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Hybrid Mamba for amphibious
Limulidae low-light
image enhancement
Lili Han, Xiuping Liu*, Tao Xu and Yuangan Wang

College of Electronics and Information Engineering, Beibu Gulf University, Qinzhou, Guangxi, China
Obtaining high-quality images of Limulidae in amphibious environments is a

challenging task due to insufficient light and the complex optical properties of

water, such as light absorption and scattering, which often result in low contrast,

color distortion, and blurring. These issues severely impact applications like

nocturnal biological monitoring, underwater archaeology, and resource

exploration. Traditional image enhancement methods struggle with the

complex degradation of such images, but recent advancements in deep

learning have shown promise. This paper proposes a novel method for

amphibious low-light image enhancement based on hybrid Mamba, which

integrates wavelet transform, Discrete Cosine Transform (DCT), and Fast

Fourier Transform (FFT) within the Mamba framework. Wavelet transform

effectively decomposes images at multiple scales, capturing feature

information at different frequencies and excelling in noise removal and detail

preservation, whereas DCT concentrates and compresses image energy, aiding

in the restoration of high-frequency components and improving clarity. FFT

provides efficient frequency domain analysis, accurately locating key information

in the image spectrum and enhancing image quality. Mamba, as an emerging

optimization strategy, offers unique computational characteristics and

optimization capabilities, making it well suited for this task. The main

contributions include the construction of the amphibious low-light image

dataset (ALID) in collaboration with the Beibu Gulf Key Laboratory of Marine

Biodiversity Conservation and the introduction of the hybrid Mamba method.

Extensive experiments on the ALID dataset demonstrate that our method

outperforms state-of-the-art approaches in both subjective visual assessment

and quantitative analysis, achieving superior results in brightness enhancement

and detail reconstruction, thus paving new paths for amphibious low-light image

processing and promoting further development in related industries

and research.
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1 Introduction

Obtaining high-quality Limulidae images in amphibious

environments has always been an extremely challenging task. Due

to insufficient light in low-light conditions and the complex optical

properties of water, such as absorption and scattering of light,

amphibious low-light images often suffer from issues like low

contrast, color distortion, and blurring. These problems severely

impact subsequent analysis and applications, such as nocturnal

biological monitoring, underwater archaeology, and resource

exploration in amphibious environments.

Traditional image enhancement methods (Han et al., 2023;

Wang W. et al., 2024; Zheng et al., 2024) have limitations when

dealing with the complex degradation of amphibious low-light

Limulidae images. Zhang et al. (Zhuang et al., 2024) proposed a

color correction strategy guided by an attenuation map, which

employs a global contrast enhancement strategy optimized by

maximum information entropy to enhance the global contrast of

color-corrected images. Additionally, a local contrast enhancement

strategy optimized by fast integration is applied to obtain locally

enhanced images. To leverage the complementary nature of globally

and locally enhanced images, a weighted wavelet visual perception

fusion strategy is introduced. This strategy fuses high-frequency

and low-frequency components of images at different scales to

produce high-quality underwater images. Wang Y. et al. (2024)

integrated multi-level wavelet transforms and color compensation

priors into a multi-stage enhancement framework. Each stage

includes a multi-level wavelet enhancement module, a color

compensation prior extraction module, and a color filter with

prior-aware weights.

In recent years, the technology for enhancing amphibious low-

light images has continuously evolved, achieving significant

progress from traditional methods to deep learning-based

approaches (Wang et al., 2023; Wang et al., 2024a; Wang et al.,

2025; Zhuang et al., 2025). Wang et al. (2024b) developed a novel

reinforcement learning framework that selects a series of image

enhancement methods and configures their parameters in a self-

organizing manner to achieve underwater image enhancement

(UIE). Peng L. et al. (2023) constructed a large-scale underwater

image dataset and proposed a U-shape transformer that integrates a

channel multi-scale feature fusion transformer module and a spatial

global feature modeling transformer module, specifically designed

for UIE tasks. This enhances the network’s attention to parts of the

image that suffer more severe attenuation in color channels and

spatial regions. Zhou et al. (2023) introduced a novel multi-feature

UIE method on the basis of an embedded fusion mechanism. By

preprocessing to obtain high-quality images, they incorporated a

white balance algorithm and contrast-limited adaptive histogram

equalization algorithm and adopted multi-path inputs to extract

rich features from multiple perspectives.

The paper proposes a method based on multiple transformation

domain Mamba for amphibious low-light image enhancement. This

method integrates wavelet transform, DCT, and FFT within the

Mamba framework to enhance amphibious low-light images.

Multiple transformation domain techniques are introduced into
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the research of amphibious low-light image enhancement. Among

them, wavelet transform (Wavelet) can effectively decompose

images at multiple scales, capturing feature information at

different frequencies, and excels in noise removal and detail

preservation; DCT has unique advantages in concentrating and

compressing image energy, aiding in the restoration of high-

frequency components and improving clarity; FFT provides an

efficient means for frequency domain analysis, accurately locating

key information in the image spectrum and assisting in enhancing

image quality. Mamba, as an emerging optimization strategy or

algorithmic component, possesses unique computational

characteristics and optimization capabilities. Combining it with

Wavelet, DCT, and FFT is expected to break through the current

bottlenecks in amphibious low-light image enhancement

technology. This study aims to explore the application potential

of the innovative combination method based on multiple

transformation domain Mamba in amphibious low-light image

enhancement. Through rigorous experimental design and data

analysis, the practical effects of this method on improving the

quality of amphibious low-light images are evaluated, paving new

paths for the field of amphibious low-light image processing and

promoting further development in related industries and research.

The main contributions of this paper are as follows:
1. Construction of a dataset: In partnership with the Beibu

Gulf Key Laboratory of Marine Biodiversity Conservation,

we jointly established amphibious low-light image dataset

(ALID), and extensive experiments are conducted on this

dataset to validate the effectiveness of the proposed method.

2. Proposal of the multiple transformation domain Mamba

method: A novel combination of wavelet transform, DCT,

and FFT is introduced for amphibious low-light

image enhancement.
2 Related works

2.1 Mamba-based UIE

The Mamba-based amphibious low-light image enhancement

method demonstrates strong adaptability to complex amphibious

low-light environments while maintaining lightweight and high

efficiency. It can address various degradation scenarios such as color

distortion, blurring, and insufficient illumination and can be flexibly

extended to different tasks and models, providing an efficient and

reliable solution for amphibious low-light vision tasks.

Dong et al. (2024) proposed O-mamba, which adopts an O-

shaped dual-branch network to model spatial information and

cross-channel information separately, leveraging the efficient

global receptive field of a state-space model optimized for

underwater images. Zhang et al. (2024) introduced Mamba-UIE,

which divides the input image into four components: underwater

scene radiance, direct transmission map, backward scattering

transmission map, and global background light. These
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components are recombined according to a revised underwater

image formation model, and a reconstruction consistency

constraint is applied between the reconstructed image and the

original image, thereby achieving effective physical constraints

during UIE. Chang et al. (2025) proposed a Mamba-enhanced

spectral attention wavelet network for effective underwater image

restoration. This network includes three modules: a spatial detail

enhancement encoder, a state-space model for local information

compensation, and a spectral cross-attention residual module.
2.2 Hybrid Mamba-based UIE

Hybrid Mamba methods have demonstrated significant

advantages in the field of amphibious low-light image processing.

By integrating multiple frequency analysis techniques and

leveraging the efficient state-space model of the Mamba

architecture, these methods not only enhance the quality of

amphibious low-light image enhancement but also provide more

efficient solutions for complex visual tasks, showcasing their

immense potential in practical applications.

Tan et al. (2024) proposed the WalMaFa model on the basis of

wavelet and Fourier adjustments, which consists of a wavelet-based

Mamba module and a fast Fourier adjustment module. The model

employs an encoder-latent layer-decoder structure to achieve end-

to-end transformation. Bai et al. (2024) introduced the

RetinexMamba architecture, which retains the physical

intuitiveness of traditional Retinex methods while integrating the

deep learning framework of Retinexformer and utilizing the

computational efficiency of state-space models (SSMs) to improve

processing speed. This architecture incorporates innovative

illumination estimators and damage-repair mechanisms to

maintain image quality during enhancement. Zou et al. (2024)

proposed the Wave-Mamba method on the basis of the wavelet

domain, which improves SSMs with a low-frequency state-space

block (LFSSBlock) focused on restoring information in low-

frequency sub-bands, and a high-frequency enhancement block

(HFEBlock) to process high-frequency sub-band information. By

using enhanced low-frequency information to correct high-

frequency information, this method effectively restores accurate

high-frequency details.
3 Preliminaries

3.1 2D-DWT-DCT

2D-DWT is used on the input amphibious low-light image I,

obtaining four sub-bands: LL, LH, HL, and HH. LL contains the

low-frequency information of the image (brightness and overall

s tructure) . LH , HL , and HH contain high-frequency

detail information.

LL contains the primary brightness information of the image,

enhancing low-light image primarily involves increasing the

brightness and contrast of LL. To more effectively process the LL
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sub-band, it can be further divided into smaller blocks (e.g., 8 × 8

blocks), and DCT is used for each block:

DCT(LLblock) = C(u, v) (1)

In Equation 1, the low-frequency coefficients (e.g., C(0, 0),  C(0

, 1),  C(1, 0)) carry the energy and brightness information of the

image. By adjusting these low-frequency coefficients, image

brightness enhancement and contrast improvement can be

achieved (Equation 2).

C0(u, v) = gC(u, v)  for low frequencies (2)

where g > 1 is the amplification factor.

The adjusted coefficient C′ is transformed back to the spatial

domain using the inverse DCT, resulting LL′:

LL
0
block = IDCT(C0(u, v)) (3)

In Equation 3, LL′ is combined with the original high-frequency

sub-bands LH, HL, and HH. Using the inverse wavelet transform

(IWT), the enhanced image I0 is reconstructed.
3.2 FFT

In amphibious Limulidae low-light image enhancement, FFT

can effectively improve the image’s contrast, clarity, and

illumination distribution by processing its frequency components.

Suppose 2D image I(x, y) with scale M � N , Discrete Fourier

Transform (DFT) is defined as Equation 4.

F(u, v) = o
M−1

x=0
o
N−1

y=0
I(x, y) · e−j2p(

ux
M+vy

N ) (4)

where I(x, y) is the pixel value in spatial domain, F(u, v) is the

transformed result in the frequency domain, u, v are the frequency

coordinates in the frequency domain, and e−j2p(
ux
M+vy

N ) is the complex

exponential basis function.

FFT decomposes the image into two parts: the magnitude

spectrum and the phase spectrum. The magnitude spectrum

represents the intensity of each frequency component in the

image, whereas the phase spectrum represents the phase

information of the frequency components. The result is a

complex matrix containing both the magnitude spectrum F(u, v)j j
and the phase spectrum arg (F(u, v)) in Equation 5.

F(u, v)j j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re (F(u, v))2 + Im (F(u, v))2

p

arg (F(u, v)) = arctan Im (F(u,v))
Re (F(u,v))

� � (5)

Using the inverse FFT (IFFT), the enhanced frequency domain

result F0(u, v) is converted back to the spatial domain Equations 6:

I
0
f (x, y) = IFFT(F0(u, v)) (6)

The result of the IFFT contains minor imaginary parts. Because

the input image is real-valued, the absolute value or the real part can

be directly taken. The enhanced image is I
0
f (x, y).
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Essentially, both 2D-DWT-DCT and FFT decompose the image

into two components: one is more sensitive to color brightness, and

the other is more sensitive to texture details. The low-frequency LL

component in 2D-DWT-DCT is clearly superior to FFT amplitude

component in terms of color brightness, whereas FFT phase

component is evidently better at capturing texture details than the

high-frequency LH, HL, and HH components in 2D-DWT-DCT.

This paper proposes using the low-frequency LL component of 2D-

DWT-DCT to enhance global color brightness while employing the

phase component of FFT to restore local texture details

and smoothness.
4 Methodology

4.1 State-space model

The structured state-space model (SSM) (S4) is based on the

theoretical foundation of continuous systems, explaining the

dynamic relationship between the input signal x(t) and the output

signal y(t) within a time-invariant linear framework. Essentially,

this model maps one-dimensional function or sequence x(t) ∈ RL

to the corresponding output y(t) ∈ RL. The implicit latent state h

(t) ∈ RN . The system can be succinctly represented in the form of

ordinary differential equations (ODEs) as follows (Equations 7, 8):

h0(t) = Ah(t) + Bx(t) (7)

y(t) = Ch(t) +Dx(t) (8)

where A ∈ RN�N ,B ∈ RN�1,C ∈ R1�N are parameters of the

state size N, and D ∈ R1 represents a jump connection.

In the process of integrating SSMs into deep learning models,

the ODE process is discretized to match the sampling frequency of

the latent signals in the input data. This discretization process

typically uses the zero-order hold (ZOH) method, combined with a

time scale parameter D, to convert the continuous parameters A and

B into discrete forms �A and �B. The definitions are (Equations 9–12).

h
0
t = �Aht−1 + �BXt

(9)

yt = Cht +Dxt (10)

�A = eDA (11)

�B = (DA)−1(eDA − I) · DB (12)

where D ∈ RD, B,C ∈ RD�N .

Mamba continues to evolve, allowing parameters B and C to be

adjusted based on input, achieving dynamic feature representation.

Essentially, Mamba employs a recursive structure that can process

and retain information from long sequences, ensuring that more

pixels can participate in the recovery process. Additionally, Mamba

utilizes parallel scanning algorithms, reflecting the advantages of
Frontiers in Marine Science 04
parallel processing, and improving the efficiency of training and

inference processes. Based on the Mamba architecture, combined

with hybrid transformation methods, the channel-wise Mamba

approach further explores changes in color and brightness within

the channel dimension.
4.2 Hybrid Mamba

2D-DWT-DCT can effectively extract low-frequency components,

which is of vital importance for capturing global color and brightness

information. The channel-wise Mamba module compensates for

missing spatial information in the channel dimension. By leveraging

its linear analysis capability over long-distance sequences, it can

effectively capture global contextual information while maintaining a

low computational cost. Compared with transformers, the Mamba

module exhibits lower computational complexity when processing

long sequences (see Figure 1).

WDMB follows the efficient token mixer of transformer, which

can be represented as (Equations 13):

I0 = WDM(LN(x)) + x,

I00 = FFTB(LN(I0)) + I0
(13)

where WDM denotes the Mamba operation based on Wavelet

and DCT, and LN represents the LayerNorm layer

normalization operation.

Given the input feature map Fin ∈ RH�W�C , it is decomposed

into four parts: low-frequency sub-bands FLL ∈ RH
2�W

2 �C and high-

frequency sub-bands FLH , FHL, FHHf g ∈ R3�H
2�W

2 �C . For the low-

frequency sub-bands, FLL is fed into a 3 × 3 convolutional activation

block, and, then, the height and width dimensions are merged to

generate FC
LL ∈ RB,C,L, where L = H �W , which integrates spatial

features while retaining the channels for subsequent modeling on

the channel dimension. After Mamba and 3 × 3 convolution, we

obtain the low-frequency enhanced output F
0
LL ∈ RH

2�W
2 �C through

a reconstruction operation. For the processing of high-frequency

sub-bands, FLH , FHL, FHH are directly fed into a 3 × 3 convolution to

generate F
0
LH , F

0
HL, F

0
HH

n o
∈ R3�H

2�W
2 �C . F

0
LL and F

0
LH , F

0
HL, F

0
HH

n o

are reconstructed into the image space through the IWT operation,

resulting in Fout ∈ RH�W�C (see Figure 2).
4.3 Loss function

The loss function L is composed of three parts: 2D-DWT-DCT

loss (Lwd), FFT loss (Lf ), and the Charbonnier loss (Lc) in

(Equations 14-17).

Lwd = TLL 0 − GLLk k2 (14)

Lf = P(I
0
f ) − P(G)

���
���
2

(15)
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Lc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re − Gk k2+ ∈2

q
(16)

L = Lwd + Lf + Lc (17)
Frontiers in Marine Science 05
Because the low-frequency component plays a crucial role in

enhancing global image brightness, Lwd is formed by comparing the

low-frequency branch outputTLL 0 and the ground-truth low-frequency

branchGLL. Due to the significant texture-enhancing effect of the phase
FIGURE 1

The overview of our architecture.
E 2FIGUR

The illustration of Wavelet-DCT-Mamba-Block (WDMB), Wavelet-DCT-Mamba (WDM), and Fast Fourier Transformer Block (FFTB).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1578735
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2025.1578735
component in Fourier transforms, Lf is constructed using the phase of

the transformed image P(I
0
f ) and the phase of the ground-truth image

P(G). Lc is composed of the global image enhancement result Re and

the ground-truth image G, and the default value of ∈ is 10−3.
5 Experiments

5.1 Datasets and environment

In collaboration with the Beibu Gulf Key Laboratory of Marine

Biodiversity Conservation, we have jointly constructed the ALID.

This dataset comprises 485 pairs of low-light and highlight images

of outdoor scenes at varying scales. ALID can be categorized into

two types: ALID-real and ALID-synthetic. The ALID-real dataset

was captured in real-world scenarios by adjusting ISO and exposure

times. The ALID-synthetic dataset, on the other hand, was

generated by synthesizing low-light images from original images

through the analysis of illumination distribution in low-

light conditions.

We trained the model on RTX 4090 with batch size of 4. The

images are resized to 128 × 128. We employ the AdamW optimizer

(momentum of 0.9) and conducted mixed-precision training for

5,000 epochs. The initial learning rate is set to 8 × 10−4, gradually

reduced to 1 × 10−6 by the cosine annealing schedule.
Frontiers in Marine Science 06
5.2 Comparisons with state-of-the-art
methods

We performed experiments to evaluate the image enhancement

performance of two distinct architectures, transformer and Mamba,

with comparisons conducted from two perspectives: subjective

visual assessment and theoretical quantitative analysis.

The visualization results in Figure 3 indicate that the

amphibious Limulidae low-light image enhancement outcomes

produced by CIDNet exhibit a limited overall brightness

improvement and suboptimal reconstruction of certain details

within the images. LightenDiffusion demonstrates superior

performance, with some details preserved clearly. WalMaFa excels

in retaining image details, yet it offers only a modest enhancement

in overall brightness. Wave-Mamba provides the least improvement

in overall brightness and also retains the fewest details. Ours

achieved the most significant enhancement in terms of overall

brightness improvement and image detail reconstruction, and it is

superior to other methods in noise suppression. However, ours

performed inadequately in preserving texture details.

The experimental results in Figure 4 demonstrate that

LightenDiffusion performs optimally in terms of chromaticity

preservation, yet it loses textural details during the image

smoothing process. Wave-Mamba exhibits the poorest

performance in brightness enhancement. WalMaFa alters the
FIGURE 3

Visualization results of different models on the ALID-real. References cited: Yan et al. (2024), Jiang et al. (2024), Zou et al. (2024), and Tan et al. (2024).
Input GT CIDNet LightenDiffusion Wave-Mamba WalMaFa ours

FIGURE 4

Visualization results of different models on the ALID-synthetic.
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image color and shows limited effectiveness in brightness

improvement. CIDNet suffers from color distortion during image

reconstruction and displays poor fine-grained detail representation.

Ours achieves the best performance in brightness enhancement but

fails to adequately preserve the original image colors. In noise

suppression, it slightly lags behind LightenDiffusion.

Table 1 presents a quantitative analysis of low-light image

enhancement results for horseshoe crabs using methods based on

Mamba and transformer architectures. The results indicate that

FlowIE has the poorest overall performance 17.77/0.688, followed

by RAUNE at 19.72/0.831. The Wave-Mamba model shows limited

image enhancement effectiveness 24.93/0.858. In contrast, CIDNet,

LightenDiffusion, and WalMaFa models demonstrate better

enhancement results, achieving 32.73/0.942, 33.19/0.950, and

32.83/0.947, respectively. Our method outperforms the others,

delivering the best image enhancement performance across

different types of datasets and the entire dataset 36.31/0.978.
5.3 Ablation study

The ablation experiment results of the models are presented in

Table 2. Setting 1 yields the poorest performance with a PSNR/SSIM

of 21.32/0.749, whereas setting 2 shows relatively inferior results at

27.51/0.921. Setting 3 demonstrates better performance with a PSNR/

SSIM of 33.45/0.963. Our hybrid-domain model achieves the optimal

performance, attaining a PSNR/SSIM of 36.31/0.978.
Frontiers in Marine Science 07
6 Conclusion

In this paper, we proposed a novel hybrid mamba method for

amphibious low-light image enhancement, integrating wavelet

transform, DCT, and FFT within the Mamba framework. Our

approach effectively addresses the challenges of low contrast,

color distortion, and blurring in amphibious environments by

leveraging the strengths of multiple transformation domains. The

experimental results on the ALID demonstrate that our method

significantly outperforms state-of-the-art techniques in both

subjective visual quality and quantitative metrics, achieving

superior brightness enhancement and detail reconstruction. The

approach highlights the potential of combining traditional

techniques with advanced optimization strategies like Mamba for

complex image enhancement tasks. Future work will focus on

further optimizing the computational efficiency of the model and

exploring its applicability to other low-light vision tasks in diverse

environments. This study not only advances the field of amphibious

low-light image processing but also provides a robust framework for

future research and practical applications in related domains.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to Lili Han, hanlili_can@126.com.
TABLE 1 Comparison of quantitative results on ALID.

Methods
ALID-real

ALID-
synthetic

AVG Speed (s) FLOPS (G) Params (M)

PSNR/SSIM PSNR/SSIM PSNR/SSIM — — —

CIDNet 32.98/0.946 32.47/0.937 32.73/0.942 — 7.57 1.88

FlowIE (Zhu et al., 2024) 18.39/0.663 17.14/0.712 17.77/0.688 — — —

LightenDiffusion 33.17/0.957 33.21/0.942 33.19/0.950 0.314 — —

RAUNE (Peng W. et al., 2023) 20.16/0.812 19.28/0.849 19.72/0.831 — — —

Wave-Mamba 25.29/0.854 24.56/0.861 24.93/0.858 — — 2.3

WalMaFa 33.26/0.951 32.39/0.943 32.83/0.947 0.068 14.41 11.09

Ours 37.32/0.985 35.29/0.971 36.31/0.978 0.072 14.62 11.23
The bold values are the Optimal values.
TABLE 2 Ablation studies of different components.

Experiment 2D-DWTBlock 2D-DWT-DCTBlock FFTBlock PSNR SSIM

Setting 1 ✓ 21.32 0.749

Setting 2 ✓ 27.51 0.921

Setting 3 ✓ ✓ 33.45 0.963

ours ✓ ✓ 36.31 0.978
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