, we recorded 9,812 birds

representing 30 species across all cruises (Supplementary
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Table 1). The most abundant species on pre-PMH cruises

included common murre (1,913 birds, 28.2% of observations),

long-tailed duck (Clangula hyemalis, 777 birds, 11.5%, 668 of the

total ducks observed in one flock), and glaucous-winged gull (Larus

glaucescens, 680 birds, 10.0%; Supplementary Table 2). Post-PMH,

the most abundant species were marbled murrelet (Brachyramphus

marmoratus, 874 birds, 28.7% of observations), black-legged

kittiwake (Rissa tridactyla, 311 birds, 10.2%), and Barrow’s

goldeneye (Bucephala islandica, 281 birds, 9.2%).

Densities of individual species groups varied significantly

between pre- and post-PMH surveys (Figure 2). Significantly

different species groups include murres, Brachyramphus

murrelets, loons, and cormorants (all p-values ≤ 0.006; Table 1).

Compared to pre-PMH, post-PMH mean densities per survey of

common murres decreased by a factor of 7.1 (Figure 3), while

cormorants and loons decreased by a factor of 2.4 and 3.5,

respectively. Among the loon species, common (Gavia immer),

red-throated (G. stellata), and yellow-billed loon (G. adamsii)

densities all decreased from pre- to post-PMH, especially

common and red-throated loons which were not seen on any

surveys after the heatwave. Pelagic cormorant (Urile pelagicus)

comprised most cormorant sightings, and density decreases were

primarily from two bays. Marbled murrelet, the dominant

Brachyramphus murrelet species, was the only species that

exhibited an increase in density post-PMH, rising by a factor of

1.9 (Figure 4).
FIGURE 2

Density of marine bird species groups (birds/km2) observed on surveys in six bays pre-Pacific marine heatwave (PMH; 2007−2012, red) and post-
PMH (2019−2022, blue) in Prince William Sound, Alaska. Note the y-axis scale for density is different for each graph. An asterisk denotes a significant
change in density.
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Marine bird densities were significantly higher before the

heatwave and varied significantly across bays (both p values ≤

0.01; Table 2). The highest densities occurred pre-PMH in Port

Gravina (59.1 birds/km2, primarily driven by high densities of

diving ducks) and post-PMH in Simpson Bay (26.6 birds/km2).

Lower Herring Bay hosted the lowest average densities of birds

before and after the PMH (Table 3). In four survey bays, the murre

species group dominated the marine bird community pre-PMH,

wherea s pos t -PMH Bra chyramphus murre l e t s wer e

dominant (Table 3).

Multivariate analysis indicated significant variation in bird

assemblages between the pre- and post-PMH periods (R = 0.18,

p < 0.001; Table 4; Figure 5) and between bays (R = 0.24, p < 0.001;

Figure 6). The SIMPER analysis identified three species groups

contributing to the dissimilarities between periods: murres (9.2%;

p = 0.003), Brachyramphusmurrelets (7.5%; p = 0.001), and shallow

ducks (6.5%; not significant, p = 0.461; Table 5). Pairwise

comparisons indicated significant differences among bays, with

Port Gravina being most frequently distinct from others, followed

by Lower Herring Bay (Figure 6).
FIGURE 3

Densities of common murres Uria aalge by month (November=red, March=blue), and grouped by pre-Pacific marine heatwave (pre-PMH; 2007−2012)
and post-Pacific marine heatwave (post-PMH; 2019−2022) in Prince William Sound, Alaska.
TABLE 1 T-test results comparing species group densities pre-Pacific marine
heatwave (2007−2012) and post-Pacific marine heatwave (2019−2022) during
surveys in Prince William Sound, Alaska.

Species Groups t DF p-value

Shallow Ducks 0.519 91.998 0.605

Deep Ducks 1.222 51.399 0.227

Mergansers 1.32 79.702 0.191

Grebes 0.607 7.675 0.546

Murres 3.736 57.213 0.0004*

Brachyramphus Murrelets -2.824 71.529 0.006*

Kittiwakes -0.676 81.214 0.501

Small Gulls -1.251 71.111 0.215

Large Gulls 1.566 53.161 0.123

Loons 3.167 75.386 0.002*

Cormorants 3.092 68.836 0.003*
Significant comparisons signified with an asterisk (p < 0.05).
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4 Discussion

We documented decreased marine bird density and significant

changes in the community composition in PWS bays during the
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nonbreeding season in the years after the PMH as compared to the

years prior to the PMH. Notably, densities declined post-PMH for

murres, loons, and cormorants, all piscivorous divers that forage at

depths of ~40–200 m (Roberts, 1932; Kotzerka et al., 2011;

Kokubun et al., 2016). In contrast, densities increased post-PMH

for Brachyramphus murrelets, which typically forage at depths of

40–50 m (Nelson, 2020). We suggest these documented changes in

species groups were due to the decreased availability of high-lipid

forage fish and zooplankton species post-PMH, the differences in

diet between the three deeper-diving piscivorous species groups and

marbled murrelets, and the differences in oceanographic conditions

during each period and between bays.

The link between warmer ocean temperatures and the collapse

of forage fish populations, as well as seabird die-offs and population

declines, has been documented previously in the Pacific Ocean, both

in the GOA (e.g., Agler et al., 1999) and as far south as the

California Current (Hyrenbach and Veit, 2003; Hipfner, 2008;

LeValley, 2009; Oliver et al., 2018). During the 2014−2016 PMH,

multiple population collapses occurred across trophic levels.

Euphausiid biomass decreased overall, with cooler-temperature

species decreasing and some warmer-temperature species
FIGURE 4

Densities of Brachyramphus murrelets by month (November=red, March=blue), and grouped by pre-Pacific marine heatwave (pre-PMH; 2007−2012)
and post-Pacific marine heatwave (post-PMH; 2019−2022) in Prince William Sound, Alaska.
TABLE 2 Results of the three-way ANOVA to assess changes in marine
bird density by bay (Eaglek, Gravina, Lower Herring, Simpson, Whale,
Zaikof), period (pre-Pacific marine heatwave, 2007−2012; post-Pacific
marine heatwave, 2019−2022), and month (March, November), in Prince
William Sound, Alaska.

Factor DFn DFd F p-value

Month 1 70 1.66 0.201

Period 1 70 7.95 0.006*

Bay 5 70 3.44 0.008*

Month: Period 1 70 2.66 0.107

Month: Bay 5 70 1.55 0.187

Period: Bay 5 70 2.13 0.072

Month: Period : Bay 5 70 1.64 0.161
An asterisk denotes a p < 0.05 and indicates statistical significance.
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increasing (Arimitsu et al., 2021a; Pinchuk et al., 2021; Batten et al.,

2022). These dramatic declines reduced prey availability and altered

the prey composition available for predatory fish and seabirds.

Pacific herring, capelin (Mallotus catervarius), and sand lance

are critical high-lipid forage species for marine birds in PWS

(Anthony et al., 2000; Kuletz, 2005; Bishop et al., 2015; Hatch

et al., 2020; Ainley et al., 2021; Paruk et al., 2021). During the PMH

all three species were documented as being smaller in size and

containing lower energy content in PWS and the GOA (Rand and

Thorne, 2018; von Biela et al., 2019; Arimitsu et al., 2021a; Robinson

et al., 2024a). In PWS, adult herring abundance decreased such that

by spring 2018, a record-setting-low of 4.5 mile-days of spawn (sum

of daily linear miles of herring milt observed during aerial surveys)
Frontiers in Marine Science 07
was recorded (10-year average = 20.9 mile-days; Botz et al., 2021;

2022), reflecting a reduced spawning population available to

predators (McGowan et al., 2021). Capelin, a northern species

associated with cooler ocean temperatures, crashed during the

PMH from record-high levels and remained low into 2019

(Arimitsu et al., 2021a). Diet studies at Middleton Island, a GOA

island just south of PWS, documented the decrease of capelin from

diets of diving and surface feeding birds (Suryan et al., 2021;

Institute for Seabird Research and Conservation, 2023). Of the

three forage fish species, sand lance did not experience as significant

a decline in abundance and energy content. However, 90% of sand

lance sampled from diving seabirds’ diets in the GOA in 2016 were

from the smallest size class, and population numbers had not

recovered to historical values by 2019 (Arimitsu et al., 2021a;

Suryan et al., 2021).

In PWS, significant post-PMH declines and range contractions

were observed in murres, loons, and cormorants. For example,

common murres were recorded in most pre-PMH surveys in Lower

Herring Bay where they represented the highest-density species

group. However, no murres were recorded during any post-PMH

surveys in Lower Herring Bay and one other bay. The decline in

wintering murre density was not unexpected given the

unprecedented murre mortality event that occurred across the

north Pacific during the PMH (Piatt et al., 2020; Renner et al.,
TABLE 3 Mean density of marine birds (birds/km2) by bay in Prince William Sound, Alaska during 2007−2012 (pre-Pacific marine heatwave; PMH) and
2019−2022 (post-PMH) with standard error (SE).

Period Bay Mean (SE)
birds/km2

Highest mean density species
group (birds/km2)

Lowest mean density species
group (birds/km2)

Pre-PMH Eaglek 17.9
(5.3)

Murres (66.9) Loons (3.7)

Gravina 59.1
(32.0)

Deep Ducks (193.8) Grebes (2.3)

Lower Herring 13.2
(4.7)

Murres (23.2) Kittiwakes (0)

Simpson 46.0
(6.8)

Murres (191.0) Deep Ducks (15.4)

Whale 27.5
(3.3)

Shallow Ducks (115.7) Deep Ducks (3.0)

Zaikof 23.9
(5.8)

Murres (58.9) Mergansers (2.0)

Post-PMH Eaglek 14.0
(2.1)

Brachyramphus Murrelets (33.0) Deep Ducks (0)

Gravina 14.4
(3.1)

Brachyramphus Murrelets (45.9) Shallow Ducks (1.1)

Lower Herring 8.6
(1.8)

Shallow Ducks (15.1) Deep Ducks and Murres (0)

Simpson 26.6
(3.6)

Brachyramphus Murrelets (85.0) Cormorants (0.9)

Whale 24.1
(4.6)

Shallow Ducks (68.2) Murres (0)

Zaikof 23.3
(3.7)

Brachyramphus Murrelets (45.6) Grebes (2.1)
The highest and lowest density species groups and their densities are also listed for each bay and period.
TABLE 4 Results of the analysis of similarity (ANOSIM) tests for months
(March, November), period (pre-Pacific marine heatwave, 2007−2012;
post-Pacific marine heatwave, 2019−2022), and bay (Eaglek, Gravina,
Lower Herring, Simpson, Whale, Zaikof) using marine bird density for 14
species groups in Prince William Sound, Alaska.

Factor ANOSIM statistic R Significance level

Month 0.086 0.0003

Period 0.181 0.0001

Bay 0.244 0.0001
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2024). Notably, murre populations have been slow to recover on

their breeding grounds, with post-PMH productivity remaining

below average or close to total reproductive failure (Schoen et al.,

2024; Marsteller et al., 2024; Renner et al., 2024), despite some

forage fish populations showing signs of recovery (Arimitsu et al.,
Frontiers in Marine Science 08
2021b; McGowan et al., 2021). Post-PMH no common loons were

observed on surveys in any bays despite being present (minimally)

on pre-PMH surveys. Pelagic cormorants experienced significant

density declines in two bays, whereas densities in other bays

remained low and did not show a marked difference between
FIGURE 5

Non-metric multidimensional scaling (nMDS) Non-metric multidimensional scaling (nMDS) ordinations showing changes in winter marine bird
assemblages in Prince William Sound bays before (2007-2012, left) and after (2019-2022, right) the Pacific marine heatwave for 2007−2012 (pre-
Pacific marine heatwave; left) and 2019−2022 (post-Pacific marine heatwave; right).
FIGURE 6

Non-metric multidimensional scaling (nMDS) ordinations of survey bays (symbols) based on marine bird assemblages and abundance data pre-
Pacific marine heatwave (PMH; 2007−2012, green) to post-PMH (2019−2022, yellow) in Prince William Sound, Alaska.
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periods. During the same period as this study, winter surveys in the

Kenai and Katmai Fjords (approx.150–250 km from PWS) saw

minimal changes in loons, cormorants, or murres (Coletti et al.,

2023). Among other species groups, we determined there was

minimal change in the pre- and post-PMH densities of shallow-

and deep-diving ducks, a result similar to other studies within the

GOA that found limited impacts to the nearshore food web

(Robinson et al., 2024b; Weitzman et al., 2021).

Brachyramphus murrelets, consisting almost entirely of

marbled murrelets, were the only species group to increase

significantly in PWS bays post-PMH. Marbled murrelets may be

migrating from elsewhere to winter in PWS in response to specific

local forage availability and/or winter conditions in the GOA.

Marbled murrelets have been documented moving between

British Columbia and Alaska during the breeding and post-

breeding seasons, possibly inflating population counts in Alaska

(Bertram et al., 2023), especially during certain ocean conditions

(e.g., storms, increased SST, currents; Agler et al., 1998; Becker and

Beissinger, 2003). Additionally, alcids have been observed shifting

inshore in Washington and the GOA, potentially increasing their

presence and detectability on our surveys post-PMH (Pearson et al.,

2022; Cushing et al., 2024). However, in Kenai and Katmai Fjords,

post-PMH winter surveys recorded no observable differences in

Brachyramphus murrelet densities (Coletti et al., 2023). It is

surprising that two relatively close regions would experience

different trends during the same period, suggesting local rather

than regional conditions may be driving observed differences.

Further investigation into changes in marbled murrelet

movements across their range (annually and seasonally) and in

response to ocean conditions is necessary to understand the drivers

of the localized density increase in PWS. Additionally, it would be

valuable to examine how other species similarly shifted their

distributions in search of food or refuge in response to the PMH.
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For example, unusually high numbers of common murres were

present in PWS in search of food immediately preceding the die-off

event (Suryan et al., 2021). Such localized distribution changes may

have masked broader population trends during and after

the heatwave.

The striking increases in murrelet densities recorded during

November 2019 and March 2020 surveys (Figure 4) coincided with

the marine heatwave that occurred across much of the GOA from

June 2019 to January 2020 (Amaya et al., 2020). During this period,

the abundance of cool-water associated zooplankton declined, while

warm-water associated zooplankton became more prevalent

(Pinchuk et al., 2021; Batten et al., 2022; Campbell, 2023).

Murrelets are euryphagous, eating a variety of foods, including

young and small forage fish, squid, mysid shrimp (Mysis spp.),

amphipods, euphausiids, and zooplankton (Hobson, 1990; Becker

et al., 2007; Nelson, 2020). Compared to other species, PWS

murrelets are more likely to be present in warmer surface waters

(Dawson et al., 2015), suggesting they may be effective at shifting

from cool-water to warmer-water zooplankton during marine

heatwave events. Beginning in spring 2019, PWS murrelets also

may have benefited from increases in young-of-the-year herring

with the maturation of the 2016 hatch-year cohort of Pacific

herring. This numerically dominant fish cohort began to spawn

in areas outside of the historical southeast PWS spawning grounds

as the mile-days of spawn increased from the low of 4.5 mile-days in

2018 incrementally to 26.8 mile-days in 2021 (McGowan et al.,

2021; Morella, 2023). Historically, young-of-the-year (age 0) and

age 1+ herring have been major diet components for marbled

murrelets in PWS (Kuletz, 2005). Further, the population crash of

common murres throughout the GOA may have created a

competitive release enabling murrelets, the smaller of the two

alcid species, to exploit prey resources such as the increasing

Pacific herring population more fully than if common murres

were present (Ronconi and Burger, 2011). Further investigation

into this potential competitive release in relation to environmental

change is needed to assess its validity, as well as to determine

whether the increase in marbled murrelets could cause a cascading

effect leading to a decline in the less dominant Kittlitz’s murrelet

(Brachyramphus brevirostris).

We also documented marine bird abundance and species

composition differences between PWS bays. The main drivers of the

observed differences between time periods were Brachyramphus

murrelets in Simpson Bay, shallow ducks in Whale Bay, and deep

ducks in Port Gravina. Further study to understand and evaluate the

ocean conditions (i.e., bathymetry, SST, current patterns, storms) and

physical differences (i.e., depth, substrate, freshwater sources) between

bays may help explain patterns of abundance based on species’ foraging

strategies and the prey available. For example, Port Gravina hosted

higher densities of loons, deep ducks, and large gulls than other bays

pre-PMH. These higher densities in Port Gravina may reflect optimal

foraging conditions for Pacific herring, with overwintering adult

herring and extensive spawn regularly occurring in the area, as well

as retention of both young-of-the-year and juvenile herring schools due

to local ocean currents (Norcross et al., 2001).
TABLE 5 SIMPER pairwise comparison showing species contributions to
differences in pre- (2007-2012) and post-Pacific marine heatwave (2019-
2022) winter marine bird assemblages in Prince William Sound, Alaska.

Species Groups Mean SE Ratio p-value

Murres 0.092 0.008 1.135 0.003*

Brachyramphus Murrelets 0.075 0.006 1.301 0.001*

Shallow Ducks 0.648 0.006 1.021 0.461

Kittiwakes 0.047 0.005 1.037 0.173

Deep Ducks 0.046 0.006 0.764 0.646

Small Gulls 0.043 0.004 1.221 0.156

Mergansers 0.043 0.004 1.166 0.561

Large Gulls 0.039 0.005 0.855 0.679

Loons 0.036 0.003 1.187 0.010*

Grebes 0.034 0.003 1.230 0.335

Cormorants 0.033 0.003 1.231 0.028
Significant comparisons indicated with an asterisk (p < 0.05).
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4.1 Conclusion

Post-PMH, wintering marine bird densities in PWS declined,

accompanied by a significant shift in species composition. We do not

have survey data from the years of the PMH and can only make

inferences on the impacts as a result of the PMH, however the decline

in forage availability and its effects may not have been as evident

during the event. These results present the longer-term effects to

marine bird populations in PWS. The decrease in piscivorous species

and species groups, in particular murres, loons, and cormorants, is

concerning in light of predictions that marine heatwaves will occur

more often and with greater intensity (Meehl and Tebaldi, 2004;

Hobday et al., 2018; Oliver et al., 2018). Conversely, the increase in

marbled murrelet density warrants further assessment of their annual

cycle and geographic distribution.

Our results align with the findings of other GOA studies, including

beach surveys for marine bird mortalities (Parrish et al., 2017) colony

productivity assessments (Renner et al., 2024), and winter surveys in

nearby areas (Cushing et al., 2024; Robinson et al., 2024b). Long-term

monitoring efforts such as these are essential for documenting the

impacts of events like the PMH, enabling researchers to evaluate

interannual variation and identify long-term trends, which are

crucial for understanding how different factors, such as storms,

ocean temperatures, prey availability, and foraging conditions, affect

marine bird populations over time (e.g., Ainley and Hyrenbach, 2010;

Chambers et al., 2015; Dawson et al., 2015). Understanding changes in

upper trophic level communities resulting from the PMHmay provide

valuable insights for updating and informing management strategies

for these species as ecosystems continue to face increasing pressures

from climate-driven disturbances.
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