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identifying fishing grounds from
AIS data containing vessels of
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and Jingen Zhou3*

1Merchant Marine College, Shanghai Maritime University, Shanghai, China, 2College of Transport and
Communications, Shanghai Maritime University, Shanghai, China, 3Department of Operations
Management, Supply Chain and Information Systems, KEDGE Business School, Marseille, France
To address the issue of precisely identifying fishing grounds in vast sea areas, this

study proposes a framework that includes a fishing behavior detectionmodel and

a fishing ground identification model, considering vessels of unknown types. The

absence of information regarding unknown vessels can result in incomplete

identification of fishing grounds, which in turn leads to regulatory oversight, and

these unidentified fishing areas might be hotspots for illegal fishing activities.

Identifying these missing fishing grounds is crucial for enhancing regulatory

efforts and for vessels go through these areas to plan their routes more effectively

in advance. This helps in finding illegal fishing and optimizes the operational

efficiency of fishing vessels. Firstly, the Speed-Direction-Based Stops and Moves

of Trajectories (SDB-SMOT) algorithm is proposed. Based on this algorithm, a

fishing behavior detection model is developed to identify fishing activity

trajectories from AIS data that encompasses vessels of unknown types.

Subsequently, an algorithm that integrates the Data Field and OPTICS (DF-

OPTICS) algorithm is proposed, and a model for identifying fishing grounds is

constructed based on the DF-OPTICS algorithm. The efficiency and effectiveness

of this framework are validated by identifying fishing grounds from AIS data that

contains both fishing vessels and vessels of unknown types in the South China

Sea. The Davies-Bouldin Index of DF-OPTICS algorithm reached 0.267, 0.224,

0.203, the Silhouette Coefficient Index reached 0.560, 0.598, 0.633 and the

Calinski-Harabasz Index reached 2213939, 3296101, 4320688 under three sets

of hyperparameters. This framework not only bridges the gap in identifying

fishing grounds from AIS data containing vessels of unknown types but also

improves the efficiency of the fishing ground identification process.
KEYWORDS

AIS data, hot spots, vessels of unknown types, SDB-SMOT algorithm, DF-
OPTICS algorithm
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1 Introduction

Amidst the diminishing primary economic fishery resources in

oceans worldwide, there is an increasing focus on the conservation

and sustainable development and utilization of marine fishery

resources. Fishing grounds are areas where fishery resources are

concentrated. A large number of fishing vessels gather on these

fishing grounds for fishing operations, activities, and navigation.

The operational zones of these fishing vessels frequently overlap

and intersect with the shipping routes of merchant vessels, thereby

increasing the risk of collisions between merchant and fishing

vessels. A comprehensive understanding of these fishing grounds

is crucial as it can help the scientific management of marine fishery

resources, guide the establishment of fishing industry regulations,

and aid in planning merchant shipping routes and maritime traffic

management (Hutniczak et al., 2024).

However, a certain number of vessels of unknown types exist in the

AIS data due to illegal tampering, unfamiliar operations by seafarers,

AIS equipment failure, failure of message transmission (Jeon and Han,

2022), etc. Among these unknown vessels, a certain proportion of them

are fishing vessels. We put forward this point of view first of all on the

basis of fact that the phenomenon of tampering and concealment of

AIS data by fishing vessels is more common than other ship types, and

the fishermen are far less professional in operating AIS than crews (Wu

et al., 2024). AIS data with vessels of unknown types contains a lot of

information about the fishing vessel and is essential for extracting the

area where the fishing vessels operate.

Currently, research on the identification offishing vessel activity

areas mainly relies on four types of data: fish catch data (Fitrianah

et al., 2016; Owiredu and Kim, 2021), nightly satellite data (Li et al.,

2022), vessel monitoring system (VMS) data (Shi et al., 2024a), and

Automatic Identification System (AIS) data (Zeng et al., 2024). Fish

catch data, which can directly reflect the spatial and temporal

activities of fishing vessels in a specific region, is typically

reported by fishermen (Perez et al., 2024). However, this fish

catch data can be compromised by its inherent imprecision, such

as statistical errors or incomplete reports. Nightly satellite data

collected through remote sensing of lights by an imaging sensor

mounted on the satellite (Li et al., 2021) can describe the patterns

and characteristics of fishing vessels’ activities at night. However,

nightly satellite data is limited in monitoring fishing vessels at night,

and the process of identifying fishing vessel tracks from satellite

imagery can be easily impacted by clouds, moon phases, and lunar

glare (Li et al., 2022). With the advancement of maritime

surveillance technology, AIS and VMS have gradually become

essential tools for studying the trajectory of vessels. VMS data is

subject to strict access controls, with the flag state being the sole

entity authorized to protect and receive such information. This

creates significant difficulties in collecting data on fishing vessels

from different countries (Yan et al., 2022). The high installation

costs are also challenges to promoting their use among offshore

fishing vessels. In contrast to VMS data, AIS data has gradually

become the primary data source for research on the trajectory of

vessels due to the low costs and ease of accessibility (Huang et al.,

2023; Chen et al., 2024).
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Before analyzing fishing areas for fishing vessels, it is essential to

identify their behavior patterns. The most common approach for this

is the statistics-based model, which typically focuses on the speed or

course of fishing vessels (Natale et al., 2015; Chen et al., 2022; Yan

et al., 2022). However, relying solely on the analysis of either speed or

course can provide only a partial view of their behavior. In recent

years, scholars have used machine learning and deep learning

techniques to identify fishing vessel behaviors (Wu et al., 2022;

Yang et al., 2024). However, the process remains complex and is

often confined to a single category of vessels. The most commonly

used methods in studying fishing vessel activities from trajectory data

center around estimating fishing effort, calculating vessel emissions,

and directly analyzing AIS data (Coello et al., 2015; Sun et al., 2023;

Cappa et al., 2024). These techniques mainly generate heat maps of

fishing vessel activities but fall short of providing accurate

information on fishing vessel activity areas.

This study proposes a framework to identify fishing grounds.

Firstly, the Speed-Direction-Based Stops and Moves of Trajectories

(SDB-SMOT) algorithm is proposed, which forms the foundation

for a fishing behavior detection model. Subsequently, the fishing

behavior model is applied to AIS data with vessels of unknown

types. Secondly, the study further improves the Ordering Points To

Identify the Clustering Structure (OPTICS) algorithm by

incorporating knowledge from the Data Field (DF) theory. A

fishing grounds identification model is developed based on the

improved algorithm, Ordering Points To Identify the Clustering

Structure Considering Data Field (DF-OPTICS). The main

contributions of this paper are as follows:
1. This study establishes a framework for identifying fishing

grounds from AIS data containing both fishing vessels and

vessels of unknown types.

2. This study proposes the SDB-SMOT algorithm. Based on

the algorithm, the fishing behavior detection model is

established, which can successfully identify fishing

trajectories from AIS data containing vessels of

unknown types.

3. An improved algorithm, DF-OPTICS, is proposed. Initially,

it merges knowledge from the DF and OPTICS algorithms,

addressing the challenge of selecting points with the same

reachability distance. It performs better clustering than

three existing algorithms, the traditional OPTICS

algorithm, the DBSCAN algorithm, and the improved

OPTICS algorithm, using automatic identification of

clusters, particularly on large-scale trajectory datasets.

Based on the DF-OPTICS algorithm, the fishing grounds

identification model is established.

4. The framework for fishing ground identification has been

applied to the South China Sea. It successfully reveals

distinct quarterly variations in the spatial and temporal

characteristics of fishing vessel activities in the South

China Sea.
The remainder of this paper is organized as follows. Section 2

reviews the related studies of fishing behavior detection and fishing
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grounds identification. Section 3 introduces the principles of our

method, including the SDB-SMOT algorithm, the principle of the

DF-OPTICS algorithm, and the establishment of the fishing

behavior detection model and fishing grounds identification

model. Section 4 shows fishing grounds identification results and

the cluster outcomes, followed by a comparative analysis. This

analysis evaluates the performance of the DF-OPTICS algorithm

against three other algorithms using three key clustering evaluation

indexes: Silhouette Coefficient (SC) (Bagirov et al., 2023), Calinski-

Harabasz Index (CHI) (Solorio-Fernández et al., 2016) and Davies-

Bouldin Index (DBI) (Liu et al., 2011). The efficiency and

effectiveness of this framework in identifying fishing grounds

from vessels of unknown types are also demonstrated. The

conclusions are discussed in Section 5.
2 Literature review

Recent approaches to identifying fishing grounds generally fall

into behavior detection and fishing grounds identification. This

section provides an overview of the current methods used for

identifying fishing grounds. Moreover, it highlights the existing

gaps in the literature related to this field.
2.1 Behavior detection

The methods of behavior detection mainly include statistical

models and machine learning. In the study of statistical models,

Natale et al. (2015) analyzed the speed profiles of offshore fishing

vessels. They concluded that the bimodal curve of fishing vessel

speed follows a Gaussian mixture distribution. This method has

been adopted widely in the study of fishing vessel activities (James

et al., 2018; Campos et al., 2023; Wan et al., 2024). Rocha et al.

(2010) proposed a Direction-Based Spatio-Temporal Clustering

Method based on the knowledge of stopping point identification,

using the magnitude of course changes as the criterion for

identifying fishing points. The above scholars have conducted

research from two aspects: speed and course. Hu et al. (2016)

ingeniously selected Conditional Random Fields (CRF) to identify

precise characteristics of fishing vessel trajectories from AIS data,

effectively identifying fishing activities. Peel and Good (2011)

adopted the hidden Markov model approach to discover vessel

activities, focusing on speed as the primary research object. Sun

et al. (2023) conducted a thorough study of the spatial-temporal

characteristics of fishing vessels, including their lengths, speeds,

trajectories, trajectory densities, and the numbers of active vessels

and their average fishing times, to accurately identify the states of

fishing vessels. Using more characteristics to carry out fishing vessel

behavior detection is not always beneficial, and redundant features

can decrease the detection rate. Meanwhile, similar methodologies

often result in fragments of fishing trajectories, failing to provide

comprehensive and continuous trajectories of fishing activities.

Machine learning methods primarily involve selecting a model

to be trained on a training dataset, making the steps of characteristic
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selection and model selection essential. Chuaysi and Kiattisin

(2020) presented a new technique for analyzing local

characteristics of time series data. They transformed the trajectory

pattern into global characteristics for deep learning applications.

However, due to technological constraints, relying solely on global

characteristics is insufficient for investigating fishing activities on

high seas, highlighting the need for more advanced methods to

capture subtle patterns. Masroeri et al. (2021) proposed an

integrated system with predictive capabilities to identify illegal

fishing and transshipment occurrences. The predictive component

was crafted utilizing Recurrent Neural Networks (RNNs), while the

system integration leverages Artificial Neural Networks (ANNs).

This approach aimed to enhance the efficiency and accuracy of

oceanic fisheries monitoring, particularly in scenarios where data

may be incomplete or inaccessible. Furthermore, scholars have

researched the form and characteristics of the training dataset.

Wu et al. (2022) proposed a novel window-based segmentation

algorithm, WBS-RLE, to effectively split trajectories into fishing and

non-fishing segments. Yang et al. (2024) used the clustering

algorithm to expand the labeled data, increased the number of

training sets, and then used the classification algorithm to study the

trajectory of fishing vessels. Unlike other classification algorithms

that rely on one-hot encoding, Xing et al. (2023) grided the fishing

grounds and vectorized the fishing vessel trajectory for the dataset.

Regarding model selection, the Random Forest model and Light

Gradient Boosting Machine (LightGBM) proved effective methods

(Guan et al., 2021; van Geffen, 2017.; Wu et al., 2022). Shi et al.

(2024b) used CatBoost model to construct of accurate and

interpretable predictive model for high abundance fishing ground

(Xing et al., 2023). further improved the LightGBM algorithm by

incorporating the Bayesian optimization algorithm to receive the

classification results from different kinds of fishing vessels. Gu et al.

(2024) introduced a novel Transformer-based network, the Multi-

Source Information Fusion Transformer Network (MFGTN),

which adeptly categorized fishing vessels into two distinct groups:

single trawl and non-single trawl vessels. This method specifically

focused on capturing the behavior patterns of single trawl vessels.

Labeled data is essential for classification and prediction modeling

techniques. However, obtaining labeled AIS data on fishing vessel

states is complex. Moreover, these methods have high requirements

for data completeness, and even models that undergo extensive

training may not meet the desired standards.
2.2 Fishing grounds identification

The method for estimating fishing effort can be used as a

standalone approach (Zhang et al., 2022). For instance, Natale

et al. (2015) determined fishing effort by aggregating messages

categorized as fishing, multiplying by a 5-minute interval, and

considering the vessel’s engine power, which was then converted

into kilowatts. This comprehensive calculation was spatially

aggregated, shifting from the exact coordinates of each AIS

message to a grid system where each cell measured one nautical

mile. Cappa et al. (2024) independently estimated the catches of
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large-scale, industrial fishing vessels using AIS without relying on

any reported or reconstructed catch data. This method was applied

to Distant-Water Fishing fleets from countries outside the Indian

Ocean region, as this avoids the data challenges associated with

small-scale fleets of Indian Ocean Rim Association (IORA)

countries that typically do not use AIS. Alemany et al. (2014)

assessed the correlation between the spatial distribution of fishing

efforts and oceanographic frontal systems in the Argentine Sea.

Naturally, this single method often falls short of meeting the

demands, so scholars prefer combining several methods to receive

more extensive results. To gain deeper insights into fishing efforts,

Zhang et al. (2021) defined the time tuna purse seine fishing vessels

spent at sea catching tuna as a measure of fishing effort, including

activities such as searching, pursuing fish schools, and netting. This

was followed by a hotspot analysis once a map of the fishing effort

was conducted. Le Guyader et al. (2017) applied the Kernel Density

Estimation to define high-resolution dredge fishing grounds based

on AIS points across various timeframes. The concept of fishing

effort, used to quantify the activities of fishing vessels, is adaptable.

In addition, Yan et al. (2022) employed the adjacent point mean

method to compute the fishing duration for each fishing point and

introduced two straightforward yet effective quantitative metrics.

Calculating vessel emissions based on trajectory data (Chen et al.,

2017; Li et al., 2023; Xie et al., 2023) is a method of analyzing the

activities of fishing vessels from an alternative respect. This method

differs from the traditional approach of estimating fuel inputs and

emissions reported by fishing vessel operators. Instead, it uses a

bottom-up, activity-based methodology to calculate emissions from

the fishing industry (Li et al., 2016). Coello et al. (2015) used this

approach to calculate CO2 emissions for the UK fishing fleet, which

was mapped with a resolution of 0.2x 0.2 grid squares.

AIS data can also be used as an independent object for direct

analysis (Ferrà et al., 2018; Sun et al., 2023). Chen et al. (2022)

experimented with three methods: kernel density estimation, hot

spot analysis, and a hybrid approach that integrates the two

aforementioned methods. After comparing these methods’

identification effectiveness and operational efficiency, they found

that the hybrid approach is the optimal practice. Tassetti et al.

(2019) conducted an exhaustive investigation into the potential of

AIS data processing for mapping the complex patterns of fishing

activity within and surrounding small, regulated zones. This work

aimed to evaluate the efficacy of the conservation measures

implemented in these areas, providing valuable insights into their

success in protecting marine ecosystems and promoting sustainable

fishing practices. Welch et al. (2022) developed a sophisticated rule-

based classification model designed to accurately identify instances

where AIS transmission gaps likely indicate intentional disabling.

This work provided valuable insights into the specific locations, flag

states, and types of fishing vessel gear that are most affected by such

activity obscuration, facilitating a better understanding of the issue

and potential countermeasures. Mazzarella et al. (2014) used the

DBSCAN algorithm to identify fishing grounds from AIS data.

However, choosing DBSCAN hyperparameters in the vast sea area

is difficult, as the impact of different hyperparameters cannot be

directly demonstrated.
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2.3 Literature gaps in the identification of
fishing grounds

The current literature gaps about the identification of fishing

vessel activity areas can be summarized in three aspects. Firstly,

while existing methods are effective in analyzing the tracks and

activities of fishing vessels, they require further improvement to

more accurately identify fishing behaviors and precisely identify

well-defined fishing grounds from large-scale datasets. Secondly,

finding a clear outline of the fishing grounds using the current

identification method is difficult. Lastly, AIS data contains

numerous vessels of unknown types; the current identification of

fishing grounds does not consider vessels of unknown types.

Consequently, valuable information must be judiciously utilized.

To tackle these issues, employing an advanced fishing behavior

detection model coupled with an enhanced clustering method

becomes imperative for accurately identifying fishing grounds

from AIS datasets containing vessels of unknown types.

The SDB-SMOT algorithm is proposed to identify a complete

fishing trajectory from AIS data containing vessels of unknown

types. It identifies fishing activities considering changes in course

and speed from the Gaussian Mixture Model (GMM). An improved

clustering algorithm, DF-OPTICS, is employed to identify clear and

well-edged fishing grounds and analyze the changes in fishing

grounds. The OPTICS algorithm (Ankerst et al., 1999; Agrawal

et al., 2016) is derived from the DBSCAN algorithm (Merchan et al.,

2024). The DBSCAN algorithm requires the input of two

parameters, and hyperparameters can significantly influence the

outcome of the final clustering. The OPTICS algorithm is proposed

to select appropriate parameters and reduce the impact of

hyperparameter sensitivity. To improve the clustering algorithm

performance on the large-scale trajectory datasets, the OPTICS

algorithm and the knowledge from the DF are combined and

further applied to the identification of fishing grounds. The result

proves that DF-OPTICS outperforms the traditional OPTICS

algorithm, DBSCAN algorithm, and an improved OPTICS

algorithm using automatic extraction of clusters in terms of

clustering performance.

Due to the functionality and characteristics of the fishing

behavior detection model, this study proposes a novel approach

to identifying fishing grounds from AIS data that contain vessels of

unknown types. This framework, which involves identifying fishing

vessels’ behavior and fishing grounds, is further applied to discover

new fishing grounds in the South China Sea.
3 Materials and methods

The technical workflow of this paper is shown in Figure 1. After

preprocessing, AIS data is divided into two categories: AIS data of

unknown vessel types and AIS data of fishing vessels. The fishing

speed threshold is calculated from the AIS data of fishing vessels

according to the GMM. Based on the fishing speed threshold and

the DB-SMOT algorithm, the SDB-SMOT algorithm is proposed,

thereby establishing the fishing behavior detection model.
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This model is then applied to AIS data that includes vessels of

unknown types to investigate fishing behavior. Finally, the fishing

grounds are analyzed using the identification model established

based on the DF-OPTICS algorithm.
3.1 Study area

The primary area of research in this study is the South China

Sea. The South China Sea is situated south of the Chinese mainland

and within the western reaches of the Pacific Ocean. The data used

in this study comes from the 2020 AIS data in the South China Sea.

With a natural sea area of about 3.5 million square kilometers, it is

the largest and deepest sea area in China’s coastal waters, with an

average water depth of 1,212 meters and a maximum depth of 5,559

meters. Trawling, gillnets, purse seine nets and fishing tackle are the

main types of fishing gear in the South China Sea. Trawling is the

most used in marine fishing and the largest number of fishing gear.

Except for a small number of high-power bottom trawls, gillnet

fishing vessels and fishing vessels capable of operating in the

northern part of the South China Sea and the central and

southern parts of the South China Sea, the vast majority of fishing

vessels are concentrated in the shallow and offshore waters of the

South China Sea (Geng et al., 2023).
3.2 Data pre-processing

Considering the large scale of AIS data, processing the AIS

records with abnormal MMSI numbers is important. The top three

digits of MMSI represent Maritime Identification Digits (MID).

MMSI numbers with incorrect MIDs and those that did not
Frontiers in Marine Science 05
conform to the standard nine-digit length were cleaned up.

Additionally, AIS records that contain wrong information were

eliminated, such as duplicate data, non-standardized data format,

location information error, and speed information error.

The Class, the navigational status, the SOG, and the COG of the

vessel determine the frequency of AIS data transmission. The time

interval for broadcasting dynamic information is between 2 seconds

and 3 minutes. Due to the variance in this frequency, we extracted

the AIS record every five minutes. This consistent data sampling

approach can substantially reduce data redundancy and allow for a

more rational analysis of the activity areas of fishing vessels.

When the distance is much more than 100 km, the coordinates

determined by latitude and longitude to directly calculate the Euclidean

Distance via the formula of plane geometry is not suitable because the

earth is an approximate ellipse rather than a perfect sphere. For this

reason, the Mercator projection method is employed to transform

latitude and longitude into planar coordinates. Assuming that the

geographic location’s longitude and latitude are (l,j), the

corresponding Mercator orthographic projection formulas (Tang

et al., 2021) are as follows (Equation 1):

r0 =
a�cos (j0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−(e2�sin2 (j0))
p

q = ln tan ( p4 +
j
2 )� 1−e�sin (j)

1+e�sin (j)

� �e
2

� �

x = r0 � l

y = r0 � q

8>>>>>>>><
>>>>>>>>:

(1)

In Equation 1, r0 is the radius of the parallel circle of standard

latitude; j0 is the standard latitude of the Mercator projection; a is

the long radius of the Earth’s ellipsoid; e is the first eccentricity of

the Earth’s ellipsoid; and q is the conformal latitude.
FIGURE 1

The framework for identifying fishing grounds.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1576779
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang et al. 10.3389/fmars.2025.1576779
3.3 Fishing behavior detection

During fishing operations, fishing vessels typically move slowly

with frequent course changes, resulting in irregular and clustered

trajectories. In contrast, during their journey to the fishing areas or

returning to the ports, they opt for high-speed navigation with

infrequent course changes and smaller turning angles, generally

maintaining a straight course, resulting in a more scattered

trajectory distribution. Considering the characteristics of speed and

course in fishing operations, the SDB-SMOT algorithm is proposed.

This algorithm is an evolution of the DB-SMOT algorithm and

incorporates a speed threshold calculated from the GMM.

3.3.1 Calculation of fishing speed threshold based
on GMM

In this study, the GMM is selected to identify the characteristic

parameters of fishing speed, and the Expectation-Maximization

(EM) algorithm is used to obtain estimates for the parameters of

each Gaussian curve component.

The mathematical form of the GMM is shown as follows

(Equation 2):

p(xi) = o
z

k=1

vkp(xi mk,Sk)j (2)

In Equation 2, p(xi mk,Sk)j is the single Gaussian model with mean

mk andcovarianceok;vk is theweight coefficient and subject to:vk > 0

,o
z

k=1

vk = 1; z is the number of single Gaussian models.

The EM algorithm is used to estimate the probabilistic model

parameters with latent variables. In the GMM, the latent variable is

the correspondence between each observation and the Gaussian

model. The solution for the Gaussian mixture model described

above is divided into E-step and M-step.

E-step: Calculate the likelihood that xi comes from the model k :

The formula is as follows (Equation 3)

gik =
vkp(xijmk,Sk)

o
z

k=1

vkp(xi mk,Sk)j
(3)

M-step: Calculate the parameters for a new iteration. The

formulas are shown as follows (Equations 4–7).

mk =
o
m

i=1
gikxi

o
m

i=1
gik

(4)

Sk =
o
m

i=1
gik(xi − mk)(xi − mk)

T

o
m

i=1
gik

(5)

vk =
o
m

i=1
gik

m
(6)
Frontiers in Marine Science 06
In Equations 4–6, m is the amount of data.

The log-likelihood function of the Gaussian mixture model is

presenter in Equation 7:

logL(m,S) =o
m

i=1
ln(o

z

k=1

vkp(xi mk,Sk))j (7)

In Equation 7, if (logLj+1 − logLj) < e (e is a very small positive

number), then the convergence of the algorithm is proved. The

process of the EM algorithm is: After initializing the parameters,

repeat the E-step and M-step until convergence. Then output mk, Sk

and vk :

3.3.2 SDB-SMOT algorithm
This paper identifies fishing behavior based on the SDB-SMOT

algorithm to identify the fishing trajectory point.

The relevant definitions are as follows:

Definition 1: The set of trajectory points of a particular fishing

vessel is denoted as T = p1, p2,…, pNf g, where pi = (xi, yi, ti, ci, si),

i ∈ 1,…,Nf g, and ti is the timestamp of pi, t1 < t2 < … < tN , c is

the course over ground and s is the speed over ground, respectively.

Definition 2:

DC(i, i + 1) = abs(ci+1 − ci) (8)

In Equation 8, DC(i, i + 1) is the difference in the course over

ground between pi and pi+n+1 :

Definition 3: If DC(i, i + 1) > minDC, then pi+1 is a candidate

cluster point andminDC specifies the minimum direction change at

pi+1 in order to this point be considered as a candidate cluster point.

Definition 4: If pi and pi+n+1 are candidate cluster points and pi,

then point. pi. is a candidate connection point for point pi+n+1 : The

maximal tolerance threshold maxTol denotes the maximum

number of consecutive trajectory points found in the trajectory

with direction change less than the threshold minDC :

Definition 5: A cluster C = p1, p2,…, pnf g of a trajectory T is a

non-empty sub-trajectory formed by a set of contiguous time-space

points such that:
1. if p ∈ C and p is a connected candidate point to q

then q ∈ C :

2. ∀ p, q ∈ C : p is connected-candidate-point to q :

3. tn − t1 ≥ minTime, where minTime is the threshold of

fishing time.

4. Vmin ≤ avg(Vc) ≤ Vmax , where Vmin and Vmax are the

results from the GMM and avg(Vc) is the average speed

of the cluster C :The specific work process of the SDB-

SMOT is shown in Figure 2.
The steps of the algorithm are as follows:

The fishing vessel trajectory points are represented as T =

p1, p2,…, pNf g, setting the empty set C:

Step 1. Select the unvisited point pi by time series, calculate the

difference of the course over ground DC between pi and pi� 1, if DC

is greater than the direction threshold minDC mark pi as a fishing

point and put it into set C: Repeat Step 1.
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Step 2. If DC is less than the direction threshold minDC, and C is

not an empty set, then find the set of points with consecutive direction

changes less than the threshold among the subsequent points, and the

serial number of the last point in the set is notated as lastIndex : If

lastIndex ≤ i +maxTol, then all the points in the set are labeled as

fishing points and put into the set C: Otherwise, empty the set C:

Step 3. Start at point pi+maxtol+1, repeat the steps above until all

points in T have been visited.

Step 4. Check the time length of the consecutive fishing points

in T: Keep this sub-trajectory if it exceeds the time threshold and

the average speed is within the speed range. Else, clear the fishing

point markers in the sub-trajectory.

3.3.3 Fishing behavior detection model
The identification of vessel types typically relies on AIS data. This

process involves processing AIS data, extracting relevant characteristics,

and applying machine learning or deep learning models for

classification. However, vessels that do not engage in fishing activities

are excluded from identifying fishing grounds. Therefore, there is no

need to examine the types of vessels not used for fishing; instead, the

focus should be on the vessels in fishing or proximal to fishing activities.
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In vessels of unknown types, length of vessel is a typical feature

between fishing vessels and other vessels. In the South China Sea, few

fishing vessels are longer than 100 meters. Therefore, length checks are

carried out on vessels of unknown types. In order to identify fishing

grounds from AIS data containing vessels of unknown types, we use a

fishing behavior detection model. This model is employed to identify

fishing points before identifying fishing grounds. Only trajectories that

are considered to be in the state offishing are used to extract the fishing

grounds. For vessels of unknown types, if their trajectories pass the

detection criteria of the fishing behavior detection model, it indicates

that they have fishing trajectories. We consider these ships to be fishing

vessels. The uncertainty analysis regarding the fishing detection model

is illustrated in Section 5. As a result, the fishing behavior detection

model is built as shown below (Equation 9):

Qik =
1,  pik is fishing point  lengthofi < 100m

0,  otherwise

(
(9)

In Equation 9, Qik is the state of the vessel i at the kth point

(Qik = 1 indicates the fishing state of the fishing vessel; otherwise,

the vessel is a non-fishing vessel or in a non-fishing state).
 b

c
C1

C2  

d

C2C1

C=C1+C2+p6+p7
 

e

C1
C2time 

average

speed

time 

average

speed  

FIGURE 2

Schematic diagram of the SDB-SMOT algorithm. (a) Non-fishing points (red). (b) Fishing points (green). (c) The sub-trajectory contains two clusters ðn > maxTolÞ
. (d) The cluster C1,C2, and points between the clusters are merged into one cluster ðn≤maxTolÞ. (e) Checking the time and average speed of all clusters.
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3.4 Fishing grounds identification

3.4.1 OPTICS algorithm
This paper uses the clustering method to identify fishing

grounds. The OPTICS algorithm is a density-based clustering

algorithm (Ankerst et al., 1999), which improves the traditional

DBSCAN algorithm. A critical distinction between OPTICS and

DBSCAN is that OPTICS is designed to be less sensitive to the

initial threshold settings, making it more robust in various

applications. OPTICS algorithm does not explicitly generate

clusters but generates an ordering of points, representing the

density-based clustering structure of the sample points, as shown

in Figure 3. The clustering results based on hyperparameters can be

obtained from ordering points using a specific formula.

The mainly related definitions of the OPTICS algorithm are

as follows:

Definition 1: The neighbor of the sample points is defined as

follows (Equation 10):

Ne(i) = i ∈ D dist(i, j) ≤ ej gf (10)

In Equation 10, dist(i, j) is the distance between the point i and

point j, e is the distance threshold.

Definition 2: For a sample point i ∈ D, if the neighbor e of i

satisfies Ne (i) ≥ Minpts, the point i is called the core point, and the

distance between theMinptsth point in the point i 0 s neighbor e and
point i is called the core distance, denoted as core distance(i). where

Ne(i) is the number of sample points contained in the e of point i,

Minpts is the number of sample points threshold.

Definition 3: For a sample point i ∈ D, the reachability

distance from j to i is denoted as follows (Equation 11):

reachability distance(i, j)

=
undefined

max(core distance(i), dist(i, j))

,Ne (i) < Minpts

,Ne(i) ≥ Minpts

(
(11)

In Equation 11, dist(i, j) is the distance between point i and

point j :Definition 4: The points are clustered sequentially. The

principle of clustering based on the ordering of points is shown as

follows (Equation 12):
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point i

is part of current cluster;    reachable distance ≤ e

is noise;                                 core distance > e reachable distance > e

is part of new cluster;         core distance < e reachable distance > e

8>><
>>:

(12)

In order to improve the performance of clustering algorithms

on large-scale trajectory data, the concept of DF (Wang et al., 2014)

is introduced. The DF theory is used to describe the non-contact

interaction between material particles. Each data object is regarded

as a particle with a certain mass in space, around which a virtual

action field exists, and any other object located within the field will

be subject to the action of the field force. Thus, the joint action of all

the objects determines a data field in space.

The definition of the data field is shown as follows: Assuming

that there is a data set D = x1, x2,…, xnf g containing n objects, and

the resulting data field, dist(xi, xj) denotes the Euclidean distance

between the objects. s is used to control the interaction force

between the objects, and is called the influence factor. In this paper,

the average core distance is used as the interaction force range

between the objects, and s is set to averge(core distance)=3, because

the value of the Gaussian Kernel function will decay almost to 0

beyond a distance of 3 s : mi represents the quality of the object xi,

i.e., the influence of the object in the data field space. The potential

value is expressed as the ordering of points is shown as follows

(Equation 13):

j(xi) =
1
no

n

j=1
mie

−
dist(xj ,xi )

s

� �2

(13)

mi satisfies the normalization condition o
n

i=1
mi = 1, then the

potential value of any point xi in the space can be expressed as

follows (Equation 14)

j(xi) =
1
no

n

j=1
e−

dist(xj ,xi )

s

� �2

(14)
3.4.2 DF-OPTICS algorithm
DF-OPTICS algorithm has the same definitions as the

traditional OPTICS algorithm. According to the DF theory, if

multiple data objects exist in the data field space with no external

force, the data objects will move in opposite directions due to

their interactions. The DF potential function is used to react to

the size of the interaction force between the data objects in the

data field space. A higher value indicates a more significant

interaction force from the surrounding trajectory points,

indicating a denser concentration of these points. An improved

OPTICS algorithm that integrates the DF theory and the DF-

OPTICS algorithm is proposed.

The OPTICS algorithm determines the next data point by

calculating and updating the reachability distance. It calculates

and sorts the reachability distances of neighboring points from

the same core point for large-scale and high-density data. However,

the minimum value may correspond to multiple neighboring
FIGURE 3

Reachability plot.
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points, posing a problem in selecting the next data point. Figure 4

shows the potential plot and reachability plot. The potential plot has

the exact ordering of points with the reachability plot. There is an

almost entirely negative correlation between reachability distance

and potential value. Hence, the DF theory is crucial in solving this

problem. When there are multiple candidate data points in

OPTICS, the size of the potential value of these candidate points

is calculated, and the object with the highest potential value is

chosen as the next data point. This approach ensures that denser

trajectory points are prioritized in the ordering of points. The

detailed clustering process is shown in Figure 5.

The flowchart of the DF-OPTICS algorithm is shown as follows

(Algorithms 1–3):
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Require: D:Dataset of trajectory points

Require: e: The distance threshold

Require Minpts: The number of sample points threshold

1: W = ∅, tabu = ∅, tabu is the ordering of points

2: for all p ∈ D

3: if Ne (p) ≥ Minpts then

4: W = W ∪ p

5: end if

6: end for

7: for all p ∈ W s.t. p is unvisited do

8: tabu = tabu ∪ p

9: for all p ∈ tabu s.t. p is unvisited do

10: mark p as visited
FIGURE 5

Schematic diagram of the DF-OPTICS algorithm.
a bb

FIGURE 4

Reachability plot and potential plot (the data from the 2020 AIS data on fishing vessels). (a) Reachability Plot. (b) Potential Plot.
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Fron
11: delete p from D

12: Record p 0 s reachability distance,core distance

13: p 0=findnextpoint (D,p, e)

14: tabu = tabu ∪ p 0

15: end for

16: end for
Algorithm 1. DF-OPTICS (D, e = Inf, Minpts).
Require: D:Dataset of trajectory points

Require: p:The point just marked as visited

Require: e: The distance threshold

1: calculate reachability distance between p and all

points in D

2: update reachability distance

3 : S e l e c t t h e s e t o f p o i n t s t h a t h a v e

minimum reachability distance

4: Calculate the j of every point in the set, and select

the maximum

Return next point
Algorithm 2. findnextpoint (D, p, e).
Require: D:Dataset of trajectory points

Require: Latest reachability distance of all points in D

Require: Last reachability distance of all points in D1:

for all p ∈ D

2: if latest reachability distance < last reachability d

istance then

3: p 0 s reachability distance = latest reachabilitydistance

4: else p 0 s reachabilitydistance = last reachabilitydis

tance5: end if

6: end for
Algorithm 3. update reachability distance.

3.4.3 Fishing grounds identification model
The DF-OPTICS algorithm solves the problem of selecting

extension points on large-scale trajectory datasets and effectively

improves clustering performance. Due to the DF-OPTICS’

characteristics, large-scale AIS data becomes a suitable application

object. The fishing grounds identification model can be built as

shown below (Equation 15):

Sp =
1,  p ∈ clusters

0,  p ∈ noise

(
(15)

In Equation 15, Sp is the area the point p located in (Sp = 1

indicates the fishing ground; otherwise, the point is in non-

fishing ground).

4 Results

This study examines changes in the South China Sea fishing

grounds every quarter in 2020. The fishing grounds are displayed on
tiers in Marine Science 10
the electronic nautical charts, which is a data model that describes

geographic information.
4.1 The results of fishing behavior
detection

The server environment is shown in Table 1.

The result of the fishing vessel speed distribution map, generated

using the GMMmodel, is shown in Figure 6a. The fishing vessel speed

in the South China Sea exhibits a roughly bimodal distribution, which

can be interpreted as a mixture of two Gaussian curves corresponding

to the fishing operation behaviors (low-speed) and sailing behaviors

(high-speed), respectively. By applying the EM algorithm and statistical

analysis of the Gaussian curves related to fishing operation behaviors,

the average speed of fishing vessels during fishing operations is

approximately 2.8 kn, with a standard deviation of approximately 0.8

kn. The confidence interval for the speed associated with fishing

operations is calculated as the mean value plus or minus the 1.5

times standard deviation, i.e., 1.6 - 4.0 kn is defined as the range of

fishing speeds for fishing vessels (Chen et al., 2022). The log-likelihood

function for each iteration is presented in Figure 6b and used to judge

convergence. It is clear that the algorithm has reached convergence

within the initial 30 iterations.

Figure 7 presents the results of different fishing behavior

detection models. The trajectory is sourced from a fishing vessel

with the MMSI number 412300398. The GMM model does not

account for the continuity between points. There are a few course

changes at the beginning of the trajectory. It can be seen that this

method relying solely on a speed threshold is incapable of

accurately and continuously identifying fishing behavior.

The difference in the results between the DB-SMOT algorithm and

our proposed method is shown in the middle of the two fishing

trajectories (Figure 7). Despite some course changes in the middle

trajectory, the speed, according to the actual AIS data, significantly

exceeds the threshold necessary for fishing activities. However, the DB-

SMOT algorithm mistakenly identifies this as a fishing trajectory,

indicating a limitation in its approach. As shown in Figure 7, our

proposedmethod, the SDB-SMOT algorithm, is more accurate than the

other two methods and can continuously identify fishing trajectories.

To evaluate the effectiveness of the SDB-SMOT algorithm in

excluding non-fishing vessels from AIS data that contains vessels of

unknown types, this study uses known ship types to illustrate analysis

of the model about speed, course and length. If the fishing behavior

detection model has a low recognition rate for the trajectories of non-

fishing vessels and also can accurately identify fishing behavior in the
TABLE 1 The server environment.

Operating System Windows 11

Development Language MATLAB R2022a; Python 3.10

CPU Intel(R) Core (TM) i5-12400

GPU NVIDIA GeForce RTX 3050

Memory 64G
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trajectories of fishing vessels, then the model is considered effective.

We take four types of ship as examples to make the process of the

model more intuitively explained. In this experiment, these known

types are treated as unknown, and the SDB-SMOT algorithm is

applied to test its performance. This paper selects trajectories of four

known ship types-fishing ship, bulk carrier, liquid cargo carrier, and

passenger ship-to demonstrate the model’s effectiveness. The

definition of suspected fishing trajectories is based on the visual

appearance of the trajectory, which has frequent course changes and

the length of ship is less than 100 meters, suggesting it could be a

fishing trajectory.

In Figure 8a, the trajectory identified as fishing behavior is

marked by red points. It meets the model’s length, speed, course,

and duration requirements, indicating that the fishing behavior

detection model can effectively identify fishing trajectories from

AIS data containing vessels of unknown types. The part of

trajectories in Figure 8b seem to display characteristics of fishing

behavior and its length is less than 100 meters. Therefore, it is defined

as suspected trajectory. However, the bulk carrier in this figure sailed

a long distance, almost across the entire South China Sea. Despite the

relatively short course change time, it does not meet the fishing

activity duration required by the model. Therefore, they are not

identified as fishing trajectories by the SDB-SMOT algorithm. The
Frontiers in Marine Science 11
trajectories in Figure 8c seem to exhibit characteristics of fishing

behavior; however, the length of this ship is more than 100 meters, so

this ship is directly excluded as a fishing vessel by the fishing behavior

detection model. Meanwhile, the average speed of the green-marked

trajectory is close to zero, suggesting that this trajectory likely

represents a vessel that is entering or leaving the port (Yang et al.,

2021). In Figure 8d, the trajectory is notably straight, leading to the

conclusion that the fishing behavior detection model did not identify

any fishing activity trajectories.

Figure 9 presents the results obtained through the fishing

behavior detection model using the AIS data from four quarters

as an illustrative example. The year is divided into four quarters on

average, each quarter corresponds to three months, the first quarter

corresponds to January, February, March, the second quarter

corresponds to April, May, June, the third quarter corresponds to

July, August, September, and the fourth quarter corresponds to

October, November, and December. A comparison between

Figures 9, 10 reveals that numerous distinct straight-line sailing

trajectories have been effectively removed. At the same time, the

primary fishing grounds of the fishing vessels have been preserved.

This indicates that the algorithm effectively filters out non-fishing

activities, which in turn allows for a more focused analysis of the

main fishing areas.
a b c 

FIGURE 7

Different methods of fishing behavior detection (the red points represent the fishing trajectory). (a) GMM. (b) DB-SMOT algorithm. (c) SDB-
SMOT algorithm.
a 

 

b 

FIGURE 6

The results of the EM algorithm. vlow = 0:2379, vhigh = 0:7621: (a) Speed distribution of fishing vessels based on the GMM. (b) Log-likelihood function.
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4.2 Clustering performance of different
algorithms

A great clustering algorithm can identify clusters and noise

more accurately. To analyze the efficacy and effectiveness of the

improved clustering algorithm, its performance is measured against

three clustering indexes: SC, CHI, and DBI (Equations 16–18). The

SC (Bagirov et al., 2023) evaluates the model’s performance using

the distance between points within the same cluster and between a

point in a neighboring cluster and all other points. The SC ranges

from -1 to 1, with values closer to 1 indicating better clustering

performance. On the contrary, the closer the value is to -1, the worse

the clustering performance is. The formula is as follows (Equation

16):

S(i) =
b(i) − a(i)

max a(i), b(i)f g (16)

In Equation 16, a(i) represents intra-cluster dissimilarity and

b(i) represents inter-cluster dissimilarity.

The CHI (Solorio-Fernández et al., 2016) is primarily based on the

ratio between intra-cluster and inter-cluster variance. The higher the
Frontiers in Marine Science 12
value, the better the clustering result. It takes a value in the range of

(0, +∞) : The formula is as follows (Equation 17):

CHI =
Tr(BK)
Tr(WK)

*
N − K
K − 1

(17)

In Equation 17, K denotes the number of categories, N denotes

the number of data, BK is the intergroup discretization matrix, and

WK is the intragroup discretization matrix.

The DBI (Liu et al., 2011) is calculated based on the tightness

within clusters and the separation between clusters, with smaller

values indicating better results. The value range is [0,1], and the

formula is as follows (Equation 18):

DBI =
1
no

n

i=1
max
i≠j

(
Si + Sj

‖wi − wj ‖2
) (18)

In Equation 18, where n denotes the number of categories, S

denotes the average distance within a cluster, and w denotes the

cluster center of mass coordinates.

This paper compares our proposed algorithm: DF-OPTICS, with

the OPTICS algorithm, DBSCAN algorithm, and an improved

OPTICS algorithm. The algorithms’ performances are assessed using
a 

 

b 

c d 

FIGURE 8

Illustration of SDB-SMOT algorithm from different ship types (Red points represent the fishing trajectory. Green points represent suspected fishing
vessel trajectory). (a) Fishing ship MMSI:412340162; Length: 26 meters. (b) Bulk carrier MMSI: 413812238; Length: 68 meters. (c) Passenger ship
MMSI: 413233630; Length: 127 meters. (d) Liquid cargo carrier MMSI: 413232860; Length: 95 meters.
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three kinds of clustering evaluation indexes, SC, DBI, and CHI, using

hyperparameters divided into three cases. Random and consecutive

five-month fishing vessels’ AIS data are selected as the test data. The

calculation of indexes is executed after deleting the noise. The results

represent the average value obtained from each case, as shown

in Table 2.

Case 1: Minpts = 600; Case 2: Minpts = 800; Case 3: Minpts =

1000. e is set to ten hyperparameters selected randomly in the range

of (10000, 20000). In the improved OPTICS algorithm, the

minimum cluster size is set to 0.5% of the entire dataset, and the

ratio for a significant separation is set to 0.8 (Sander et al., 2003).

The lower the DBI index, the higher the CHI index and SC, and the

better the clustering performance. The DF-OPTICS algorithm’s SC and

CHI typically outperform those of the other three algorithms across

most hyperparameters. Moreover, the DBI index differs significantly

from the other three algorithms. Although the improved OPTICS

algorithm performs better under specific hyperparameters, its

clustering performance is not stabilized. Overall, the clustering

performance of the improved OPTICS algorithm is better than the

other three clustering algorithms. Better clustering performance can

facilitate the identification of more accurate fishing grounds.
4.3 Identifying fishing grounds from AIS data

Figure 11 shows the reachability plot of DF-OPTICS, from which

different results can be obtained. We set Minpts as 500 and e as 6000

(meters). Figure 12 presents the fishing grounds identified from AIS
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data containing fishing vessels and parts of fishing grounds identified

from AIS data containing vessels of unknown type.

To identify potential fishing grounds from AIS data involving

vessels of unknown types, this study overlays the clustering results of

unknown ships onto the respective fishing grounds for each quarter.

The trajectories of unknown vessels first be detected by the fishing

vessel behavior detection model, then the results are obtained based on

the fishing grounds extraction model. The visual representation of

these findings is presented in Figure 12. The yellow segments represent

the results for vessels of unknown types, while the purple segments

represent the fishing grounds extracted from known fishing vessels for

each quarter. The clustering results for vessels of unknown types are

highly coincident with the known fishing grounds. From this, it can be

concluded that applying this framework to vessels of unknown types to

identify new fishing grounds is a practical approach.
4.4 Spatio-temporal characterization of
fishing grounds in the South China Sea

Figure 13 presents the fishing grounds identified through the

fishing grounds identification model from AIS data containing

vessels of unknown types. The results reveal distinct quarterly

variations in the spatial and temporal characteristics of fishing

vessel activities in the South China Sea.

In the first quarter, the focal point of these activities is

predominantly positioned on the southwest continental shelf of

the Nansha Islands, forming a block-like distribution. There is also
FIGURE 9

The fishing trajectories of fishing vessels detected by the fishing behavior detection model. (a) The first quarter. (b) The second quarter. (c) The third
quarter. (d) The fourth quarter.
FIGURE 10

The original trajectories of fishing vessels. (a) The first quarter. (b) The second quarter. (c) The third quarter. (d) The fourth quarter.
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a minor concentration to the south of the Zhongsha Islands and

between the Wave Reefs and the Xisha Islands, covering a total area

of approximately 12,738.89 square kilometers. The primary center

of fishing activities is positioned southwest of the Nansha Islands.

In the second quarter, a slight increase is noted in the hotspot of

fishing activities around the Sansha Islands, with the total area

expanding to roughly 43,234.85 square kilometers. The center of

gravity for these activities remains essentially unchanged.

In the third quarter, a peak in fishing activities within the South

China Sea is observed, characterized by the most extensive range of
Frontiers in Marine Science 14
fishing grounds, the most significant area, and the highest number

of hotspots, amounting to a total of 116,508.35 square kilometers.

The most considerable fishing ground is located in the southwest of

the Nansha Islands. The fishing grounds are primarily distributed in

a north-south strip along the Mekong River estuary and the western

and central parts of the Nansha Islands. Notably, the Xisha Islands

and the southwestern parts of the Nansha Islands exhibit a more

fragmented distribution pattern.

In the fourth quarter, fishing activities by vessels in the South

China Sea are significantly reduced. There are virtually no
TABLE 2 Clustering evaluation indexes.

Case 1 Case 2 Case 3

DBI CHI SC DBI CHI SC DBI CHI SC

DF-OPTICS 0.267 2213939 0.560 0.224 3296101 0.598 0.203 4320688 0.633

DBSCAN 0.292 2079721 0.554 0.256 3188408 0.584 0.242 3941174 0.617

OPTICS 0.290 2203065 0.552 0.257 2990672 0.587 0.239 4019910 0.628

OPTICS
(auto)

0.271 2458880 0.548 0.269 2746998 0.496 0.217 4377316 0.624
a b

c d

b

d

FIGURE 11

Reachability plot of DF-OPTICS algorithm in different quarters. (a) The first quarter. (b) The second quarter. (c) The third quarter. (d) The
fourth quarter.
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aggregation areas for fishing vessels in the Nansha Islands, with

only a few small aggregation areas in the Xisha Islands and the

southwest regions of the Nansha Islands. These areas cover

approximately 2,141 square kilometers.

Based on the analysis above, a consistent hotspot for fishing

vessel activities is observed throughout the year on the southwest

side of the Nansha Islands. Additionally, the third quarter

experiences an increase in aggregation areas for fishing vessels,

notably within the Zhongsha, Xisha, and the central regions of the

Nansha Islands.

The hotspots of fishing vessels, categorized by their MID

numbers that represent different countries and regions, are shown

in Figure 13. Notably, fishing vessel activities in the South China Sea

have significantly increased during the third and fourth quarters.

The primary reason for this increase is the presence of fishing

vessels from Southeast Asian countries fishing in the South China

Sea (Gou and Yang, 2023).
5 Conclusion

This study proposes a novel framework to identify fishing

grounds from AIS data that encompasses vessels of unknown

types. This framework covers a fishing behavior detection model

and a fishing grounds identification model. Additionally, this

framework has been used to analyze the fishing grounds in the
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South China Sea for the year 2020. The research contributions are

as follows:
1. A fishing behavior detection model based on the SDB-

SMOT algorithm is proposed. Compared to other methods,

the SDB-SMOT algorithm can more precisely identify

fishing trajectories from AIS data containing vessels of

unknown types. Moreover, the model for fishing behavior

can filter out non-fishing vessels from the AIS data

containing vessels of unknown types.

2. A fishing grounds identification model is proposed based

on the DF-OPTICS algorithm, which solves the problem of

identifying the next data point among the points with the

same reachability distance in large-scale data for the

OPTICS algorithm. The DF-OPTICS algorithm is proven

to have better clustering performance on large-scale

datasets. It outperforms three other clustering algorithms,

the traditional OPTICS algorithm, the DBSCAN algorithm,

and the improved OPTICS algorithm, in terms of overall

clustering effectiveness. This model is particularly well-

suited for identifying the fishing grounds from large-scale

and high-density trajectory datasets. It can also reflect the

distribution of the fishing grounds more intuitively.

3. Applying this framework to AIS data involving vessels of

unknown types has proven to be practical, as it effectively

identifies fishing grounds that are in close agreement with
frontiersin.org
FIGURE 12

The results of superimposition (The purple area represents the clustering results of known fishing vessels. The yellow area represents the clustering
results of fishing vessels extracted from unknown types of vessels). (a) The first quarter. (b) The second quarter. (c) The third quarter. (d) The
fourth quarter.
FIGURE 13

The hot spots of Chinese (red) and other national (green) fishing vessels. (a) The first quarter. (b) The second quarter. (c) The third quarter. (d) The
fourth quarter.
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the areas previously identified from AIS data containing

specified and known fishing vessels. Using this proposed

framework, this study examines the fishing grounds in the

South China Sea and analyzes their features.
6 Discussion

In order to validate the effects of excluding non-fishing vessels’

trajectories and detecting fishing vessels from unknown vessels, a

portion of AIS data from known vessels—including fishing vessels,

passenger ships, oil tankers, cargo carriers, and working vessels—are

selected to evaluate the fishing behavior detectionmodel. Considering

that there are hardly any fishing vessels in the South China Sea that

exceed 100 meters in length (Sun et al., 2023), we exclude vessels

longer than 100 meters from the AIS data before applying the fishing

vessel behavior detection model. The results are shown in Table 3,

where ‘Number of FT’ represents the number of AIS data points

identified as fishing trajectories. It can be observed that trajectories of

vessels other than fishing vessels are less likely to be identified as

fishing behavior – For all other ship types, the misidentification rate is

below 1.5%. The proportion of oil tankers is very low, because the vast
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majority of oil tankers are longer than 100 meters. A small amount of

data has little impact on the extraction of fishing grounds.

Due to the relatively high percentage of passenger ships and

working vessels, this paper presents the hotspots of passenger

ships and working vessels in the South China Sea, as shown in

Figure 14, and their distribution is quite different from that of

fishing grounds. Therefore, we believe that the impact of such

vessels is of minor significance with respect to the aim of

identifying fishing grounds.

A number of vessels have similar or almost identical behavior to

fishing behavior, especially those that are more maneuverable and

smaller. However, such behaviors are relatively rare and are not

typical of them. As shown in Table 3, a low proportion of other

vessels are identified by the fishing behavior detection model. While

these detected fishing trajectories could potentially influence our

findings, we believe the impact is manageable when identifying

fishing grounds. Consequently, the fishing behavior detection

model may not be fully applicable to a large number of atypical

ship behaviors. One of the primary objectives of identifying fishing

grounds is to facilitate the prevention of collisions between

commercial and fishing vessels.

This paper visually presents the fishing grounds in the South

China Sea, which are typically located far from mainland areas and

are predominantly witnessed by medium to large fishing vessels. The

DF-OPTICS algorithm, integrated with the DF theory, increases the

computational complexity due to its need to calculate the potential

value of trajectory points. Future research may develop more accurate

algorithms for identifying fishing trajectory points while optimizing

the time complexity of the DF-OPTICS algorithm.

This paper uses AIS data as the basis for the fishing grounds

identification study, and it is impossible to identify the trajectories

of fishing vessels without AIS equipment or with AIS equipment

turned off, which is a shortcoming of this study. Examining the

activity areas of fishing vessels is significant for studying maritime

safety and management. However, fishing vessel activity areas are

not limited to fishing grounds; for example, fishing ports play a

crucial role. Future research may also focus on discovering fishing

ports from fishing vessels’ trajectory data.
FIGURE 14

The hotspots of passenger ships and working vessels. (a) The hotspots of passenger ships. (b) The hot spots of working vessels.
TABLE 3 The validation of the fishing behavior detection model.

Ship type
Number
of data

Number
of FT

Percentage

Fishing vessel
(From 2020)

670251 414044 61.8%

Fishing vessel
(From 2019)

585470 337118 57.6%

Oil tanker 1458650 0 0%

Passenger ship 5700271 6984 0.12%

Working vessel 1621221 23925 1.48%

Cargo carrier 1966408 10105 0.51%
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