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With the promotion of the “Belt and Road,” the container multimodal

transportation between China and Europe has faced unprecedented

development opportunities. In view of the increasing concern about carbon

emissions and uncertainty during transportation, this paper constructs a robust

optimization model with carbon emission constraints and aims at minimizing

both the operation cost and operation time. A Nondominated Sorting Genetic

Algorithm-II (NSGA-II) is devised to tackle the proposed model. After that, the

paper exemplifies the container multimodal transportation from Nanjing, China

to Berlin, Germany, conducting an empirical study on optimizing the Eurasian

container multimodal transportation plan. A small-scale case compares the

results from CPLEX and NSGA-II, validating the effectiveness of the proposed

model and algorithm. Then, a comparison is made between the single-objective

and multi-objective results. It is demonstrated that multi-objective optimization

can resolve conflicts among sub-objectives and derive a compromise solution

for multiple objectives. Subsequently, results under different fluctuation

scenarios show that the robust model is applicable to all situations. Finally, a

sensitivity analysis of the robust model is carried out, considering varying carbon

emission limits, operating time windows, and regret values. The proposed model

and algorithm can serve as a reliable decision reference for multimodal

operators, remaining useful during unexpected incidents.
KEYWORDS

Container multimodal transportation, robust optimization, multi-objective model,
NSGA-II, carbon emission
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1 Introduction

Ever since President Xi of China proposed the “One Belt, One

Road” Initiative in 2013, the mutual trade between China and Europe

has experienced enormous development. According to related

statistics (Eurostat, 2024), at the beginning of the proposal in 2013,

the two-way trade value between China and the European Union

(EU) is 559.01 billion dollars, while that value has reached 740.00

billion dollars in 2023, rising by 32.36%. Therein, the export trade

value from China to Europe is 712.27 billion dollars, which is 21.07%

of the total export value; the import value from Europe to China is

498.30 billion dollars, which is 19.49% of the total import value

(National Bureau of Statistics of China, 2024). As global climate

change continues to pose a serious threat, countries around the world

are working collaboratively to address the issue of carbon emissions

(Xu et al., 2024a). The shipping sector accounts for approximately 3%

of global greenhouse gas emissions. While its share is relatively small,

its long-term environmental impact cannot be overlooked (Xiao et al.,
Frontiers in Marine Science 02
2025). Reducing carbon emissions has become a central task for

nations striving to achieve sustainable development (Xin-gang et al.,

2023; Xu et al., 2024b). Shipping companies should step up

investment in research and development for carbon emission

reduction technologies from a long-term perspective (Xiao and Cui,

2023). The growing demand for trade has created an urgent need for

transportationmodes that are cost-effective, low-emission, and highly

efficient. Container transportation has gradually become a main

transportation mode in the China–Europe network. At present,

there are three main container transportation corridors between

China and Europe. They are (1) the sea transportation corridor; (2)

the railway transportation corridor mainly based on the China

Railway Express (CRE); and (3) the sea–land express transportation

passage via Piraeus mainly based on sea and railway transportation.

The operation process based on these three main corridors is shown

in Figures 1–3. Each of the transport corridor has its own advantages

and disadvantages, while complementing each other (Yang

et al., 2018).
FIGURE 2

Simplified diagram of the China–Europe railway corridor.
FIGURE 1

Simplified diagram of the China–Europe sea transport corridor.
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Because of the long distance of container multimodal transport

between China and Europe, various modes of transport, and the

complicated operation process in many countries, there are many

uncertain factors in the operation (Li et al., 2022). For example, road

congestion, mechanical failure of vehicles, sudden traffic accidents, or

bad weather conditions may result in fluctuations in transport time.

Cycles of fuel rates, changes in international situation, and

other factors may cause large differences in transport costs in

transit. Vehicle congestion in container yards, shortage of handling

facilities, and many other factors may lead to the change of the transit

time (Im et al., 2021; Cao et al., 2024). Influenced by the uncertain

factors mentioned above, the optimized scheme for the container

multimodal transportation with different situations might be

quite different.

Reasonably choosing the transport route between China and

EU under uncertain conditions has great significance. It is critical to

reduce operating costs, improve transport efficiency, and provide

solid and powerful transport service support for the two-way trade

between China and EU. In addition, considering the impact of

carbon emission restrictions on the transportation scheme can urge

decision-makers to plan transportation routes from the perspective

of environmental sustainability and provide decision-

making reference for policymakers (Shen et al., 2022). Based on

the analysis above, this paper will investigate the routing

optimization problem of the Eurasian container multimodal

transport system considering uncertain transportation cost,

transportation time, and transshipment time. We will establish

the robust optimization model for the problem and design the

Nondominated Sorting Genetic Algorithm-II (NSGA-II) to solve

the model according to the characteristics of the problem. Then, the

effectiveness of the model and algorithm is verified by

empirical research.

The rest of the paper is organized as follows. Section 2 includes

the literature review, from the perspective of the Eurasian

transportation corridor and the multimodal routing optimization.

Section 3 involves the establishment of the multi-objective robust

optimization model. Section 4 proposes the NSGA-II considering

the characteristics of the problem. Section 5 is the empirical study

considering the container transport between Nanjing and Berlin.

Section 6 comprises the conclusion and future research direction.
Frontiers in Marine Science 03
2 Literature review

2.1 Research about the Eurasian transport
corridor

Research on the Eurasian transport corridor mainly focuses on

CRE, sea transportation, and Eurasian sea rail combined

transportation, among which the research on CRE is the main topic.

As to the research about CRE, Guo et al. (2024a) proposed a

novel two-stage transfer learning model named T.R2_LSTM_A. It

significantly enhances the accuracy of predictions and outperforms

several commonly used prediction methods, including Random

Forest (RF), Support Vector Regression (SVR), and LSTM. Thus, it

provides valuable technical support for optimizing the transport

planning and improving the service reliability of CRE. Deng and

Zhu (2019) developed two CRE transport modes: direct train and

consolidation. These modes enable operators to optimize transport

according to cargo volume, mitigating CRE issues such as low load

rates and high costs. Zhou et al. (2024) probed the influence of the

Northern Sea Route (NSR) on China–Europe multimodal transport

competition within the Belt and Road Initiative. By devising a

hybrid multi-criteria decision-making framework, they appraised

NSR’s potential as an alternative route. Findings reveal that cost

dominates NSR’s competitiveness. NSR offers more options, with

coastal regions north of Fujian showing potential. Time-insensitive

cargoes favor NSR, while time-sensitive ones prefer cross-border

rail. Considering government policy and CRE operation experience,

Zhao et al. (2018) evaluated the significance of each candidate node

in CRE using the complex network theory and the TOPSIS model,

and selected 10 cities out of 27 as the optimal consolidation centers.

As to the sea transport and sea–rail combined transport, Wang

et al. (2017) explored the economy and accessibility of Eurasian

Arctic container shipping routes and analyzed geographic features

with the methods of GIS and the complex network theory. He et al.

(2024) developed a dual-objective optimization model focusing on

ship allocation and operational efficiency within container liner

shipping, incorporating the impact of tax introduction on carbon

emissions. Cheng et al. (2022) introduced the current situation, the

development trend of the sea–rail express corridor between China

and EU, and the positive influence of the corridor on Eurasian two-
FIGURE 3

Simplified diagram of the China–Europe sea–land express corridor.
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way economic trade. Zhang et al. (2020) studied the importance

ranking of nodes in the CRE network under the Belt and Road

Initiative. By constructing a complex network model, calculated

using the multiple attribute decision-making model, this study

provides theoretical support and practical reference for the

optimization and development of the CRE transport network.

Xiang et al. (2025) developed a container liner shipping network

design model that takes into account pollutant emissions such as

NSR and black carbon. Lu et al. (2018) explored the comparative

advantage of railway transport and shipping and obtained the

optimal land–sea intermodal transport by adjusting the railway

freight rate and optimizing location of transport hubs.
2.2 Research about the routing
optimization problem of the multimodal
transport

Xu et al. (2023) proposed that in order to reduce carbon

emissions, ports should optimize operational processes and

strengthen regional cooperation, and shipping companies should

adjust routes and improve multimodal transport. Compared with

other modes of transportation, container transportation is subject

to seasonal fluctuations in shipping demand (Liu et al., 2025). Guo

et al. (2024b) proposed an International Multimodal Transport

Connectivity (IMTC) index to assess the convenience of

transporting export cargo from mainland China to Europe. They

defined IMTC considering the ease of transport through

multimodal networks and proposed monetary and time-based

indexes. Zhou et al. (2024) carried out a comprehensive analysis

of the international multimodal transport network connecting

mainland China and Europe from the two aspects of transport

cost and time efficiency. Prakash et al. (2024) introduced an

artificial intelligence (AI)-driven multimodal route planning

approach, integrating Monte Carlo simulations with LSTM

networks. They addressed route unavailability using a placeholder

notation system, enhancing the model’s adaptability to dynamic

disruptions. Yang et al. (2024) optimized the multimodal transport

path selection considering goods’ time sensitivity difference. They

introduced mixed time windows, built an integer programming

model from the carriers’ view to minimize cost while meeting on-

time delivery, used bi-level genetic algorithm for solving, and

proved its effectiveness via case studies. Zhang et al. (2024) noted

that multimodal transport optimization faces challenges like

algorithm limitations and network modeling issues. They

proposed a multi-objective weighted sum Q-learning method with

an undirected multiple-node network, considering time

uncertainty. Results show better performance than PSO, GA, and

AFO, and an advantage over NSGA-II in solving Pareto front

boundaries, despite some limitations. Chen et al. (2024)

developed a low-carbon route optimization model for multimodal

freight transport, considering value and time attributes. They used a

catastrophe adaptive genetic algorithm to solve the model and

conducted a sensitivity analysis of key parameters. Xu et al.
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(2024c) further advanced dynamic scheduling research by

proposing a disruption management model for tractor–trailer

transportation under uncertain events, integrating contract net

and simulated annealing algorithms to minimize deviations in

path, time, and vehicle usage in hub-and-spoke networks.

Derpich et al. (2024) proposed a centralized load concentration

approach for multimodal transportation in Chile, aiming to reduce

costs and emissions. Graff et al. (2024) developed “Network

Optimization for Multimodal Accessibility Decision-making”

(NOMAD), a multimodal, multi-cost, time-dependent network

model. It integrates various mobility options and travel costs. Guo

et al. (2023) noted that in feeder liner shipping, it is important to

consider shippers’ multimodal transport–path selection for the

integrated optimization of route, schedule, and fleet. They utilized

a nested Logit model for transport–path selection, developed a

mixed-integer nonlinear programming model, and proposed a PSO

framework embedded with CPLEX solver to solve it. Hou (2018)

proposed a multi-objective optimization model based on the

locomotive simulation model, which took the transportation time,

cost, energy consumption, and emission minimization as the

objectives. NSGA-II was used to solve the multi-objective

optimization model. Almasi et al. (2018) proposed an integrated

multimodal transit model for railway and feeder bus systems, using

single- and multi-objective approaches with metaheuristics like

NSGA-II. The model considered cost minimization and demand

proportion optimization, enhancing transit network design

and coordination.
2.3 State of the art and contributions of
this study

This study makes several significant contributions to the field of

container multimodal transport route optimization, providing

novel perspectives and insights into the sources of decision-

making for multimodal transport operators. The state of the art

for these contributions (N1–N5) is summarized below.

N1. A novel research perspective on container multimodal

transport route optimization

State of the art: Most existing studies focus on optimizing single

transport corridors or modes (Liu et al., 2024), rarely considering

multimodal transport route optimization or integrating multiple

corridors. Moreover, they often overlook the impact of uncertain

factors (e.g., transportation costs, time, and transshipment

operation time) on route selection.

Our solution: Starting from the rational organization of

container multimodal transport, this study considers the

stochastic characteristics of transportation costs, time, and

transshipment operation time. By applying robust optimization, it

enhances solution robustness, providing decision support for

optimizing container multimodal transportation network from

Chinese inland cities to European hinterland cities.

N 2 . D e v e l o pmen t o f a mu l t i - o b j e c t i v e r o bu s t

optimization model
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State of the art: Existing studies typically adopt single-objective

optimization, like minimizing cost or achieving the shortest time, or

deterministic multi-objective models (Zhang et al., 2025). These

studies do not consider the randomness of transport parameters,

such as the fluctuations in transit time.

Our solution: This paper introduces a robust optimization

framework, integrating the randomness of transport time, cost,

and transit time into the model. This approach enhances solution

stability, addressing the limitations of traditional models that ignore

parameter randomness.

N3. Integration of carbon emission constraints into the

optimization framework

State of the art: Most studies treat cost or time as the primary

objective, simplifying carbon emission constraints as additional

conditions. They do not incorporate carbon constraints into a

multi-objective optimization framework and lack a comprehensive

analysis of the trade-offs between cost, time and emissions (Grisales-

Noreña et al., 2024).

Our solution: This study integrates carbon emissions as a hard

constraint into the robust optimization framework. Combined with

the robust optimization method, the stability of carbon emission

constraints is verified under random disturbance scenarios (such as

sensitivity analysis of different carbon emission allowances E) to

ensure that the low-carbon characteristics of the solution are still

valid when the parameters fluctuate.

N4. Stochastic modeling of transport time, cost, and transit time

State of the art: Existing studies often assume deterministic

parameters (e.g., fixed transit time) or merely use probability

distributions to describe randomness, relying on precise

probability distribution assumptions (Liyanage et al., 2024).

Our solution: This paper depicts parameter randomness

through uncertain sets (such as interval fluctuations) and

establishes a robust model with P-regret value. By avoiding

reliance on precise probability distributions, it better adapts to the

uncertainty in container multimodal transport route optimization.

N5. Advanced data processing for container transport analysis

State of the art: Some studies directly use deterministic or

simple random data for model solving, lacking in-depth analysis
Frontiers in Marine Science 05
of various uncertain factors in actual transportation (Tyurin and

Stoianov, 2019).

Our solution: This study generates data via scenario analysis

and random perturbation. It also elaborates on the development

status and theoretical overview of China–Europe container

transport corridors, including the status, operation processes,

advantages, and disadvantages of three main corridors, as well as

analyses of uncertain factors in container multimodal transport.

This approach provides more comprehensive data support for

model optimization.
3 Modeling

3.1 Problem description

A batch of container cargo from a Chinese inland city is to be

transported to an inland city in Europe. During the process, a

domestic transit hub, a border port of CRE, and a seaport may be

involved. Figure 4 illustrates the container flow from a domestic

inland city to a foreign city. Therein, O means the domestic inland

city of China, I is the domestic transit hub, DT is the domestic

border port of CRE, DS is the domestic seaport, FT denotes the

overseas border port of CRE, FS represents overseas seaport, and D

means the overseas inland city. Numbers 1 to 5 represent five modes

of transport, i.e., highway transport, railway transport, CRE trains

transport, sea transport, and inland waterway transport. During the

operation process of the container multimodal transportation, there

are some uncertain factors in the transport cost, transport time, and

transit time. Moreover, the carbon emission appears in the whole

process, and it is necessary to set it as a constraint even if from the

perspective of a multimodal operator.

Thus, the problem to be solved in this paper is to optimize the

multimodal route considering the uncertainty and carbon emission

constraint. The objectives of the problem are twofold, i.e.,

minimizing total operation cost and time. Owing to the strong

adaptability of the robust technology (Xin et al., 2025), this paper

establishes a robust optimization model for the problem.
FIGURE 4

Simplified illustration of the Eurasian container multimodal transportation network.
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3.2 Assumptions
Fron
(1) All container cargoes are transported from origin to

destination in a single batch.

(2) Only one mode of transport between two nodes can be

selected, and the transshipment between different modes

can only happen at the transit hub.

(3) Transshipment occurs only once at the transit hub.

Capabilities of the facilities at the hub for transshipment

operation are enough.

(4) All transit hubs have a free storage period for container cargoes;

thus, we can ignore the waiting cost for transshipment;

(5) There are no time windows for the departure of highway,

railway, and inland waterway transportation. Sea liners and

CRE trains should stick to the schedule.
3.3 Notations

3.3.1 Sets and parameters
O: origin;

D: destination;

N: Set for all the transit hub, thereinNA represents the departure

station for domestic liners/CRE trains, i, j ∈ N ;

V: set for all the nodes in the transport network, V = O ∪ D ∪
N ;

V+
i : forward node of node i;

V−
i : backward node of node;

A: set of arcs in the network, A¼ (i, j) i, j ∈ Vj g;
K: set of transport modes,

K   ¼ 1; 2; 3; 4; 5. The value from 1 to 5 represents highway,

railway, CRE trains, sea, and inland waterway transport,

respectively, m, n ∈ K ;

S: set of all scenarios;

Q: number of containers transported between origin

and destination;

qs: probability of each scenario, s ∈ S;

p: parameter of the regret value;

E: constraint of carbon emission for each container;

Zm
ij : connectivity in the multimodal transportation network, i.e.,

whether container cargoes can be transported from node i to node j

by transport mode m. If so, the value should be 1, else 0;

CPm
sij: unit transport cost of a container from node i to node j by

transport mode m under scenario s;

CFmn
i : unit transshipment cost of a container from transport

mode m to mode n at node i;

TPm
sij: unit transport time from node i to node j by transport

mode m under scenario s;

TFmn
si : unit transshipment operation time of a container from

transport mode m to mode n at node i under scenario s;

GPm
ij : carbon emission from node i to node j by transport

mode m;
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GFmn
i : carbon emission from transport mode m to mode n at

node i;

Mm
ij : maximum freight volume from node i to node j by

transport mode m;

½dmij , lmij �: time window by transport mode m from node i to

node j;

½dm‘

ij , l
m

0

ij �: time window of the next period by transport mode m

from node i to node j;

Z*cos t : optimal value of the operating cost;

Z*time: optimal value of the operating time.

3.3.2 Decision variables

Xm
ij =

1 transport mode m is adopted from node i to node j;

0 otherwise

8<
:

Ymn
i =

1 containers are transfered from transport mode m to mode n at node i;

0 otherwise

(

3.3.3 Derived variables
Ti: time when container arrives at node i;

TDmn
i : waiting time for transshipment at node i from transport

mode m to mode n.
3.4 Models

3.4.1 Deterministic model
In recent years, research on multimodal transportation route

optimization has been continually advancing. Qi (2024) developed a

multi-objective route optimization model for rural cold chain

logistics in multi-temperature zones, balancing transportation

costs, carbon emissions, refrigeration energy consumption, and

service quality, making it suitable for small-scale fresh goods.

Yang et al. (2024) addressed differences in cargo time sensitivity

by introducing mixed time window constraints and designed a bi-

level genetic algorithm to optimize container transportation routes,

enhancing the model’s adaptability to heterogeneous cargo

demands. Huang et al. (2025) developed a multi-objective model

considering both transportation costs and time based on Shanghai

Port and its hinterland, optimizing the hinterland port access routes

using an improved particle swarm algorithm. Ma et al. (2023b)

adopted uncertain programming methods to address cross-border

transportation under uncertain demand, incorporating factors such

as carbon taxes, customs fees, and inland port location selection,

and designed a cross-border multimodal transport network model.

In contrast, this study develops a deterministic model (denoted

as P1) that focuses on the coordinated optimization of

transportation cost, time, and carbon emissions under known

demand conditions, specifically in the context of Eurasian

container transport—an area that remains underexplored. Unlike

previous studies, which often emphasize uncertainty management

or heuristic algorithms, our model adopts a deterministic

optimization framework to support sustainable transportation

decisions from an operator’s perspective. The objective is to
frontiersin.org
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minimize both operating cost and time, ensuring efficient

and environmentally conscious transport planning across

Eurasian corridors.

Objective function:

minZcost = Q* o
i∈V
o
j∈V

o
m∈K

CPm
ij X

m
ij + o

i∈N
o
m∈K

o
n∈K

CFmn
i Ymn

i

 !
(1)

minZtime = o
i∈V
o
j∈V

o
m∈K

TPm
ij X

m
ij

+ Q*o
i∈N

o
m∈K

o
n∈K

TFmn
i Ymn

i + o
i∈NA

o
m∈K

o
n∈K

TDmn
i Ymn

i (2)

Constraint condition:

o
(i,j)∈A

o
m∈K

GPm
ij X

m
ij   + o

i∈N
o
m∈K

o
n∈K

GFmn
i Ymn

i ≤ E (3)

Ti = o
j∈V−

i

Tj + o
m∈K

o
n∈K

o
j∈V−

i

TFmn
j Ymn

j + o
j∈V−

i

o
i∈V
o
n∈K

TPn
jiX

n
ji  ,   ∀ i ∈ V

(4)

TDmn
i =

lnij − Ti − TFmn
i ,  Ti + TFmn

i ≤ lnij

ln
0

ij − Ti − TFmn
i , Ti + TFmn

i > lnij
,    i ∈ NA,   j ∈ V+

i ,   m ∈ K , n = 3=4

8<
:

(5)

o
j∈N

o
m∈K

Xm
Oj = o

j∈N
o
m∈K

Xm
jD = 1 (6)

o
h∈V−

i

o
m∈K

Xm
hi = o

j∈V+
i

o
m∈K

Xm
ij ,   ∀ i ∈ N (7)

Xm
ij ≤ Zm

ij ,   ∀ (i, j )  ∈ A ∈ V ,m ∈ K (8)

o
j∈V

o
m∈K

Xm
ij ≤ 1,   ∀ i ∈ N (9)

o
n∈K

o
m∈K

Ymn
i ≤ 1,   ∀ i ∈ N (10)

o
h∈V�

i

Xm
hi + o

j∈V+
i

Xn
ij ≥ 2Ymn

i ,   ∀ i ∈ N ,m, n ∈ K (11)

Xm
ij ∈ 0, 1f g ,     ∀ (i, j )   ∈ A ,    m ∈ K (12)

Ymn
i ∈ 0, 1f g,    ∀    i ∈ N ,    m, n ∈ K (13)

Therein, (Equations 1, 2) are the objective functions of the model.

They are minimizing the operating cost and the operating time. The

operating cost is the sum of the transport cost of all arcs and

transshipment cost at all transit hubs. The operating time is the

sum of the transport time of all arcs, the transshipment time at transit

hubs, and the waiting time for the transshipment operation. Equation

3 represents the carbon emission constraint in the network.
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(Equation 4) represents the time when the container actually

arrives at node i. (Equation 5) is set to calculate the waiting time

for transshipment. (Equations 6, 7) are set to ensure continuity of the

transport operation. Among them, (Equation 6) emphasizes that the

container must start from O and arrive at D. (Equation 7) is set to

ensure the cargo flow balance of the transit hub. Equation 8 is the

relationship between the decision variables and the connectivity of

the network. Equation 9 asserts that only one mode of transport can

be chosen for each arc of the network. Equation 10 shows that only

one transshipment can occur at each transit hub. Equation 11 sets the

relationship between the decision variables. Equations 12, 13 are set

to ensure that all the decision variables are binary variables.
3.4.2 Robust model based on the P-regret value
The P-regret model is a classical method in the field of robust

optimization (Raad et al., 2024). It has been widely used in

transportation, logistics, and other fields by constraining relative

deviation to balance optimization objectives and robustness. Thus,

this paper establishes a robust model with the P-regret value. The

model should reveal the stochastic characteristics of the transport

cost, transport time, and transshipment operation time. We define

this model as P2. Compared with the deterministic model (P1),

which completely ignores the uncertainty, the P2 model is more

suitable for the characteristics of parameter fluctuations in the

actual transport network through scene analysis and relative

deviation control.

minZcost = o
s∈S

qsZcosts (14)

minZtime = o
s∈S

qsZtimes (15)

Equations 14, 15 are to minimize the expected value of the

operating cost and operating time under all scenarios. The

calculation formulas for operating cost and operating time are

shown in (Equations 16, 17).

Zcosts = Q* o
i∈V
o
j∈V

o
m∈K

CPm
sijX

m
ij + o

i∈N
o
m∈K

o
n∈K

CFmn
i Ymn

i

 !
,    ∀ s ∈ S

(16)

Ztimes = o
i∈V
o
j∈V

o
m∈K

TPm
sijX

m
ij + Q*o

i∈N
o
m∈K

o
n∈K

TFmn
si Ymn

i + o
i∈N

o
m∈K

o
n∈K

TDmn
i Ymn

i ,    ∀ s ∈ S

(17)

Constraint condition:

Zcos ts ≤ (1 + p)Z*cos ts ,    ∀ s ∈ S (18)

Ztimes ≤ (1 + p)Z*times
,    ∀ s ∈ S (19)

Tsi = Tj + TFmn
sj Ymn

j + TPn
sjiX

n
ji    ,     ∀ i ∈ NA, j ∈ V−

i    m, n ∈ K ,∀ s ∈ S

(20)
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TDmn
si =

lnij − Ti − TFmn
si ,  Ti + TFmn

si ≤ lnij

ln
0

ij − Ti − TFmn
si , Ti + TFmn

si > lnij
,  i ∈ NA , j ∈ V+

i  m, n ∈ K ,∀ s ∈ S

8<
:

(21)

o
s∈S

qs = 1 (22)

For the equations in P2, (Equations 18, 19) are set to ensure that

the difference between the objective value with any scenario and the

optimal value is in the predetermined scale. Equation 20 is the

calculation formula for the time when the container arrives at node i

under scenario s. Equation 21 shows how to calculate the waiting

time for transshipment under scenario s. (Equation 22) means that

the sum of the probability for all scenarios should be one.

Furthermore, the model should include Equation 3, and

Equations 6 to 13 in P1. As the meanings are the same, we do

not need to explain here. Whereas traditional robust optimization

typically focuses on minimizing the worst-case objective value, such

as in a min–max problem (Baak et al., 2025), the P-regret model

introduces a more flexible robustness criterion. Instead of solely

optimizing for the worst-case scenario, this model balances

expected performance and robustness by incorporating

probability-weighted objective functions [Equations 14. 15)] and

relative regret constraints [Equations 18. 19)]. This approach

ensures that the solution remains stable under uncertainty while

avoiding overly conservative decisions that may arise from strict

worst-case optimization.

It is important to emphasize that although the objective

function of the P-regret model minimizes the overall performance

by weighting and summing the objective values across all scenarios,

it ensures, through Equations 18, 19, that the relative deviation from

the optimal objective value in each scenario does not exceed (1+p)

times. In other words, even in the worst-case scenario, the results

remain effectively controlled. In contrast, solely adopting a worst-

case optimization approach may lead to overly conservative

decisions, ultimately reducing overall efficiency. This mechanism

ensures that the model’s performance is controlled within an

acceptable range across all scenarios, rather than only optimizing

for the average case. Therefore, the P-regret model offers significant

advantages in balancing average performance and extreme risk

mitigation, which is particularly important for practical

applications in multimodal transportation networks.
4 Solution algorithm

4.1 Multi-objective genetic algorithm

Multimodal transport networks involve the combination of

multiple transport modes, the selection of multiple transit nodes,

and complex constraints (such as time windows, carbon emission

constraints, etc.) (Yang et al., 2024; Wang et al., 2025b). This study

involves two objectives of operating cost and operating time, which

are in conflict with each other. The solution method in this paper is
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based on the improved NSGA-II algorithm proposed by Deb (Deb

et al., 2002) in 2002 according to his own NSGA.

As a classic multi-objective optimization algorithm, NSGA-II

can generate a set of Pareto optimal solutions (Wang et al., 2025a).

Although NSGA-III performs better when dealing with more

targets (Hou et al., 2025), its computational complexity is higher.

For the problem studied in this paper, the two targets are mainly

considered, so NSGA-II is sufficient to cope with it. There are some

newer multi-objective optimization algorithms such as MOEA/D

(Lin et al., 2017) and SPEA2 (Strength Pareto Evolutionary

Algorithm 2) (Lv and Shen, 2023) that may be more suitable for

specific types of problems (such as continuous and discrete

optimization). However, the problem in this study has the

characteristics of mixed integers (involving node selection and

transport mode selection), and NSGA-II shows good adaptability

in dealing with such mixed problems and achieves a good balance

between computational efficiency and quality (Yilmaz et al., 2025).

NSGA-II can effectively deal with two to three objective

optimization problems and has mature algorithm implementation

and rich application experience, and its stability and reliability have

been widely recognized (Ma et al., 2023a). For the large-scale and

complex problems in this study, selecting a well-validated algorithm

can ensure the reliability of the results. With this in mind, this paper

designs NSGA-II to solve the proposed model (Noruzi et al., 2023).
4.2 Basic procedure of the algorithm

The flowchart of the proposed algorithm is shown in Figure 5.

The main procedures of the proposed algorithm are as follows.
(1) Population initialization. Generate the initial population at

random. The scale of the population is set as N. Then, we

can get the first generation of the offspring population by

the nondominated sorting, selection, crossover, and

mutation operation.

(2) Population combination. Offspring Qt+1 and their parent Pt
are combined to get Rt+1. The size of the population at this

time is 2N . That is twice of the total size N. Because of that,

we have to clip the population.

(3) Population clipping. Every individual in the new population

is nondominated sorted. A series of nondominated set Zi is

generated accordingly. The principle of the nondominated

sorting is as follows: the lower the layer, the better the

individual. Thus, individual is added to Zi until the size of

the individual is equal toN. Compare the crowding distance

of all individuals in Zi, and choose the individual with the

maximum crowding distance.

(4) Iterative operation. We conduct operations of selection,

crossover, and mutation to the new parent population. In

this way, we can get new offspring population. Repeat the

step below until the termination rule is satisfied. Then, we

can get the Pareto solution set.
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(5) Validation of the robustness. Based on the robustness of the

proposed model, this paper applies the validation of the

robustness apart from the normal procedure of NSGA-II. If

there is solution satisfying the robustness constraint in the

Pareto set, then we decode the solution and get the optimal

robust scheme. Otherwise, we return to the beginning of the

algorithm and repeat the procedure.
4.3 Key operators of the algorithm

(1) Chromosome coding

There are five modes of transport in the multimodal network.

Based on that characteristic, this paper determines the chromosome
tiers in Marine Science 09
encoding method as a chain composed of two parts: transport city

nodes and transportation modes. The first part is made up of the

node cities. Thus, the length of the first part is the number of the

node cities in the scheme. The second part is set to represent the

transport mode between the node cities. Thus, the length of the

second part is equal to the length of the first part minus 1. We can

see the illustration from the upper half of Figure 6. Suppose there

are 10 nodes in the network (1–10 representing city A–J), and there

are 5 types of transportation modes available between all nodes:

highway, railway, CRE trains, sea, and inland waterway. Real

numbers are used to encode the node cities, represented by 1, 2,

3, 4, 5, 6, 7, 8, 9, and 10 for the 10 city nodes; similarly, real numbers

are used to encode the transportation modes, represented by 1, 2, 3,

4, 5 for highway, railway, CRE trains, sea, inland waterway. For

example, the encoding format “1-2-5-7-9-10-1-2-3-2-5” indicates
FIGURE 5

Flowchart of the proposed algorithm.
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that the transportation sequence of cities is A-B-E-G-I-J. Goods are

transported from city node A to node B by road, then to node E by

rail, and between node E and node G by sea, between node G and

node I by rail, and between node I and node J by inland waterway.

There are transportation mode conversions at nodes B, E, G, and I,

as shown in the lower part of Figure 6.

(2) Generation of the initial population

The initial population is generated at random. However, during

the initialization process, it is necessary to check if the population

meets the feasibility constraints. For example, if there is

connectivity between two nodes, then we should eliminate the

individual. Moreover, to ensure the size of the population

maintain at N, we should supplement the corresponding number

of illegible individuals.

(3) Nondominated sorting

The operation of nondominated sorting is the classification of

population hierarchy according to different relationships between

domination and nondomination. In multi-objective programming,

if at least one of the objectives of individual p is better than that of

individual q, and other objectives of individual p is no worse than

those of individual q, then we can say that the individual p

dominates individual q. Individual q is called nondominated

solution or Pareto solution. All the nondominated solutions are

classified as the first layer, labeled with the value of grank = 1. Then,

the second layer of the nondominated solutions is sorted out from

the remaining individuals, labeled with grank = 2. Likewise, the

nondominated sorting is conducted until all the individuals

are labeled.

(4) Calculation of the crowding distance

The lower the nondominated layer, the better individuals in that

layer are. If we want to know which of the individuals in the same

layer is better, we may consider an internal sorting by crowding

distance. The crowding distance of individual p means the three-

dimensional Euclidean distance of two neighborhood individuals of

p, i.e., p+1 and p−1. The calculation method is shown in (Equation

23).

pd =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½fc(p + 1)� fc(p� 1)�2 + ½ft(p + 1)� ft(p� 1)�2

q
(23)

Therein, fc and ft are two objective function values of the model

about operating cost and operating time, respectively. fc(p + 1)

means the value of the objective function – operating cost for

individual p+1. Figure 7 can be the illustration of crowding distance
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for individual p. We can take the length of the dotted line from p−1

to p+1 as the crowding distance for p. Obviously, the bigger the

value of pd , the more diversified the population is.

(5) The selection operation

This paper adopts the tournament method for the selection

operation. The method is based on the value of the layer and

crowding distance. By comparing individuals’ non-dominant rank

and crowding distance, tournament selection is able to

preferentially select high-quality individuals while maintaining

population diversity. More specifically, we compare values of the

layer (the value of grank) between the two individuals first. If the

values are different, then we choose the individual with a lower

value of the layer. At this point, we do not need to consider the

crowding distance. Otherwise, if the values of the layer are the same

for the two individuals, then we should calculate the crowding

distance. The individual with the bigger crowding distance should

be selected, so that the diversification of the population can be

maintained. This method is widely used in many multi-objective

optimization algorithms and proved to be effective. For example,

Deb et al. (2002) described in detail the advantages of tournament

selection in the original paper of the NSGA-II algorithm, especially

the ability to effectively balance convergence and diversity when

dealing with multi-objective optimization problems. In addition,

Kim et al. (2004) also verified the stability and effectiveness of

tournament selection in problems of different sizes and

complexities through experiments.

(6) The crossover operation

The two-point operator is adopted in this paper for the

crossover operation. This choice is based on its wide application

and good performance in combinatorial optimization problems. By

exchanging gene segments between two random locations in two

parent chromosomes, the two-node crossover operator can

effectively explore the new solution space while maintaining the

structural stability of the solution. The detailed process is as follows.

Two integers ranging from 2 to n−1 (n is the length of the

chromosome) are generated at random. These two integers are

named r1 and r2 in ascending order. Extract the gene segments
FIGURE 7

Crowding distance of individual p.

FIGURE 6

Schematic diagram of chromosome coding.
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between r1 and r2 extracted from the two parents and interchange

them. The other segments remained unchanged. Thus, we can get

two new chromosomes. The crossover operation is shown in

Figure 8. This approach has been shown to be effective in many

studies, especially when dealing with path- or sequence-dependent

optimization problems. For example, Campuzano et al. (2025) and

Singgih and Singgih (2024) pointed out in their research that two-

node crossover operators can maintain the consistency of solutions

and produce high-quality offspring solutions when solving path

optimization problems such as traveling salesman problem (TSP)

and vehicle routing problem (VRP). Notably, Lim et al. (2021)

further validated the advantages of two-point crossover in complex

logistics network optimization through their recent study on the

multi-depot split-delivery vehicle routing problem (MDSDVRP).

By constructing a two-dimensional chromosome encoding and

dynamic mutation strategies, combined with Taguchi parameter

optimization methods, this research demonstrated that two-point

crossover can effectively maintain solution consistency and enhance

global search capabilities under scenarios requiring multi-depot

collaborative scheduling and multiple-delivery constraints.

(7) The mutation operation

The mutation operation can be described as follows. Firstly, a

random number in the scope of [0,1] is generated. Then, the number

is compared with the mutation probability. If the number is lower

than the mutation probability, then a single-point mutation operation

is adopted. Randomly generate a gene point r and change the value at

the point to another value in the candidate number set. If not, the

parent will remain unchanged. The single-point mutation operation

is shown in Figure 9. Single-point variation can be explored on a local

scale by randomly changing a gene location in the chromosome and

increasing the diversity of solutions while avoiding excessive

structural changes that lead to the loss of solution viability. This

method is very common in the application of genetic algorithms and

has been validated in many studies. For example, Yi et al. (2018)

pointed out in their study that when dealing with combinatorial

optimization problems, single-point mutation operators can

effectively jump out of local optimality without destroying the basic
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structure of the solution. In addition, they also showed through

experiments that single-point variation can help the algorithm better

maintain the diversity of the population in multi-objective

optimization problems, thus improving the global search ability. To

ensure the feasibility of the chromosome after mutation, all the values

in the candidate set should satisfy the connectivity requirements

between related cities considering the transport mode.

(8) Population combination and clipping

The combination of parents and offspring can guarantee that

good solutions can inherit afterwards. However, the size of the

population becomes twice of the original size after the combination.

Thus, it is necessary to conduct the clipping operation so that the

size of the population remains unchanged. The procedure for the

clipping operation is as follows.
Step 1: initialize the number of permitted individuals (PS) as N.

Step 2: check the size of current nondominated set with the

minimum value of grank (NM).

Step 2.1: If NM is no bigger than PS, then all the dominated

solutions are included into the new population. The value

of PS will be updated as PS minus NM. Explore the

nondominated layer with the higher ordinal value (grank

+1) and end the clipping procedure until the value of PS

reaches zero.

Step 2.2: If NM is bigger than PS, then sort all the individuals of

the current layer according to the crowding distance in

descending order and choose the first PS individuals into

the new population. End the clipping procedure.
5 Empirical analysis

5.1 Data

5.1.1 Network description
Nanjing is the national comprehensive transportation hub of

China. It has an intensive highway network and a developed

waterway network. Furthermore, the two-way trade between

China and Germany has reached 205.7 billion Euro. China has

become the most important trading partner for 4 years. Thus, this

paper takes the transportation of 40 FEU containers from Nanjing,

China (denoted as O) to Berlin, Germany (denoted as D) as the
FIGURE 9

Schematic diagram of mutation operation.

FIGURE 8

Schematic diagram of the chromosome crossover operation.
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example in empirical study. Three corridors for chosen have been

introduced in Figures 1–3 in Section 1. The multimodal network

from Nanjing to Berlin in detail is shown in Figure 10.

As shown in Figure 10, according to the routes of the CRE

trains, Manzhouli, Erenhot, and Alashankou are selected as three

border ports (DT). According to the ranking of the Chinese

container ports and main ports concerning China–EU container

transportation, Dalian, Shanghai, Ningbo, and Shenzhen are

selected as domestic sea ports (DS). Based on the destinations of

the three main corridors of CRE trains and sea ports, Warsaw,

Duisburg, Hamburg, Rotterdam, and Piraeus are selected as foreign

border ports (FT) and sea ports (FS). Suzhou, Changsha,

Chengchow, Chongqing, and Wuhan are selected as candidate

transit hubs (I). Considering that Hong Kong and Singapore rank

as the top two in terms of current container transshipment volume,

this paper chooses the two ports as ports of call. Moreover, as any

CRE routes will have to change rail at Malaszewicze, we select this

city as the overseas border port. For simplified description of the

transport scheme in the following part, we allocate code numbers

for all the city nodes, as shown in Figure 10.

5.1.2 Data description
For the calculation of carbon emission, we assume that an FEU

container is equal to 30 tons of container cargoes. Furthermore, as

many multimodal operations are settled by US dollars, we set the

exchange rate between US dollar and RMB as 7 for unity. Related

data for the study are as follows. The city codes of the China-Europe

Container Transport Corridor are shown in Table 1 below.

(1) Freight rates

Freight rates are different according to different modes of

transport and zones. For road transport in the Chinese region,

the basic freight rate of a 40-ft container is 9 yuan/FEU• km, and

additional charge for a container is 25 yuan/FEU. Freight rate in the
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overseas region is $2/FEU• km. Container rates of sea and inland

waterway transport are $0.25/FEU• km and $0.15/FEU• km. For

railway transport, freight rates are listed in Table 2.

(2) Transport time

Transport time is equal to the ratio of transport distance to

speed. As to the highway and railway distance, we get the data from

Google Earth. The waterway route distances are achieved by Netpas

Distance. We set 100 km/h as the maximum speed of highway

transport, and the relationship factor of average to maximum speed

is 0.75. The maximum speed of containership is set as 25 knots, i.e.,

46 km/h, and the relationship factors of sea and inland waterway

transport are 0.8 and 0.6, respectively. The maximum speed of

railways is 100 km/h. The average speed of different zones is

different, as shown in Table 3.

(3) Carbon emission during the transport process

Carbon emission parameters are classified only in three ways,

i.e., road, rail, and water. Thus, railway and CRE trains are treated

the same, and sea and inland waterway transport are taken

identically. Related parameters are shown in Table 4.

(5) Transshipment operation-related data

Related data about the transshipment operation is calculated

using the real life transshipment cost, time, and carbon emission.

They are shown in Table 5.

(6) Time windows of liners and CRE trains

We define the beginning of the planning time as zero, and the

unit of time is an hour. Table 6 is the departure time window of

liners and CRE trains.

Take the time window of [12, 60] of node 3 as the example. It

means that the CRE train arrives at 12 and leaves at 60. If container

cargoes arrive before 12, we will have to wait until 12 to operate the

transshipment operation. If container cargoes arrive between 12

and 60, and finish the transshipment operation, then the container

cargoes can leave at 60. However, if container cargoes arrive after
FIGURE 10

Container multimodal transportation network from Nanjing to Berlin.
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60, or has not completed the transshipment operations, it can only

choose the second transportation schedule, the train with a time

window of [60, 108].

(7) Generation of the stochastic disturbance data

Based on the parameters introduced previously, we can get the

transport time, cost, and operation time for transshipment at all

transit hubs. The data are set as the basic data. Four disturbance

data are generated by a different disturbance level based on the basic

data. The levels are ±10%, ± 20%, ± 30%, and ±40%, respectively.

Combined with the basic scenario, we get five scenarios. Assume

that the probabilities for the five scenarios are 0.4, 0.2, 0.2, 0.1, and

0.1 respectively. The regret value is set as 0.5.
5.2 Results analysis

5.2.1 Model and algorithm validation
We use the CPLEX to validate the model. The operating system

is Windows 10 with an Intel Core I5-8300H CPU@2.30GHz

processor. A small-scale case is used to validate the feasibility of

the proposed model and related variables. Basic information of the

small-scale case is as follows. Fifteen city nodes (1, 2, 4, 5, 7, 8, 10,

11, 13, 18, 19, 20, 21, 22, and 23), one basic scenario, and three

modes of transport (1: highway; 2: railway; 4: sea) are considered.

As CPLEX can only solve the single-objective model, we transform

the bi-objective to single-objective model by setting weights of the

two objectives as 0.5. Constraint of CO2 emission for each container

is set as 2500 kg. Table 7 is the optimal multimodal scheme. The

transport route and mode conform to reality, which proves the

feasibility of the proposed model in this paper.

We use the NSGA-II to solve the same case. Parameters for the

algorithm are set as follows. Population size is 100, maximum
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number of iterations is 500, and the probabilities for crossover and

mutation are 0.8 and 0.1, respectively. After executing the

algorithm, we obtain a set of Pareto optimal solutions. Table 8

presents a subset of these solutions.

A decision-maker can select the optimal scheme based on

specific requirements. For cost-sensitive scenarios, the first three

options are preferable. These primarily utilize sea transport,

supplemented by highway and railway connections. Compared to

scheme 6, these options can reduce operating costs by up to 12.5%.

Conversely, if minimizing process duration is the priority, the last

four schemes are the most suitable. These routes largely leverage the

China–EU sea–land express corridor, reducing operating time by

up to 25%.

Furthermore, we get the normalized scheme from the seven

schemes in Table 8, as shown in Table 9. Analyzing the normalized f

(x), we get the minimum value from scheme 4. The result is the

same with that from CPLEX. Thus, we can see that the transport

scheme mainly concerning the China–EU sea–land express corridor

is better considering economics and timeliness.

To testify the effectiveness of the proposed algorithm, this paper

conducts four case analyses considering different scales. The scales

of the four cases are shown in Table 10. They are solved by both

CPLEX and NSGA-II. The results are shown in Table 11 and

Figure 11. For large-scale problems, NSGA-II takes significantly

less time to compute than CPLEX (as shown in Figure 11) and is

able to generate a set of high-quality Pareto optimal solutions. This

demonstrates the efficiency and effectiveness of NSGA-II in dealing

with large-scale, complex problems.

We can see from Table 11 that when the case scale is relatively

small, the objective values obtained from CPLEX and NSGA-II are

very close, or even the same. That reveals the fact that the NSGA-II

algorithm can achieve high precision when dealing with small-scale

problems. According to Zeinab Aliahmadi et al. (2025) andMa et al.
TABLE 1 The code of cities in the China–EU container transportation corridor.

Code City Code City Code City Code City

1 Nanjing 7 Dalian 13 Alashankou 19 Hamburg

2 Suzhou 8 Shanghai 14 Singapore 20 Rotterdam

3 Changsha 9 Ningbo 15 Hong Kong 21 Piraeus

4 Chengchou 10 Shenzhen 16 Malaszewicze 22 Hungary

5 Chongqing 11 Manzhouli 17 Warsaw 23 Berlin

6 Wuhan 12 Erenhot 18 Duisburg
TABLE 2 Freight rates for railway transport of different zones.

Zone Freight rate (FEU container)

Chinese zone
Basic freight of delivery is 680 yuan/FEU, and basic freight of
operation is 2.754 yuan/FEU• km

CIS zone
Freight rates departing from Manzhouli, Erenhot, and
Alashankou are $0.41/FEU• km, $0.44/FEU• km and $0.69/
FEU• km

EU zone Unified freight rate in EU zone is $1/FEU• km
Source: China Economic Information Service.
TABLE 3 Average speed of railway transport in different zones.

Railway transport
zone

Relationship factor
of average to

maximum speed

Average
speed
(km/h)

Chinese zone 0.70 70

CIS zone 0.52 52

EU zone 0.60 60
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(2023c), the verification of multi-objective algorithms should focus

on the combined complexity gradient of decision variables,

constraints, and objective functions, rather than simply pursuing

the number of instances. Through systematic changes in the

number of nodes (15–23), the number of scenarios (1–5), and the

number of transportation modes (3–5), these four cases have

basically covered the typical complexity range of logistics network

optimization (Zhu et al., 2024). This result is consistent with

previous studies (Pak et al., 2022), which also found that NSGA-

II showed high accuracy in dealing with small-scale optimization

problems. This validates the applicability of NSGA-II in multimodal

transport networks, especially in small-scale scenarios.

Moreover, although the computation time of CPLEX is

acceptable when the case scale is small, when the scale increases,

the complexity of the problem increases a lot. That fact leads to the

phenomenon of sharp increase of computation time by CPLEX.

From case 1 to case 4, introducing eight additional nodes, four

scenarios, and two transportation modes led to an exponential

increase in CPLEX’s computational solution time, exhibiting a
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“jump” phenomenon. As illustrated in Figure 11, the solution

time for case 4 already required nearly 5 h. In contrast, the

computational time growth of NSGA-II remained relatively

gradual. That leads to the conclusion that NSGA-II has a great

advantage on solving large-scale problems.

5.2.2 Comparison between the single-objective
and multi-objective model

Figures 12, 13 show the comparison between single-objective

and multi-objective models under different scenarios. If we take the

operating cost as the analysis object, we can see that the optimal cost

under the single objective of operating cost is only about 70 million

dollars. However, that value is up to nearly 130 million dollars,

while the operating cost is about 80 million dollars. That value only

exceeds 15% of the optimal value of the single objective, which is

quite satisfactory. The situation about the operating time is similar.

Under single-objective circumstances, the average optimal values of

the five scenarios are 436 and 763 h, while that value is about 566 h

in our multi-objective model, which exceeds 29% of the optimal
TABLE 6 Time windows of liner ships and CRE trains.

City nodes of the CRE departure station

Transportation
schedule City nodes of departure port for liners

Transportation
schedule

1 2 1 2

2 [0,48] [48,96] 7 [36,84] [84,132]

3 [12,60] [60,108] 8 [36,84] [84,132]

4 [12,60] [60,108] 9 [48,96] [96,144]

5 [24,72] [72,120] 10 [48,96] [96,144]

6 [24,72] [72,120]
fro
TABLE 4 Carbon emission parameters for different modes of transport.

Mode of
transport

Consumption of standard
coal (Em) kg/t• km

Emission factor of CO2

(P) kg CO2/GJ
Calorific value of standard

coal (CE) kg/GJ
Carbon oxidation

factor (a)

Highway 20 × 10−6

94.6 29.3076 1
Railway/
CRE trains

4.11 × 10−6

Sea/
Inland waterway

2.2 × 10−6
Source: Statistical bulletin on the development of China’s transportation industry.
TABLE 5 The transshipment cost, time, and carbon emissions between transportation modes.

Highway Railway CRE trains Sea Inland waterway

Highway —— 5/0.3/0.5 5/0.3/0.5 5/0.3/0.8 5/0.3/0.8

Railway 5/0.3/0.4 —— 7/0.5/0.6 10/0.8/1 10/0.8/1

CRE trains 5/0.3/0.4 7/0.5/0.6 —— 10/0.8/1 10/0.8/1

Sea 5/0.3/0.7 10/0.8/1 10/0.8/1 —— 8/0.7/0.8

Inland waterway 5/0.3/0.7 10/0.8/1 10/0.8/1 8/0.7/0.8 ——
Data format is “a/b/c”. a: transshipment cost (yuan/t); b: transshipment time (h/FEU); c: Emission factor (kg/t). “—” means that transshipment cost/time/emission can be ignored between the
same mode of transport.
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value of the single-objective model. That is also satisfactory to

some degree.

Thus, it is evident that the two objectives are inherently

conflicting, potentially even mutually exclusive. Consequently,

achieving optimal values for both objectives simultaneously using

a single-objective model is not feasible. Improving one objective

inevitably leads to a degradation in the other. Multi-objective

optimization offers a framework for achieving a compromise and

trade-off between these competing objectives, allowing each

objective to approach its optimal value as closely as possible.

5.2.3 Comparison between the robust and
deterministic model

To solve the P-regret value robust model, we have to obtain the

optimal values of the two objectives under different scenarios. The

minimum values of operating cost and time under all scenarios are

Mincos ts and Mintimes in Tables 12, 13. Likewise, the maximum

values of operating cost and time under all scenarios are Maxcos ts
and Maxtimes . In Tables 12, 13, values of Zp

cos ts and Zp
times

are the
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objective functions in P2 under scenario s. Relative deviations of

operating cost and time are calculated as follows.

ecos t = (Zcos ts
p �Mincos ts )=Mincos ts � 100% (24)

etime = (Ztimes
p �Mintimes )=Mintimes � 100% (25)

For example, calculate the relative deviation of operating cost in

S2. According to Table 12, the minimum operating cost for Scenario

2 Mincos ts is 69,784.2, and the objective function value Zcos ts
p is

80,431.1. Using (Equation 24) to calculate the relative deviation

results in a value of 15.3%.

The relative deviations in Tables 12 and 13 demonstrate that the

P2 model effectively limits performance degradation across all

scenarios. For example, even under the widest fluctuation

(Scenario 5, ± 40%), the operating cost and time remain within

25% of the deterministic solution, validating the model’s resilience

against uncertainty.

5.2.4 Analysis of different fluctuation situations
The five scenarios previously analyzed are generated at random

based on the basic data. The fluctuation levels are 0, ± 10%, ± 20%, ±

30%, and ±40%, respectively. The probabilities for each scenario are

0.4, 0.2, 0.2, 0.1, and 0.1 respectively. The situation is defined as S1.

In this section, we set another fluctuation situation and compare it

with the original optimal scheme. This situation is called S2.

Descriptions of S2 are as follows. Five scenarios are generated
TABLE 8 Pareto optimal solution set.

Scheme Transport route Transport mode Operating cost/$ Operating time/h

1 1-2-8-19-23 2-4-4-1 72,739.5 708.1

2 1-2-9-19-23 2-4-4-1 72,243.0 712.4

3 1-4-7-19-23 2-2-4-1 73,326.6 703.9

4 1-2-8-21-22-23 2-2-4-2-2 79,295.8 559.3

5 1-2-10-21-22-23 2-2-4-2-2 79,778.6 554.7

6 1-2-8-21-22-23 1-4-4-2-2 81,562.1 542.0

7 1-4-7-21-22-23 2-2-4-2-2 80,914.3 549.4
TABLE 9 Normalized value of Pareto optimal solution.

Scheme Transport route Transport mode f
0
c(x) f

0
t (x) f(x)

1 1-2-8-19-23 2-4-4-1 0.05 0.97 0.51

2 1-2-9-19-23 2-4-4-1 0.00 1.00 0.50

3 1-4-7-19-23 2-2-4-1 0.12 0.95 0.53

4 1-2-8-21-22-23 2-2-4-2-2 0.76 0.10 0.43

5 1-2-10-21-22-23 2-2-4-2-2 0.81 0.07 0.46

6 1-2-8-21-22-23 1-4-4-2-2 1.00 0.00 0.50

7 1-4-7-21-22-23 2-2-4-2-2 0.93 0.04 0.49
TABLE 7 Optimal transportation scheme and relevant data of
multimodal transportation.

Transport
route

Transport
mode

Operating
cost/$

Operating
time/h

1-2-8-21-22-23 2-2-4-2-2 79295.8 559.3
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based on the basic data, with all fluctuation levels of ±40%.

Probabilities for each scenario are all 0.2. Table 14 shows the

optimal scheme under two fluctuation situations.

It can be seen from the comparison that, even if the fluctuation

situation changes, the optimal transport scheme remains

unchanged. The proposed transportation scheme maintains its

core structure: railway transport from Nanjing to Suzhou,

followed by highway transport to the Port of Shanghai, and sea

transport via Singapore to the Port of Piraeus through the China–

EU sea–land express corridor, with subsequent railway transport to

Hungary and highway transport to Berlin. While the optimal total

operating cost and time differ from the deterministic case, the values

remain within acceptable bounds. This resilience demonstrates the

P-robust model’s capability to mitigate the effects of uncertain

factors and maintain operational stability.
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5.2.5 Sensitivity analysis of the related parameters
To testify the influence of the parameters on the model, this

section sets three cases with different situations of carbon emission

constraints, time windows, and regret values of p.

(1) Sensitivity analysis of carbon emission constraints

This section compares the results of four different carbon

emission constraints. The four constraints are strict constraint (E

= 2,500), relatively strict constraint (E = 3,000), moderate constraint

(E = 3,500), and loose constraint (E = 4,000). Firstly, we get 29

Pareto solutions by relaxing the emission constraint. The solutions

form the Pareto frontier curve. The curve is the compromise

between operating cost and time. Then, we add the carbon

emission constraint. In this way, we can observe the change of

the solution space, as shown in the bolded points from

Figures 14–17.

When the value of E is equal to 2,500 kg, the size of the Pareto

set is four. The four solutions have the common characteristics of

low operating cost and high operating time. The most suitable mode

of transport for these characteristics should be sea transport. At the

same time, sea transport is the most environmental one among all

modes of transport. Thus, we can see that the results from our study

are consistent with reality. With the relaxation on emission

constraint, the number of Pareto solutions increases gradually.

When the value of E reaches 4,000 kg, we can get all the solutions

on the Pareto frontier curve. This means that when the constraint is

more than 4,000 kg, it has no influence on the solution space.

(2) Sensitivity analysis of time windows
TABLE 10 Scale of the four cases.

Case
number

Case scale

Number
of nodes

Number
of scenarios

Number of
transport modes

1 15 1 3

2 23 1 3

3 23 1 5

4 23 5 5
TABLE 11 Comparison of results solved by CPLEX and NSGA-II for different cases.

Case
number

Objective value of operating cost Objective value of operating time

CPLEX NSGA-II Gap* CPLEX NSGA-II Gap*

1 79,295.8 79,295.8 0 559.3 559.3 0

2 80,421.3 80,421.3 0 565.3 565.3 0

3 81,262.9 81,624.4 361.5 572.5 583.6 11.1

4 81,319.7 81,940.2 620.5 540.2 567.6 27.4
Gap*: is the result from NSGA-II minus the result from CPLEX.
FIGURE 11

Comparison of CPLEX and NSGA-II computation time for different cases.
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In this section, we present the comparative analysis with five

different time windows. These time windows are 24, 36, 48, 60, and

72 h, respectively (labeled 1–5 in the horizontal axis of Figure 18).

The optimal schemes for the five time windows are shown in

Table 15. The optimal values of the objectives with these five are

shown in Figure 18.
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As we can see from Table 15, different time windows will

possibly lead to different optimal transport schemes, which

changes the operating time and cost. Normally speaking, when

the time window is relatively narrow, we will have to use a faster

mode to arrive at the station before a liner/train leaves. However, if

the time window is so narrow that no matter what kind of mode we
FIGURE 12

Comparison of the total cost between the single-objective and multi-objective model.
TABLE 12 Relative deviation of the operating cost of the robust optimization model and the determinate model under various scenarios.

Scenario Fluctuation level
Value of operating cost

Zcos ts
p Relative deviation

Mincos ts Maxcosts

1 No fluctuation 71,739.5 143,868.2 82,814.9 15.4%

2 [0.9–1.1] 69,784.2 148,959.4 80,431.1 15.3%

3 [0.8–1.2] 68,970.1 159,216.1 77,890.9 12.9%

4 [0.7–1.3] 74,251.9 145,848.9 86,275.9 16.2%

5 [0.6–1.4] 72,105.7 158,202.7 79,017.5 9.6%
The relative deviation is calculated using (Equation 24).
FIGURE 13

Comparison of the total time between the single-objective and multi-objective model.
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use, we cannot arrive at the station and wait for the next schedule,

then it will be a wiser decision to choose a relatively economical way

to fulfill the transport task. This explains the phenomena in

Figure 18: although case 1 has the narrowest time window, the

optimal operating time is the highest, but the optimal operating cost

is the lowest except for case 5. Of course, when the time window is

relatively wide, it is best to choose a slow approach, so that we can

catch up with the schedule and reduce the operating cost at the

same time.

(3) Sensitivity analysis of regret values of p

The aim for setting p in the robust model is to ensure that the

objective value of the feasible solution X under any scenario shall

not exceed the (1+p) times of the optimal objective value. That is to

say, the relative regret value under any scenario should not exceed p.

By changing the value of this parameter, we can observe its

influence on the result. Compared with the complete worst-case

optimization, this model is more feasible in practical applications,
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and the sensitivity analysis (Table 16) verifies the adjustment effect

of parameter p on the solution space.

It can be seen from Table 16 that with the change of p, the

optimal scheme and size of the Pareto solutions change accordingly.

The influence of p on the size of the Pareto solutions is extremely

great. That is because for the bi-objective model, we have to satisfy

the requirements from both objectives, which narrows the solution

spaces to a large extent. Thus, when the value of p is lower than 40%,

the size of the solution is empty because of the strict constraint.

Thus, it is necessary to set a suitable value of parameter p.

6 Conclusions

The transportation time, cost, and transshipment operation

time in the Eurasian container multimodal transportation

network are subject to stochastic fluctuations due to factors such

as fuel price volatility and international market sentiment. To
TABLE 13 Relative deviation of the operating time of the robust optimization model and the determinate model under various scenarios.

Scenario Fluctuation level
Value of operating time

Ztimes
p Relative deviation

Mintimes Maxtimes

1 No fluctuation 429.9 822.4 538.1 25.0%

2 [0.9–1.1] 437.5 810.3 545.6 24.7%

3 [0.8–1.2] 420.3 879.6 522.5 24.3%

4 [0.7–1.3] 452.7 929.9 565.1 24.8%

5 [0.6–1.4] 443.3 896.9 548.0 23.6%
The relative deviation is calculated using (Equation 25).
TABLE 14 Comparison results under different fluctuation situations.

Situation Transport route Transport mode Operating cost/$ Operating time/h

S1 1-2-8-15-21-22-23 2-1-4-4-2-1 81,319.7 540.2

S2 1-2-8-15-21-22-23 2-1-4-4-2-1 80,431.0 551.7
FIGURE 14

Modeling results at carbon emissions constraint I (E = 2,500).

FIGURE 15

Modeling results at carbon emissions constraint II (E = 3,000).
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address these uncertainties, this paper establishes a multi-objective

P-robust optimization model that considers uncertain factors,

multiple transport corridors, and carbon emission constraints.

The model aims to determine the optimal Eurasian container

multimodal transportation route. An empirical study using the

case of Nanjing to Berlin is conducted to validate the proposed

robust model and algorithm. We analyze the impact of carbon

emission constraints, time windows, and regret values on the

optimal solutions. The P-regret framework offers a practical

solution for real-world transportation planning, where

stakeholders require both cost/time efficiency and robustness

against parameter fluctuations. By bounding relative regret, the

model ensures stable performance across diverse scenarios while

allowing decision-makers to adjust risk tolerance via the

parameter p.

In addition to the above contributions, this study has several

broader implications. For practitioners, the proposed model offers a

practical tool for optimizing transportation routes under uncertain

conditions, helping to reduce costs, improve time efficiency, and

comply with environmental regulations. This can lead to better

resource allocation, enhanced supply chain resilience, and reduced

carbon emissions, which are crucial for sustainable development in

the logistics industry. For policymakers, the findings highlight the
FIGURE 16

Modeling results at carbon emissions constraint III (E = 3,500).
FIGURE 17

Modeling results at carbon emissions constraint IV (E = 4,000).
FIGURE 18

Comparison of results under different time window constraints.
TABLE 15 Transport schemes with different time window constraints.

Number
Time

window/h
Transport
route

Transport
mode

1 24 1-2-9-14-21-22-23 5-5-4-4-2-2

2 36 1-2-8-15-21-22-23 1-1-4-4-2-1

3 48 1-2-8-15-21-22-23 2-1-4-4-2-1

4 60 1-2-8-14-21-22-23 2-2-4-4-2-1

5 72 1-2-10-15-21-22-23 5-5-4-4-2-1
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importance of considering uncertainty and environmental

factors in transportation planning, providing a basis for

formulating regulations and strategies that promote sustainable

transportation practices.

Future research directions may focus on the optimization of

multimodal routes considering the coordinated scheduling of full

and empty containers. This could further enhance the efficiency and

sustainability of container multimodal transportation networks. At

the same time, in future work, we will consider introducing real

network data such as port logistics and cross-border transportation

for actual data set verification. We will develop and run the NSGA-

II framework to deal with larger-scale problems, conduct more in-

depth analysis of the computational efficiency and quality of

algorithms, and perform distributed computing optimization.

Additionally, future studies could explore the application of the

proposed model in other regions or transportation modes, further

validate its robustness under different scenarios, and investigate the

potential of combining it with advanced technologies such as AI

and big data analytics. Overall, this study contributes to both the

academic community and industry practitioners by providing a

comprehensive approach to addressing the challenges in Eurasian

container multimodal transportation.
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