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Deep learning-driven 3D marine
nitrate estimation: uncertainty
mitigation through underwater
signal exploitation and label
augmentation
Xiang Yu1, Guodong Fan2* and Jinjiang Li2

1Remote Sensing Information and Digital Earth Center, College of Computer Science and
Technology, Qingdao University, Qingdao, China, 2School of Computer Science And Technology,
Shandong Technology and Business University, Yantai, China
Nitrate is a critical limiting nutrient that significantly influences marine primary

productivity and carbon sequestration. However, three-dimensional observation

and reconstruction of oceanic nitrate remain constrained by the scarcity of in-

situ data and limited spatial coverage. To address the challenge of limited

observational labels hindering the development of global deep learning models

for marine three-dimensional estimation, this study proposes a novel deep

learning framework that utilizes underwater signals for label augmentation,

thereby reducing the uncertainty in three-dimensional nitrate estimation.

Initially, we employ a Bayesian neural network, utilizing multiple subsurface

parameters from Biogeochemical-Argo (BGC-Argo) measurements to

generate virtual nitrate labels with quantified uncertainty. These augmented

labels are then assimilated into a U-Net-based model, greatly expanding the

training dataset and further integrating sea surface environmental variables for

comprehensive three-dimensional reconstruction. The proposed uncertainty-

weighted loss function refines model training, balancing the quality and training

impact of both observed and augmented labels. Quantitative evaluations using

BGC-Argo and cruise measurement data demonstrate notable improvements in

spatial and temporal generalization, with RMSE reductions of approximately 15%

and 28%, respectively, particularly in under-sampled areas and complex upper

ocean regions. This research framework offers a promising solution for oceanic

three-dimensional data reconstruction in the absence of supervised data and has

the potential to be coupled with various marine parameters and reconstruction

models, providing deeper insights into the spatiotemporal variations of

marine environments.
KEYWORDS

three-dimensional nitrate estimation, BGC-Argo, Mediterranean Sea, Bayesian neural
network, label augmentation, U-net
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1 Introduction

Nitrate, as one of the key limiting nutrients in marine

ecosystems, plays a crucial role in the marine environment

(Bristow et al., 2017; Chen et al., 2023). It directly regulates

marine primary productivity, thereby influencing the ocean’s

carbon sequestration capacity and its response to climate change

(Friedlingstein et al., 2020; Eppley and Peterson, 1979; Gregg et al.,

2003; Rafter et al., 2017). Therefore, a thorough analysis and

systematic monitoring of the spatial and temporal distribution of

nitrate in the ocean, as well as its dynamic variations, is an essential

foundation for studying marine ecosystems, the global carbon cycle,

and climate change.

However, observing marine nitrate remains fraught with

numerous technical challenges. Due to the weak optical signature

of nitrate and its complex, nonlinear relationship with

environmental factors, remote sensing inversion has yet to

overcome technological bottlenecks (Chen et al., 2023;

Sathyendranath et al., 1991). As a result, standardized global-scale

data products are still lacking (Yu et al., 2022). Moreover, the role of

nitrate in the ocean is not confined to the surface; its three-

dimensional (3D) spatial distribution and dynamic evolution

processes remain significant gaps in our understanding. Although

platforms like Biogeochemical Argo (BGC-Argo) and shipborne

observations have provided invaluable in situ data for 3D nitrate

monitoring (Claustre et al., 2020; Lavigne et al., 2015; Nittis et al.,

2007), their limited spatial and temporal coverage hinders

continuous, large-scale assessments (Yang et al., 2022). This

limitation in observational capability hinders our ability to fully

comprehend the distribution characteristics of nitrate at various

depths and regions of the ocean, which in turn affects the accurate

assessment of marine ecosystems. Consequently, filling these data

gaps and constructing a 3D distribution model of marine nitrate

has become a pivotal scientific task in the study of marine

environmental and ecological changes.

The estimation methods for 3D nitrate provide new avenues to

bridge this research gap. By modeling biogeochemical processes, 3D

continuous numerical model products can be generated (Baretta

et al., 1995; Bruggeman and Bolding, 2014; Holt et al., 2012; Kay

and Butenschön, 2018). Although these models are effective at

capturing large-scale changes in the ocean, they still face

challenges in accurately representing the complex nonlinear

relationships and small-scale variations inherent in simulating

highly nonlinear ocean processes (Yang et al., 2024; Tian et al.,

2022). In contrast, deep learning methods have demonstrated

significant development potential (Yuan et al., 2020; Feng et al.,

2024). By integrating extensive remote sensing observations and

high-precision in situ measurements, these methods leverage the

capacity of neural networks to model complex relationships,

offering the possibility of achieving higher accuracy (Chang et al.,

2013; Pan et al., 2018).

Deep learning estimation models for 3D nitrate and other

parameters in the ocean can be categorized into two main types:

local models and global models, based on their structure. Local

models rely on ocean surface or underwater environmental
Frontiers in Marine Science 02
parameters at individual latitude and longitude coordinates to

independently predict vertical profiles (Hu et al., 2023; Tian et al.,

2022; Bittig et al., 2018). For instance, Wang et al. (2023) utilized a

regional deep neural network (DNN) to estimate nitrate

concentrations in the Northwest Pacific. Similar supervised

learning methods based on multilayer perceptrons (MLP) have

also been applied to reconstruct water column bio-optical and

biogeochemical parameters using remote sensing and BGC-Argo

data (Fourrier et al., 2020; Sauzède et al., 2017). These local models

have similarly achieved success in estimating typical marine

environmental parameters such as temperature, salinity, and

chlorophyll. However, local models are limited to input features

from single coordinate points, failing to fully harness the potential

of neural networks to capture large-scale spatial-temporal patterns.

Given that the relationship between nitrate and environmental

variables exhibits significant spatiotemporal variability, local

models face substantial challenges in estimating 3D nitrate.

By contrast, global models can incorporate continuous

spatiotemporal features (e.g., convolutional neural networks (CNN)

or Transformers) and leverage advanced network architectures to

capture intricate spatiotemporal relationships, thereby attaining

stronger generalization performance (Buongiorno Nardelli, 2020;

Qi et al., 2022; Smith et al., 2023; Cheng et al., 2025; Su et al., 2021;

Gao et al., 2024). For example, Yang et al. (2024); Zhang et al. (2024)

successfully reconstructed the 3D nitrate structure of the Indian

Ocean based on surface data using two artificial intelligence networks.

The Transformer model developed enabled the estimation of the

ENSO coefficient through long temporal sequences and broad

spatial-temporal inputs (Zhou and Zhang, 2023). However, when

training global models, the limited availability of nitrate in situ data

hampers the ability to provide sufficient label matching for large-scale

spatiotemporal features, resulting in many spatiotemporal

characteristics not effectively contributing to model fitting. To

overcome this limitation, the aforementioned studies turned to

numerical model products as supervised training data. Yet, the

inherent uncertainty in these products limits the accuracy of the

model fitting, which could lead to discrepancies between the

reconstructed results and actual conditions, thereby affecting the

model’s accuracy and stability in practical applications (Tian

et al., 2022).

From the above analysis, a key bottleneck in 3D nitrate estimation

is the limited availability of in situmeasurement labels, which narrows

the training scope and hinders effective data utilization in both local

and global models. To mitigate this issue, we propose an innovative

approach for nitrate 3D reconstruction by integrating Bayesian neural

networks (BNN) with deep learning models, addressing both data

sparsity and uncertainty quantification. Specifically, we first employ the

Bayesian neural network to model the relationship between other sub-

surface variables and nitrate concentration, generating augmented

labels to compensate for the lack of observational data, while also

quantifying the uncertainty of these labels through the BNN.

Subsequently, we combine the augmented labels with the observed

ones, using them as supervisory signals to train a spatiotemporal

continuous deep learning model (such as UNet). During the training

process, the model not only accounts for spatial continuity but also
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incorporates uncertainty quantification into the loss function, reducing

the impact of label uncertainty on the model’s results, thereby

significantly enhancing the precision of 3D nitrate reconstruction.
2 Materials and methods

2.1 Study area

This study selects the Mediterranean Sea (MED) as a typical

research area, with the study range spanning from 6°W to 37°E

longitude and from 30°N to 46°N latitude. As a semi-enclosed sea,

The MED not only faces the impact of active human activities but

also exhibits the characteristic of low nutrient levels that decrease

progressively from west to east. The region is equipped with a

relatively dense BGC-Argo observation network, providing an ideal

setting for comparing and evaluating the effectiveness of

label augmentation.
2.2 Data

This study utilizes two types of in situ data from the BGC-Argo

and GLODAPv2 databases, along with three types of Sea surface

environmental data. BGC-Argo (https://argo.ucsd.edu, https://

www.ocean-ops.org/) is a sensor-equipped profiling buoy

network, representing one of the most promising ocean vertical

observation technologies. BGC-Argo is capable of monitoring

multiple biogeochemical and environmental variables, including

nitrate, and has collected 283,482 nitrate measurements within the

study area, while also synchronously observing numerous other

variables (Table 1), providing a comprehensive dataset of

underwater variables (Johnson et al., 2024, 2021). Nitrate
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concentration is measured using ultraviolet absorption

spectroscopy (Johnson et al., 2024), with an average accuracy of

±0.5µmol · kg−1 (Johnson et al., 2021, 2017; Mignot et al.,

2019). Furthermore, the GLODAPv2 database (https://www.ncei.

noaa.gov/access/ocean-carbon-acidification-data-system/oceans/

GLODAPv2_2022/) offers a unified, calibrated open-ocean data

product on inorganic carbon and carbon-related variables (Lauvset

et al., 2022, 2021; Olsen et al., 2020), used for independently

validating the model’s predictive performance.

Sea surface environment variables are used as input features for

the 3D reconstruction model (Yang et al., 2024; Goes et al., 1999;

Pan et al., 2018; Wang et al., 2023), with a uniform resolution of

monthly averages and 0.25°. The satellite-derived ocean color data

come from the European Space Agency’s Globcolour project

(Lavender et al., 2009) (http://globcolour.info/), including

chlorophyll (Chl), photosynthetically available radiation (PAR),

and Coloured dissolved materials (CDM). Meteorological driving

data come from the ERA5 reanalysis dataset (Hersbach et al., 2020)

(https://cds.climate.copernicus.eu/), including sea surface

temperature (SST), 10 m U wind component (U10), 10 m V wind

component (V10), 10 m wind speed (S10). The Copernicus Marine

Service (CMEMS, https://marine.copernicus.eu/) provides ocean

dynamical data, including sea surface height (SSH), mixed layer

thickness (MLD), and sea surface salinity (SSS).
2.3 Research process

Figure 1 illustrates the overall workflow of this study,

incorporating various data sources as described in Section 2.2.

Multiple variables measured by BGC-Argo are screened and

standardized. Observational samples that simultaneously measure

nitrate and the required subsurface variables are input into a
TABLE 1 Characteristics of BGC-Argo observed variables and their relationship with nitrate.

Group

Observation
Depth
Range (m)

Variable

Number of
Synchronous
Observations
with Nitrate

Number of
Asynchronous
Observations
with Nitrate

Pearson Correlation
Coefficient
with Nitrate

Mutual Information
Coefficient
with Nitrate

0-2000 Nitrate 283482

1 0-2000
TEMP 281480 16361956 -0.71 5.61

PSAL 259693 15429530 -0.183 5.608

2 0-300

CHL 262719 4510059 -0.43 3.056

FLUO 253558 4101896 -0.423 3.17

BBP700 250341 4005839 -0.336 5.448

3 0-300

LGHT 117845 2453057 -0.281 9.007

Ed380 117845 2453061 -0.258 6.665

Ed412 117845 2453055 -0.312 7.58

Ed490 117845 2453053 -0.359 8.339

4 0-2000 DOX2 199387 2108601 -0.833 7.916

5 0-2000 PH 6984 24924 -0.561 5.558
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Bayesian Neural Network (BNN) for training (Figure 1C). Once

training is complete, for observational samples where other

subsurface scalar variables are measured but nitrate is not, the

BNN is capable of estimating a virtual nitrate label and assessing its

uncertainty. Subsequently, the measured nitrate labels from BGC-

Argo and the estimated nitrate labels from the BNN are integrated

into an augmented labeled dataset, using uncertainty as a weighting

factor. This dataset is then subjected to binning and preprocessing

to generate a 3D gridded dataset with a horizontal resolution of

0.25° and 63 depth levels, incrementally spanning from the surface

to a depth of 2000 meters. The processed dataset is then matched

with ocean surface environmental variable features and input into a

3D estimation network for training (Figure 1D).
2.4 Bayesian neural network for label
augmentation

In the task of reconstructing 3D nitrate distributions in the ocean,

the sparsity of labels is one of the key factors affecting model

performance. To address this issue, this study proposes a label

augmentation method based on Bayesian Neural Networks (BNN)
Frontiers in Marine Science 04
(Blundell et al., 2015). BNNs are a deep learning models that not only

make predictions but also quantify uncertainty, making it particularly

useful in applications requiring probabilistic reasoning. In contrast to

traditional neural networks, BNNs place a probability distribution

over the weights, enabling explicit quantification of prediction

uncertainty. This feature is particularly important for estimating

complex nonlinear relationships in marine environments. The BNN

developed in this study employs a multilayer perceptron structure,

with input features including depth, temperature, salinity, chlorophyll

a, and other covariates observed by BGC-Argo, and the output being

nitrate concentration along with its uncertainty estimates.

In the network design, each weight is modeled as a Gaussian

distribution, with parameter estimation performed through

variational inference. Specifically, the network consists of three

hidden layers. The first layer has neurons equal to the number of

input features, the second layer contains 32 neurons, and the third

layer has a single neuron, utilizing the LeakyRelu activation

function. To prevent overfitting, dropout regularization (with a

rate of 0.1) is applied. The core of the BNN is to learn the posterior

distribution of the parameters w, rather than the point estimates

used in traditional neural networks. For input data X and labels Y,

Bayesian inference can be represented as Equation 1:
FIGURE 1

Workflow for nitrate estimation, showing (A) Datasets, (B) Data Pre-processing, (C) BNN for Label Augmentation, and (D) U-Net for 3D
nitrate estimation.
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p(wjX,Y) = p(Y jX,w)p(w)
p(Y jX) (1)

where, p(w) represents the prior distribution of the weights (a

standard normal distribution is chosen), and p(Y X,w)j is the

likelihood function. Since the posterior distribution is difficult to

compute directly, we employ variational inference, introducing a

variational posterior distribution q(w) to approximate the true

posterior distribution. Each individual prediction is modeled as a

Gaussian distribution, as shown in Equation 2:

p(y x,w) = N (fw(x),s
2
ale)

�� (2)

where, fw(x) represents the output of the neural network, and

s 2
ale denotes the irreducible error (aleatory uncertainty). The

network is trained by minimizing the Evidence Lower Bound

(ELBO) loss function to optimize the model parameters, as

defined in Equation 3:

LELBO = Eq(w)½log p(Y X,w)� − bDKL(q(w)j j p(w))j (3)

where, b is the balancing factor (set to 0.1), used to adjust the

relative importance of the likelihood term and the KL divergence

term. In practice, variational inference is implemented through

Monte Carlo dropout. For a new input x*, the prediction is sampled

by performing T forward passes (with T = 10), and the mean and

variance of the predictions are calculated as Equations 4 and 5:

ŷ =
1
To

T

t=1
fwt

(x*) (4)

Simultaneously, the uncertainty of the estimated values is

computed as follows:

ŝ 2 =
1
To

T

t=1
(fwt

(x*) − ŷ )2 (5)

During the BNN training phase, we initially selected multiple

BGC-Argo observation sets where nitrate and subsurface

parameters were measured concurrently. The former serves as the

label, and the latter as the feature. These data were standardized

using Z-scores to form the dataset. The data were divided into five

folds by profile, with 20% of the profiles selected as the test set and

80% as the training set. The model was trained using the Adam

optimizer with an initial learning rate of 0.001 and a batch size

of 64.

The BNN’s performance was evaluated on the test set by

comparing the estimated values to the in-situ nitrate values, using

statistical metrics including the Determination Coefficient (R2),

Mean Bias Error (MBE), Mean Squared Error (MSE), Root Mean

Squared Error (RMSE), Mean Absolute Error (MAE), and Median

Absolute Error (MedAE).

The advantage of BNN lies in its ability to handle label

uncertainty. By quantifying the uncertainty of augmented labels,

it mitigates the risks posed by low-quality augmented labels during

model training. Specifically, BNN reduces dependence on high-

uncertainty labels when augmenting labels, thereby enhancing

robustness during the training process. Furthermore, the posterior

distribution of the BNN provides multiple possibilities for the
Frontiers in Marine Science 05
augmented labels, which significantly supports the model’s

generalization ability in data-sparse regions.
2.5 UNet for 3D reconstruction

This study adopts an improved UNet (Ronneberger et al., 2015)

architecture for the spatial reconstruction of oceanic nitrate

concentrations. Compared to profile-based local reconstruction

models, the encoderdecoder structure of UNet effectively captures

local and global spatial dependencies, crucial for reconstructing the

spatial distribution patterns of oceanic nitrate.

The UNet architecture employed in this study follows an

encoder-decoder structure optimized for capturing hierarchical

features from high-dimensional spatiotemporal data. The encoder

progressively compresses input features through a series of

downsampling operations, capturing both localized features and

broader contextual information. Each encoding step consists of

two consecutive convolutional layers with a kernel size of 3×3,

followed by batch normalization and LeakyReLU activation

functions, enhancing the model’s ability to handle complex

nonlinear relationships.

Specifically, the encoder comprises four sequential

downsampling modules, each employing a maxpooling operation

with a stride of 2 to reduce the spatial dimensions, resulting in

increasingly abstract and condensed representations of the input

data. These compressed features effectively summarize essential

environmental patterns across multiple scales and depths.

The decoder symmetrically mirrors the encoder’s structure,

employing transposed convolutional layers for upsampling to

reconstruct detailed spatial structures. Each upsampling module

restores spatial resolution and progressively integrates high-level

semantic context through concatenation with corresponding

encoder features via skip connections. These skip connections

ensure that crucial spatial information lost during downsampling

is effectively recovered, significantly improving the fidelity of nitrate

concentration reconstructions.

In the decoder, each upsampling step is followed by two

convolutional layers with kernel sizes of 3×3 and LeakyReLU

activation functions, maintaining consistency and symmetry with

the encoder. The final decoder output undergoes an additional

feature integration process, implemented through a fully connected

(FC) layer composed of two consecutive 1×1 convolutional layers.

These convolutional layers transform the high-dimensional feature

representations into nitrate concentration values at predefined

vertical depth levels, yielding a comprehensive three-dimensional

nitrate field.

The model inputs ocean surface environmental variables as

features. The tensor X ∈ RH�W�C contains environmental

variables with dimensions of latitude and longitude, where H and

W represent the latitude and longitude grids, respectively, and C is the

number of input features (including temperature, salinity, dissolved

oxygen, etc. as described in Section 2.2). The output tensor Y ∈
RH�W�D represents the reconstructed nitrate concentration field

across the three-dimensional spatial grid, where D denotes the
frontiersin.org
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number of vertical depth levels. The network structure is represented

as Equation 6:

fUNet(X) = fFC(fdecoder(fencoder(X)) + fskip(X)) (6)
2.6 Training function for balancing
augmented labels

To balance the observed and virtual labels, and to maintain the

model’s performance stability in regions where labels are sparse, the

loss function is composed of a weighted mean squared error term

and a spatial smoothing regularization term. For each sample point,

the uncertainty of both the observed and augmented estimated

samples is taken into account. The weighted mean squared error is

defined as Equation 7:

LWMSE = o
i∈W

e−k·si (yi − byi)2 (7)

where Ω represents the set of non-missing samples in the 3D

reconstructed nitrate field, si is the uncertainty predicted by the

BNN, and yi and ŷi represent the true value and predicted value,

respectively. Exponential weighting −si is applied, ensuring that the
contribution of samples with high uncertainty is minimized, with

the uncertainty of observed samples set to 0. Since the uncertainty

estimated by the BNN itself is relatively small, it needs to be scaled

by a factor k to balance the weight of the estimated labels, with k set

to 100.

When the model provides monthly three-dimensional estimates,

only a limited fraction of grid points contain nitrate labels and thus

contribute to the loss function. Consequently, certain model

parameters may remain under-optimized, potentially resulting in

discontinuous outputs. Given the pronounced spatial continuity of

nitrate distributions, abrupt variations along latitude and longitude

are unlikely. Therefore, to maintain the stability and coherence of

bothmodel parameters and estimation outcomes, a spatial smoothing

component is integrated into the loss function. The spatial smoothing

loss is implemented by calculating the gradients in the horizontal and

vertical directions, as defined in Equation 8:

Lsmooth =
1
2
(Ei,j½ ∇xYi,j

�� ��2� + Ei,j½ ∇yYi,j

�� ��2�) (8)

where ∇x and ∇y represent the difference operators in the x-

and y-directions, respectively. The final loss function is defined in

Equation 9:

L = LMSE + lLsmooth (9)

where l is the weight for the smoothing term (set to 0.1). This

loss function design not only takes into account the uncertainty of the

samples but also ensures the spatial continuity of the reconstruction

results. Specifically, the model is capable of automatically handling

missing values and computes the loss only for valid sample points.
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2.7 Estimation validation method

Quantitative measures were employed to assess the statistical

relationships between nitrate concentration and relevant subsurface

variables, including the Pearson correlation coefficient (PCC) and

mutual information (MI) coefficient as Equation 10:

r = oN
i=1(xi − x)(yi − y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1(xi − x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − y)2
q (10)

where xi and yi denote the individual observations of nitrate

concentration and the environmental variable, respectively, and x

and y are their corresponding sample means. The coefficient r

ranges from -1 to 1, with values near -1 or 1 indicating strong

negative or positive linear correlations, respectively, and a value

near 0 suggesting little or no linear correlation.

To capture both linear and nonlinear associations, the MI

coefficient was also computed. In this study, the MI coefficient

was calculated using he scikit-learn library. This function estimates

mutual information based on the contingency matrix of two

discrete variables, according to the Equation 11:

I(X;Y) = o
x∈X

o
 y∈Y

P(x, y)ln 
P(x, y)
P(x)P(y)

� �
(11)

where p(x, y) represents the joint probability of the discrete

outcomes x and y, and p(x) and p(y) are the marginal probabilities

of X and Y respectively.

The integration of these two metrics facilitates a comprehensive

evaluation of the interdependencies among the variables—where

the PCC captures linear relationships and the MI coefficient,

computed via the scikit-learn method, provides insight into both

linear and nonlinear associations.

During the Unet training process, the 3D nitrate labels obtained

from the data preprocessing is divided into a training set and a test

set. For the training set, the model estimates the entire 3D field in

each iteration, computes the spatial smoothing regularization term

for the overall field, and calculates the weighted mean squared error

term for the grid cells containing label samples. For the test set, only

the mean squared error of the observed labels from BGC-Argo is

computed. Similar to the BNN training, the performance of the

model is evaluated by comparing the estimated values with the in-

situ nitrate values, based on the same statistical metrics as in Section

2.4 for BNN validation.

The test set is divided in two ways. The first approach uses

BGC-Argo observed labels and augmented labels after 2016 as the

training set, and BGC-Argo observed labels before 2015 as the test

set. This method focuses on validating the model’s temporal

generalization ability. The second approach uses all BGC-Argo

and augmented labels as the training set, and GLODAPv2 ship-

based data as the test set. This avoids the potential autocorrelation

of BGC-Argo labels in both the training and test sets and tests the

model’s performance across a broader temporal and spatial range.
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3 Results

3.1 Parameter assessment of BGC-Argo

BGC-Argo has conducted long-term observations of various

underwater variables, making it a promising tool for 3D oceanic

observation. Table 1 displays several observed subsurface

parameters and their correlations. These parameters are related to

nitrate concentrations and have been successfully demonstrated in

some studies as useful for accurate nitrate profiling (Fourrier et al.,

2020; Sauzède et al., 2017). Based on their characteristics and

observation ranges, these parameters can be broadly categorized

into five groups, with each group exhibiting similar observation

ranges and quantities.

Among these, Group 1, which includes Sea Temperature (TEMP)

and Practical Salinity (PSAL), has the most extensive observation

coverage, encompassing nearly all BGC-Argo sampling, which is

extremely beneficial for expanding the estimation range. Meanwhile,

Groups 2 and 3 focus on biogeochemical processes in the upper

ocean. Group 2 includes Chlorophyll-a (CHL), Fluorescence (FLUO),

and Particle Backscattering at 700 nm (BBP700). Group 3 consists of

Immerged Incoming Photosynthetic Active Radiation (LGHT),

Downwelling Irradiance at 380 nm (Ed380), 412 nm (Ed412), and

490 nm (Ed490). Considering that the upper ocean is the most

challenging depth range for 3D parameter estimation (cite),

supplementing labels in this region can more effectively help the

model acquire relevant knowledge. Additionally, Groups 4 and 5

contain more independent measurements, such as Dissolved Oxygen

(DOX2) and pH.

During Bayesian Network (BNN) training, modeling, and label

estimation, accommodating too many parameter categories may

increase the demand for simultaneous BGC-Argo observations,

which limits the number of available samples. In this case,
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Dissolved Oxygen and pH are less compatible with the variables

from the first three groups, thus their contribution to improving

nitrate prediction performance is not significant and may even

restrict the estimation range. Given these considerations, this study

performs two sets of augmented labels based on depth features.

Feature Set 1 (FS1) expands the estimation range through Group 1

variables, while Feature Set 2 (FS2) combines the perspectives of

Groups 1, 2, and 3 to enhance the estimation labels for the

upper ocean.
3.2 Performance validation of label
augmentation

Figure 2 shows the testing performance of FS1 and FS2 features,

where the BNN’s estimated label accuracy and uncertainty are

assessed by calculating the mean and standard deviation of

predictions from 10 sampling iterations. Several negative values

were recorded due to systematic errors in BGC-Argo observations,

which can be interpreted as indicative of low nitrate concentration

levels. These values were retained during both BNN training and

estimation labeling. In the 5-fold cross-validation, samples are

iteratively used once as the test set. Both feature sets demonstrate

excellent performance, with the estimated values fitting the 1:1 line

well compared to the observed values. Using only FS1, more

observational samples are compatible, leading to smaller errors,

benefiting from the higher proportion of stable, highnitrate depths

(> 5µmol · kg−1). Introducing FS2 features significantly improves

the outliers in Figure 2A, which deviate from the 1:1 line, as more

features enable a more stable fit to the active biogeochemical

processes in the upper ocean.

Figure 3 shows the comparison of vertical and monthly averaged

patterns between BNN-modeled values and in-situ measurements,
FIGURE 2

Scatter density plot of BNN estimation performance compared with in-situ nitrate measurements. The red line represents the data fit, while the
black dashed line indicates the 1:1 reference line. (A) BNN performance with FS1 features. (B) BNN performance with FS2 features.
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along with their associated uncertainties. The distribution patterns of

the estimated values closely match those of the in situ values,

demonstrating the vertical and temporal stability of the estimation

performance. In contrast, predictions using FS2 exhibit higher

uncertainty. This is because when only depth, temperature, and

salinity are used as features in FS1, the model’s expressive power is

limited, and the probability distribution in the BNN tends to stabilize.

However, when additional features from Groups 2 and 3 are

incorporated, the BNN gains stronger representational capacity,
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incorporating more patterns and variability, yet this inevitably

elevates the variance in its estimated labels.

Figures 4 and 5 show the horizontal distribution of the BNN test

set errors and the uncertainty of the estimated augmented labels,

further evaluating the impact of the observational range. Under

both feature combinations, the model’s accuracy and uncertainty

remain generally consistent in the horizontal direction. Higher

errors and uncertainties tend to appear at the edges of the

estimation range, where the input features accepted by the BNN
FIGURE 3

Comparison of BNN-modeled nitrate distribution profiles with BGC-Argo measurements in the test set. The shaded area represents the uncertainty
range, magnified by a factor of 10 for clarity, corresponding to the case with k=10 in Equation 7. (A) Depth profile of nitrate distribution. (B) Monthly
average profile of nitrate distribution.
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deviate from the distribution observed during training, leading to

greater divergence in its probability weight distribution. In this

scenario, the weighted loss in Equation 7 effectively mitigates the

adverse impact of low-quality labels on model training by

leveraging uncertainty. For the observational range, estimated

labels using only FS1 features cover nearly the entire study area,

which is crucial for providing a broader view of the distribution

patterns. At the same time, the estimation using FS2 features

significantly supplements the label range. In this range, the

augmented estimated labels provide additional biogeochemical

knowledge of the upper ocean, enabling the reconstruction model

to potentially fit a more generalized distribution pattern and oceanic

process knowledge.

For nitrate 3D reconstruction label augmentation, the

requirement is stable accuracy and appropriate uncertainty. Stable

accuracy ensures that the estimated labels contribute beneficially to

the training of the reconstruction model, while appropriate

uncertainty helps balance the weight of in-situ and estimated

labels in spatial reconstruction. Based on the above analysis, the

BNN model’s augmented labels effectively meet both of

these requirements.
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3.3 Cruise independent validation

In this section, we present the model training and evaluation

process, leveraging BGC-Argo data and augmented estimated labels

for training, while employing the GLODAPv2 cruise measurement

dataset for validation. Figure 6 illustrates the accuracy assessment of

the test set, where each scatter point corresponds to a unique

longitude-latitude-depth grid. The evaluation dataset comprises

observational data collected during lateral cruises in the southern-

central Mediterranean in 2011 and 2013. These cruises occurred at

spatiotemporal locations that are significantly distinct from the

BGC-Argo dataset, thereby posing a complex estimation challenge.

Following label augmentation, the Unet model demonstrated a

substantial reduction in predictive uncertainty, elevating the R2

value from 0.709 to 0.848 and concurrently decreasing multiple

error metrics. Notably, the BGC-Argo dataset does not encompass

the region east of the Strait of Gibraltar, where nitrate

concentrations within the Mediterranean exhibit elevated levels.

Consequently, models trained exclusively on in-situ labels exhibited

a systematic underestimation of nitrate concentrations in high-

value regions. The integration of augmented labels effectively
FIGURE 4

The horizontal distribution of BNN test set RMSE using synchronous observations with FS1 (A) and FS2 (B).
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mitigated this bias, leading to improved predictive performance in

these areas.
3.4 BGC-Argo performance validation

This section presents a rigorous evaluation of the model’s

performance using BGC-Argo datasets, wherein training is

conducted on post-2016 data with in situ and augmented estimated

labels, while testing utilizes observational labels from BGC-Argo

measurements between 2012 and 2015, strictly excluding estimated

labels. Figure 7 provides a comparative assessment of model efficacy

on the pre-2015 test set, with each scatter point corresponding to a

distinct 3D grid unit. The integration of augmented labels and an

optimized loss function yielded substantial improvements in

predictive accuracy, as evidenced by an increased R2 value and a

reduction in multiple error metrics. The incorporation of augmented

labels facilitates the model’s ability to discern intricate relationships

between upper-ocean variables and nitrate concentration, thereby

enhancing its robustness and generalization capacity.
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As depicted in Figure 7A, the model demonstrates a

pronounced tendency to underestimate nitrate concentrations in

specific low-concentration samples, with extreme cases displaying

near-zero anomalous estimates. This systematic bias stems

primarily from the model’s reliance on sparse BGC-Argo

observational labels during training, resulting in suboptimal

generalization when applied to spatiotemporally diverse test

conditions. The introduction of augmented labels mitigates this

limitation, significantly enhancing both the model’s predictive

performance and its capacity to capture meaningful estimation

patterns. In cases of near-zero nitrate concentration, the predicted

values exhibit a more uniform distribution, effectively reducing the

prevalence of anomalous outliers. Furthermore, the model’s

predictions for moderate and high-nitrate concentration clusters

align more closely with the 1:1 reference line, reinforcing the

validity of its estimation accuracy and generalization potential.

These findings underscore the critical role of exposure to diverse

upper-ocean patterns during training in fostering a more

comprehensive feature-learning mechanism, ultimately improving

the model’s adaptability to previously unobserved data.
FIGURE 5

The horizontal distribution of BNN estimated label uncertainty using asynchronous observations with FS1 (A) and FS2 (B).
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3.5 Impact of augmented estimated labels
on model performance

We conducted two types of 3D estimation performance tests,

each focusing on different aspects of the model’s generalization

ability. The validation test using BGC-Argo data primarily assessed

the model’s temporal generalization capability. BGC-Argo

observation sites are relatively concentrated and predominantly

located in the northeastern Mediterranean (Figure 4). When BGC-

Argo provided test labels from before 2015, there were usually

corresponding observations available from nearby locations after
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2016. In contrast, the independent cruise validation simultaneously

evaluated both spatial and temporal generalization. The cruises

were conducted in 2011 and 2013, preceding the large-scale

observations of BGC-Argo. Sampling sites spanned the

Mediterranean, with some located in the southwestern region, an

area not effectively covered by BGC-Argo. This region is connected

to the Atlantic Ocean via the Strait of Gibraltar and exhibits high

nitrate levels. Consequently, the GLODAP samples exhibit

significant spatiotemporal differences from BGC-Argo data,

posing a comprehensive test of the model’s ability to generalize

across both time and space.
FIGURE 6

3D estimation performance verified by comparing cruise measurements using only BGC-Argo labels (A) or both augmented labels (B).
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Comparing the two validation approaches, results indicate that

the augmented label method generally improved both spatial and

temporal generalization of the model. More specifically, the model

demonstrated a more pronounced gain in spatial generalization

capability from the augmented labels, aligning with the conceptual

role of label augmentation. Through the inclusion of augmented

labels, the model acquired knowledge beyond the scope of BGC-

Argo, enhancing its ability to fit the relationship between surface

ocean conditions and nitrate concentration. This gain is particularly

crucial for improving spatial generalization.
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To further evaluate the impact of different augmented labels on

model improvement, Figure 8 presents the vertical RMSE

distribution and optimal proxy under various label combinations.

The results indicate that the introduction of all augmented labels

significantly reduces model estimation errors overall. The model

trained with both FS1 and FS2 labels achieves the highest overall

accuracy and vertical stability. Two prominent error peaks appear

in the upper ocean at 0 meters and approximately 100 meters,

corresponding to the air-sea interface and the lower boundary of the

oceanic mixed layer, respectively. These regions are characterized
FIGURE 7

3D estimation performance verified by comparing BGC-Argo measurements using only BGCArgo labels (A) or both augmented labels (B).
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by complex environmental interactions, making it particularly

challenging to model the relationship between oceanographic

features and nitrate concentrations. Notably, the augmented labels

lead to significant improvements in model performance within the

upper ocean, effectively reducing error peaks and minimizing

overall errors throughout this layer, while also positively

impacting the mid-ocean region.

Regarding the optimal feature combinations for different depths

and seasonal cases (Figure 8B), FS1 label augmentation emerges as
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the most influential. While models augmented with both FS1 and FS2

labels dominate as optimal proxies across most scenarios, models

incorporating FS1 alone also achieve superior performance in a

substantial number of cases. The roles of the two label sets differ:

FS1 labels significantly expands the sample diversity, increasing the

number of labels by more than 50 times (Table 1), whereas FS2 labels

focuses on refining the fit for upper-ocean nitrate dynamics.

Scenarios where FS2-only augmentation yields the best

performance are primarily found within the 0-200m depth range,
FIGURE 8

3D nitrate estimation performance of the model under different label combinations. (A) Trend profiles depicting the variation of model performance
with depth. (B) Distribution of label sets achieving optimal RMSE performance across different depth and temporal cases.
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particularly during spring and the latter half of the year, aligning with

the intended function of FS2 labels.

At depths exceeding 1000 m, the optimal configuration remains

the exclusive use of BGC-Argo observational labels. This is because,

given that BGC-Argo testing primarily evaluates the model’s

temporal extrapolation ability, deep-sea nitrate concentrations in

this range remain nearly invariant over time. The introduction of

estimated labels inevitably disturbs the inherent spatial regularity

encoded within BGC-Argo labels, weakening the model’s ability to

fit deep-sea nitrate concentrations at specific spatial coordinates.

Nevertheless, the RMSE increase at depths beyond 1000 m remains

marginal when both FS1 and FS2 labels are incorporated

(Figure 8B), indicating that the augmented label interference

propagates uniformly across all scenarios within this depth range.

Compared to the overall performance improvement, this minor

trade-off is acceptable, as the upper ocean is the more dynamic and

critical region where enhancements in model performance yield the

most significant benefits.

From another perspective, fitting deep-sea nitrate concentrations

too closely to observations poses a risk of overfitting in global 3D

oceanic nitrate estimation. Deep-sea nitrate levels are more

influenced by geographic location than by temporal variations, and

the limited spatial coverage of BGC-Argo observations constitutes a

fundamental constraint. The deep-sea nitrate measurements

provided by BGC-Argo may inadvertently restrict model

generalization in unobserved oceanic regions. In contrast, the

augmented labels contribute positively to high-concentration deep-

sea regions in independent cruise validation (Figure 6B),

underscoring their utility in enhancing model generalization

beyond BGC-Argo’s observational domain.
4 Conclusion

This paper proposes a novel method for 3D nitrate estimation

in marine environments using deep learning techniques,

particularly through the fusion of underwater signals and label

augmentation. A key challenge in marine nitrate modeling lies in

the scarcity and spatiotemporal limitations of in situ data. To

address this issue, the study employs BNN to enhance nitrate

labels, with a focus on uncertainty quantification. By integrating

both real and augmented labels into a U-Net-based deep learning

framework, the study successfully improves the model’s ability to

estimate nitrate concentrations in the Mediterranean. The

uncertainty-weighted loss function further refines the model’s

performance, enabling it to address both data gaps and the

inherent uncertainties of augmented labels.

The results demonstrate a significant enhancement in the model’s

spatial and temporal generalization, especially in regions with limited

sampling. Validation using BGC-Argo and GLODAPv2 shipboard

data confirms that this method can more accurately and

comprehensively reconstruct the 3D distribution of nitrates. These

findings underscore the value of integrating sub-surface indicators

with Bayesian uncertainty-aware label augmentation to improve the

precision and robustness of marine biogeochemical models.
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One of the major contributions of this work is its potential for

broader application in environmental monitoring and climate-

related research. By filling data gaps in poorly observed areas, this

method offers a scalable solution for large-scale, continuous

monitoring of marine ecosystems. It can be extended to other

marine regions, providing deeper insights into global nutrient

distribution and aiding in more informed predictions of marine

productivity, carbon sequestration, and oceanic processes under

changing climate conditions. Future work will focus on further

refining the model, incorporating more environmental variables, or

exploring hybrid approaches that combine numerical models with

deep learning frameworks. Additionally, expanding the research to

more diverse marine regions and improving the temporal

resolution of data will present further opportunities to enhance

the model’s predictive capabilities.

In summary, this study provides a robust framework for 3D

nitrate estimation, marking a significant step forward in marine

biogeochemical modeling. The integration of deep learning with

label augmentation and uncertainty quantification presents a

promising approach to overcoming the challenges posed by data

scarcity, ultimately contributing to more accurate and comprehensive

assessments of marine ecosystems.
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