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Joint optimization of AoI and
energy for AUV-assisted data
collection in underwater
acoustic sensor networks
Weinan Cao, Keyu Chen* and En Cheng

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology, Ministry
of Education, Xiamen University, Xiamen, China
Underwater data collection is a key component of ocean observation systems,

providing reliable data provenance through sensor networks deployed across

diverse marine environments. Timely and energy-efficient data collection

mechanisms are critical for ensuring the continuity and integrity of the

collected data. For the sake of jointly optimizing the age of information (AoI)

and energy consumption, we propose a multi-autonomous underwater vehicle

(AUV)-assisted underwater data collection scheme in this paper. The

optimization problem is formulated as a mixed integer linear programming

(MILP) problem, which is non-deterministic polynomial (NP)-hard. In order to

address the problem efficiently, we propose a two-stage method. First,

considering the balance of energy consumption and the limitation of sensor

communication ranges, we design a cluster-based AUV scheduling data

transmission protocol to find a series of hovering points at which the AUVs

hover to receive data and schedule data transmissions between the AUVs and

sensors. Based on that, a combined heuristic algorithm is proposed to plan AUVs’

trajectories so that the data collection task can be completed properly with a low

cost. Simulation results show that the proposed algorithm outperforms three

benchmark algorithms in terms of average AoI and collection utility. Specifically,

the freshness of information and the collection utility improved by 10.23% and

33.36% on average, respectively. Additionally, the energy consumption of sensor

nodes is more balanced, and the network lifetime is extended.
KEYWORDS

underwater acoustic sensor networks (UASNs), autonomous underwater vehicle (AUV),
data collection, age of information (AoI), collection utility
1 Introduction

The ocean is regarded as the second living space for human beings, which covers

approximately 70% of the Earth’s surface (National Research Council, Division on Earth,

Life Studies, Ocean Studies Board andCommittee on Exploration of the Seas, 2003). Ocean

observation and exploration have emerged all over the world. Underwater acoustic sensor
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networks (UASNs), being a powerful means of ocean observation

and exploration, play an increasingly important role in smart

oceans. With the development of the internet of underwater

things (IoUT), the number of underwater equipment continues to

grow rapidly. Massive heterogeneous data are generated underwater

such that UASNs have entered the era of big data (Qiu et al., 2019).

Marine information collection is the basic function of UASNs,

which supports the data requirements for marine science. However,

the inherent characteristics of UASNs bring difficulties to

underwater data collection, such as unreliable long-distance

communication links, difficulties in replenishing the energy for

underwater sensor nodes, and high bit error rates and delays in data

transmission (Wang et al., 2019, 2020; Han et al., 2019). Owing to

the convenience of power supply, mobility, and stronger computing

and communication capabilities, autonomous underwater vehicles

(AUVs) have been widely used in UASNs to improve performance

(Yang et al., 2021). In general, existing underwater data collection

schemes could be divided into two types, namely, multi-hop routing

schemes and AUV-assisted schemes (de Souza et al., 2016; Gjanci

et al., 2017). On the one hand, the multi-hop routing schemes relay

sensed data to the sink node, causing the hot area problem and

additional collection delay (Guan et al., 2019; Hwang and Kim,

2008; Li et al., 2016). Most of the existing routing protocols are

applied in static networks, without considering the mobility of

nodes (Khan et al., 2024, 2023). On the other hand, AUV-assisted

underwater data collection schemes that focus on energy efficiency

(Zhuo et al., 2020), network throughput (Luo et al., 2022), and

multi-AUV collaboration (Han et al., 2021) have attracted

increasing attention (Su et al., 2019).

However, few studies have considered optimizing information

freshness, i.e., age of information (AoI) (Talak et al., 2018), which is

defined as the time interval between when information is sampled and

when it is sent to the data center (Kaul et al., 2012), in AUV-assisted

underwater data collection schemes. Admittedly, the freshness of the

sensed information is a crucial metric that cannot be ignored in delay-

sensitive applications. In terrestrial wireless sensor networks

(TWSNs), a considerable amount of research about AoI has been

studied. In Liu et al. (2020a), an unmanned aerial vehicle (UAV)-aided

data collection framework is applied in TWSN to minimize the

average AoI and max-AoI. Abd-Elmagid et al. noted that one UAV

serves as a mobile relay to optimize the peak AoI from source to

destination (Abd-Elmagid and Dhillon, 2018). Zhang et al. (2020)

discussed the trade-off between sensing and communication through

directly utilizing UAV to sense information in the target area.

Unfortunately, the AoI-oriented optimization algorithms in TWSN

data collection systems cannot be directly applied to UASNs due to the

obvious differences between UASNs and TWSNs.

Motivated by the above-mentioned issues, this paper proposes a

multi-AUV-assisted underwater data collection scheme, in which

the joint optimization of AoI and energy efficiency is considered.

The main contributions of this paper can be summarized as follows:
Fron
1. We propose a multi-AUV-assisted data collection scheme

(MADCS) for UASNs. Unlike existing solutions, MADCS

jointly optimizes the average AoI and energy consumption
tiers in Marine Science 02
via determining the AUV hovering positions, the

association between the sensor nodes and AUVs, the data

transmission protocol, and AUVs’ trajectory.

2. The optimization problem is formulated as a mixed integer

linear programming (MILP) problem, which is non-

deterministic polynomial (NP)-hard and difficult to solve.

To reduce the computational complexity, we solve this

problem in two steps. First, we propose a cluster-based

AUV scheduling data transmission protocol, in which a

canopy-Kmeans (CK) clustering algorithm is applied to

establish a cluster-based network topology and an AUV

scheduling data transmission protocol is designed to reduce

the energy consumption and AoI of sensors. Second, a path

planning algorithm named PGS is used to plan traversal

trajectories for AUVs, improving the information freshness

and collection utility.

3. Sufficient simulations are conducted to evaluate the

performance of our proposed scheme, MADCS,

compared to the three benchmark algorithms. The

simulation results demonstrate the advantages of

MADCS, which outperforms the three compared

algorithms in terms of average AoI and collection utility.

In addition, MADCS balances the energy consumption of

sensor nodes and thus extends the network lifetime

of UASNs.
The rest of this paper is organized as follows. Section 2 presents

related work on AUV-assisted data collection schemes in USANs

with a focus on energy efficiency and AoI optimization. Section 3

provides the system model, including the underwater acoustic

communication model, the proposed AUV-assisted data

collection network, and the derivation of the problem. In Section

4, we introduce the details of the proposed MADCS. Simulation

results and analysis are presented in Section 5. Finally, conclusions

are drawn in Section 6.
2 Related studies and motivation

Collecting data and transmitting it to the sink node in a timely

manner while minimizing the network energy consumption is a

critical issue for UASNs. This section reviews previous works on

data collection in UASNs.

Traditional underwater data collection schemes are mainly based

on multi-hop routing. Low-energy adaptive clustering hierarchy

(LEACH) (Heinzelman et al., 2002) combines the energy-efficient

cluster-based routing and medium access control together with data

aggregation to achieve good performance in terms of system lifetime,

latency, and application-perceived quality. LEACH is extended to

UASNs in Zhao et al. (2021), where mobile sink LEACH (MS-

LEACH) and mobile sink LEACH based on energy and density (MS-

LEACH-ED) are proposed to further save energy. In Guan et al.

(2019), a distance vector-based opportunistic routing (DVOR)

scheme is proposed to establish distance vectors for sensors and

develop opportunity routes to forward packets. The authors designed
frontiersin.org
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an improved energy optimization clustering algorithm (EOCA) (Yu

et al., 2020) for multi-hop acoustic cooperative sensor networks to

prolong the network lifetime and maintain good communication

performance. A novel chaotic search-and-rescue optimization-based

multi-hop data transmission (CSRO-MHDT) protocol for UASNs is

introduced in Anuradha et al. (2022). Residual energy, distance, and

node degree are taken into account in the fitness function. The

number of packets received is improved by the CSRO-MHDT

protocol. The authors in ur Rahman et al. (2023) and Rahman et

al. (2023) propose a new multi-hop energy-efficient and low-collision

MAC protocol using the Q-learning technique for UASNs. By

utilizing the Q-learning approach, the protocol is able to make

informed decisions in selecting the optimal communication path

while minimizing energy consumption and reducing the occurrence

of collisions.

Recently, a variety of data collection schemes based on AUVs

have been studied. AEEDCO and AEEDCOA are developed in

Zhuo et al. (2020), and they solved the energy consumption utility

maximization problem in four steps based on a single AUV. Luo

et al. (2022) introduced an optical–acoustic hybrid communication

network and then maximized network throughput by capturing

channel variations and AUV mobility. In order to reduce the task

load on a single AUV, a multi-AUV collaborative data collection

algorithm is proposed in Han et al. (2021). The algorithm includes

multi-AUV task allocation and Q-learning-based path planning

that reduces the delay of data collection and leverages the energy

consumption of a network. Considering the three-dimensional (3D)

UASNs, a stratification-based data collection scheme was proposed

in Han et al. (2018). In the upper layer, a forward set-based multi-

hop forwarding algorithm is used while a neighbor density

clustering-based AUV data-gathering algorithm is applied.

Omeke et al. (2021) proposed a distance- and energy-constrained

k-means clustering scheme for cluster head selection. The members

in the cluster transmit their data to the cluster head, and then a

single AUV visits all the clusters to collect data. Hao et al. (2023)

proposed a novel AUV-based energy-efficient data collection

scheme, in which a new cluster head selection method and a

transmission strategy suitable for large-scale AUV-assisted

UASNs are utilized to improve energy utility and efficiency.

Considering the AUV’s limited energy, the dynamic data upload

demand of sensor nodes, and the diminishing value of information

during data transmission, Xu et al. (2024) formulated the AUV path

planning as a multi-objective optimization problem and employed

the deep deterministic policy gradient algorithm to address it.

AoI optimization in underwater data collection is emerging. In

Khan et al. (2019), end-to-end data freshness constraint is

considered in the design of the AUV traversal path to improve

the overall data freshness. With the purpose of minimizing the peak

AoI, a multi-AUV-assisted heterogeneous underwater information

collection scheme is proposed in Fang et al. (2021), and the limited

service M/G/1 vacation queueing model is utilized to model the

process of information exchange, where the optimal upper limit of

the number of AUVs served in the queueing system and the steady-

state distribution of the queue length is derived. An underwater

linear network is considered in Al-Habob et al. (2021), where an
Frontiers in Marine Science 03
AUV gathers data from a set of underwater devices. In order to

reduce AoI, a deep reinforcement learning-based technique is

developed to find the optimal locations of data gathering points

as well as the hovering time. To improve the feasibility and

practicality of AUV-assisted underwater data collection, the work

in Li et al. (2023) used graph attention network to embed the

information of ocean currents, time window, and sensor locations

into the directed maneuver time–cost graph and then applied

proximal policy optimization algorithm to select cluster head

sensors and generate AUV routes. Jiang et al. (2024) proposed a

target uncertainty map-assisted data collection scheme for AUV

swarms based on the multiagent proximal policy optimization

algorithm. By leveraging current and past search and collection

results, the AUV swarms are guided to areas with higher

probabilities of containing sensor nodes. Additionally, AoI is

introduced to enable a comprehensive exploration of

unknown environments.

As mentioned above, most previous studies have focused on the

separate optimization of energy or AoI and rarely considered the

joint optimization of them. In this paper, we propose a multi-AUV-

assisted underwater data collection scheme.
3 System model

In this article, we consider a multi-AUV-assisted data collection

scenario in 3D heterogeneous UASNs, which consists of a data

center s0 located on the sea surface, N sensor nodes S =

s1, s2,⋯, sNf g deployed in the area of interest, and K AUVs

denoted by V = v1, v2,⋯, vKf g, as shown in Figure 1. The

location of the sensor sn can be represented by qsn = (xsn, y
s
n, z

s
n).

We assume that the locations of the sensor nodes can be obtained

during the initialization phase of the network. In the network, the

sensor nodes are responsible for collecting environmental data. In

order to avoid the drawbacks caused by multi-hop and long-

distance transmission, such as unbalanced energy consumption

and unreliable communication links, the AUVs are dispatched to

move closely to visit sensor nodes for data collection. AUVs depart

from the data center and then return back to offload the collected

data after traversing all the sensor nodes.

To reduce the path length of the AUV, sensor nodes are

clustered into groups. Traditionally, one sensor node is selected as

the cluster head for each group to receive data from cluster

members and forward the data to the AUV. However, this

approach leads to the hotspot problem, i.e., the cluster head

consumes energy at a faster rate. Though cluster head rotation

methods can be applied to balance the energy consumption of

sensor nodes, the energy consumed by secondary forwarding from

cluster head to the AUV is unnecessary. In this paper, we choose a

virtual cluster head for each cluster, which is a hovering point (HP)

for the AUV rather than a real sensor node. During data collection,

when the AUV reaches the HP, it acts as the cluster head and

establishes acoustic communication links with sensor nodes in the

cluster. In this way, the sensor nodes directly send data to the AUV,

avoiding secondary forwarding. SupposeN sensor nodes are divided
frontiersin.org
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into M clusters. Meanwhile, there are M HPs H = h1, h2,⋯, hMf g.
It should be noted that the value of M and the location of the HPs

are not pre-known and are optimized by the proposed solution

later. To guarantee that each AUV can visit at least one cluster, we

have 1 ≤ K ≤ M. Table 1 and Table 2 present the notions and

abbreviations used in this paper.
3.1 Underwater acoustic channel model

The underwater acoustic communication model applied in this

work is described in Chaitanya et al. (2011) specifically. The path

loss depends on communication distance d in km and carrier

frequency fc in kHz is expressed as Equation 1.

A(d, fc) = A0d
za(fc)

d (1)

where A0 is a normalized constant and z is the propagation loss

coefficient. The value of z takes either 2 or 1 in spherical spreading

and cylindrical spreading, respectively; generally, z = 1.5 in practical

spreading. a(fc) is the absorption coefficient, which can be expressed

in dB/km as the function of fc according to Thorp’s formula

(Brekhovskikh et al., 2003), i.e., Equation 2:

10 log a(fc) =
0:11f 2c
1+f 2c

+ 44f 2c
4100+f 2c

+ 2:75� 10−4f 2c + 0:003 (2)

In addition, the path loss model of the acoustic channel can be

expressed in dB as Equation 3:

10 log A(d, fc) = 10 log A0 + z10 log d + d10 log a(fc) (3)

Ambient noise in underwater acoustic communication is

determined by several factors, such as turbulence, the shipping
Frontiers in Marine Science 04
activity in the surrounding region, the surface motion caused by

wind-driven waves, and finally thermal noise. The constant surface

motion due to wind-driven waves is a significant factor contributing to

the noise at the operating frequencies of interest for underwater

systems (100 Hz to 100 kHz). The noise can be modeled (Stojanovic,

2007):

10 log Nt(fc) = 17 − 30 log fc (4a)

10 log Ns(fc) = 40 + 20(s − 0:5) + 26 log fc − 60 log (fc + 0:03) (4b)

10 log Nw(fc) = 50 + 7:5w1=2 + 20 log fc − 40 log (fc + 0:4) (4c)

10 log Nth(fc) = −15 + 20 log fc (4d)

where Nt(fc), Ns(fc), Nw(fc), and Nth(fc) represent turbulence,

shipping, waves, and thermal noise, and can be calculated by

Equations 4a-4d, respectively. fc is in kHz, s models the surface

shipping activity ranging from 0 to 1, and w denotes the wind speed

in m/s. The total acoustic channel noise consists of the four

components, i.e., Equation 5:

N(fc) = Nt(fc) + Ns(fc) + Nw(fc) + Nth(fc) (5)

Then, the normalized signal-to-noise ratio (SNR) at the receiver

of the underwater acoustic communication link can be calculated as

Equation 6 (Hollinger et al., 2011):

g (d, fc) =
1

A(d, fc)N(fc)
(6)

It can be seen that the SNR depends on the transmission

distance under a fixed carrier frequency. Assuming additive white
FIGURE 1

Multi-AUV-assisted data collection 3-D network model in UASNs.
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Gaussian noise (AWGN) channels, the capacity of the underwater

acoustic channel between the AUV and sensor nodes can be given

by Equation 7,

R(d) = B log2 (1 + 10
PSLtr
10 g (d, fc)=B) (7)

where PSL
tr is the source level of the transmitted signal in dB re

µPa and B is the communication bandwidth in Hz.
3.2 Energy consumption model

The energy consumption of the sensor node sn is mainly caused

by sending its data to the AUV. We assume that the transmitting

power of sensor nodes is fixed; then, the energy consumption is

dependent on the data transmission time. If the sensor node sn is

associated with hm, the data transmission time of sn is given by

Equation 8:

qm,n =
DnL

R(dm,n)
+
dm,n

vs
(8)

where Dn is the number of data packets that sn planned to

upload to the AUV. L is the packet length. dm,n = hm − qnk k2
denotes the transmission distance between hm and sn. vs is the

sound speed. We use a matrix G with binary variables gm,n to
Frontiers in Marine Science 05
indicate whether sensor node sn is associated with hm. In particular,

gm,n = 0, 1f g with gm,n = 1 meaning that sn belongs to the group of

hm and gm,n = 0 otherwise. We can get the following constraints:

gm,n =
1, dm,n ≤ rcn

0, otherwise

(
(9a)

o
M

m=1
gm,n = 1, ∀n ∈ ½1,N� (9b)

o
N

n=1
gm,n ≥ 1, ∀m ∈ ½1,M� (9c)

where rcn is the communication range of sensor node sn.

Equation 9a indicates that the distance between the HP and its

cluster members should be shorter than the communication range

of sensor nodes. Equation 9b means that each sensor only associates

with one HP and Equation 9c shows that each HP is associated with

at least one sensor node. Through the above analysis, the energy

consumed by sensor node sn can be denoted by Equation 10:

Esn = o
M

m=1
gm,nP

n
trqm,n (10)

where Pn
tr is the transmitting power of sn. The total energy

consumption of sensor nodes in S is represented as Equation 11:

ES = o
N

n=1
Esn = o

N

n=1
o
M

m=1
gm,nP

n
trqm,n (11)

In addition, the energy consumption standard deviation sS is
defined to measure the balance of sensor energy consumption in the

network and can be calculated by Equation 12:

sS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

n=1(E
res
sn − �Eres

S )2

N − 1

2

s
(12)
TABLE 1 Notations summary.

Notation Description

fc Communication frequency

z Propagation loss coefficient

s Shipping activity factor

w Surface wind speed

N Number of sensor nodes

K Number of AUV

S Set of N nodes

V Set of K nodes

Pn
tr Transmitting power of sensor node sn

L Packet length of sampled data

Dn The number of data packets sampled by sn

tGn Packet time stamp of sn

va Navigation velocity of AUVs

li,j AUV navigation time between HP pi and pj

qm,n Data uploading time between node sn and AUV when it hovers
at HP pm

Ph
a

Hovering power of AUV

Pn
a Propelling power of AUV

Eini
a Initial energy of AUV

Eini
sn

Initial energy of sn
TABLE 2 Abbreviation table.

Abbreviation Full form

AUV Autonomous underwater vehicle

AoI Age of information

MILP Mixed integer linear programming

MADCS Multi-AUV-assisted underwater data collection scheme

UASN Underwater acoustic sensor network

IoUT Internet of underwater things

CK Canopy-Kmeans

HP Hovering point

PSO Particle swarm optimization

GA Genetic algorithm

SA Simulated annealing

LRO Light ray optimization
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where Eres
sn and �Eres

S represent the residual energy of sensor sn and

the average residual energy of N sensors in S after data

collection, respectively.

As for the AUVs, their energy consumption mainly includes the

navigation energy and hovering energy. The communication energy

consumption of AUVs can be neglected compared with motion

energy (Hou et al., 2022). The hovering energy of AUVs can be

denoted by Equation 13:

Eh
V = o

N

n=1
o
M

m=1
gm,nP

h
aqm,n (13)

where Ph
a is the hovering power of the AUV. The navigation

time between hi and hj is li,j = hi − hj
�� ��

2=va, ∀i ≠ j, where va is the

navigation velocity of the AUV. From the AUV’s perspective, the

network can be seen as a graph G = (H+, E), where H+ = H ∪ s0,

while E refers to the set of edges. We define a pathfinder matrix X,

where ½X�ij = xi,j is the path indicator. xi,j = 1 means that the

subpath hi → hj is traveled by the AUV; otherwise, xi,j = 0. Then,

the navigation energy of the AUV can be formulated as Equation

14:

En
V =o

M

i=0
o
M

j=0
li,jP

n
axi,j (14)

where Pn
a is the propelling power of the AUV. The total energy

of AUV is defined by Equation 15:

EV = En
V + Eh

V = o
N

n=1
o
M

m=1
gm,nP

h
aqm,n +o

M

i=0
o
M

j=0
li,jP

n
axi,j (15)
3.3 Age of information model

The freshness of information is defined by the AoI. Let An(t)

denote the instantaneous AoI of data retrieved from sensor sn. We

assume sn adds timestamp TG
n to its packets. An(t) is shown as

Equation 16:

An(t) = max  (t − tGn ), 0
� �

, n = 1,⋯,N : (16)

In our scenario, AUVs offload the collected data to the data center

for further analysis immediately when they return back to the data

center. Thus, the AoI of data from sn is determined by the sensor’s 226

uploading periods and AUV’s navigation periods. Let us take the

sensor nodes visited by AUV vk as an example to derive the AoI.

Suppose there are Mk oK
k=1M

k = M
� �

clusters assigned to AUV vk
for data collection and vector fk = ½hk(0), hk(1),⋯, hk(Mk), h

k
(Mk+1)� is used

to denote the trajectory of vk, where hk(0) = hk(Mk+1) = s0. Meanwhile,

pm = ½sm(1),⋯, sm( J mj j)� is defined to represent the uploading sequence

vector of sensors, where J m = sn ❘ gm,n = 1, sn ∈ S� �
is the set of

sensors that are associated with hm. If sn is associated with hk(m) and is

scheduled to be the jth one to send its data, the AoI of data uploaded by

sn when vk completes data collection at hk(m) can be represented as

o
J (m)j j
i=j q(m),(i). We also label the AoI of sn as Ak

(m),(j) and its final

expression when vk arrives at s0 is shown as Equation 17:
Frontiers in Marine Science 06
Ak
(m),(j) = o

J (m)j j
i=j

q(m),(i) +o
Mk

i=m
l(i),(i+1) + o

Mk

l=m+1
o
J (l)j j
i=1

q(l),(i) (17)

where the second and third terms are the navigation time and

the uploading time of all the clusters after vk leaves hm. Thus, the

sum AoI of sensors collected by vk can be expressed as Equation 18:

Ak = o
Mk

m=1
o
J (m)j j
j=1

A(k)
(m),(j)

  = o
Mk

m=1
o
J (m)j j
j=1

o
Mk

l=m+1
o
J (l)j j
i=1

q(l),(i) + o
J (m)j j
i=j

q(m),(i) +o
Mk

i=m
l(i),(i+1)

 !

  = o
Mk

m=1
o
J (m)j j
j=1

o
Mk

i=m
l(i),(i+1) +o

Mk

l=m
o
J (m)j j
i=1

q(l),(i) −o
j−1

i=1
q(m),(i)

 !
(18)

By recursive computation, it can be further derived as follows.

PROPOSITION 1. The sum AoI of all sensors collected by AUV

vk can be expressed as Equation 19 (Liu et al., 2020b):

Ak = o
Mk

m=2
x(m−1)y (m) +o

Mk

i=1
xil(i),(i+1) + o

Mk

m=1
o
J (m)j j
j=1

jq(m),(j) (19)

where x(m) =om
i=1 J (i)

�� �� is the number of sensors visited from the

first cluster to the mth cluster in the trajectory of vk and y (m) =

o
J (m)j j
j=1 q(m),(j) denotes the total amount of uploading time of the

sensors in the mth cluster visited by vk.

PROOF. The details of the proof are provided in Appendix 1.

For all the sensors in S, their average AoI can be formulated as

Equation 20:

�A =
1
N o

K

k=1

Ak (20)

Observing Equation 19, we can easily find that the average AoI

is jointly determined by the clustering results of sensors, the

navigation trajectory of AUVs, and the uploading sequence

of sensors.
3.4 Problem formulation and analysis

In this work, both the energy consumption and the average AoI

are considered. The objective is to minimize the total energy

consumption of the whole network while simultaneously

minimizing the average AoI A
−
as follows:

(P1) : min
M,H,G,X

EV + ES (21a)

min
M,H,G,X,fk ,pm

�A (21b)

s : t : 1 ≤ K ≤ M (21c)

Esn ≤ Eini
sn (21d)
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o
Mk

i=1
Pn
al(i),(i+1) + o

Mk

m=1
o
J (m)j j
i=1

q(m),(i)P
h
a ≤ Eini

a (21e)

o
M

j=1
x0,j =o

M

i=1
xi,0 = K (21f)

o
M

i=0
xi,j =o

M

j=0
xi,j = 1,∀ i, j = 1,…,M (21g)

o
M

m=1
gm,n = 1,∀ n = 1,…,N (21h)

o
N

n=1
gm,n ≥ 1,∀ m = 1,⋯,M (21i)

xi,j, gm,n ∈ 0, 1f g (21j)

where Eini
sn and Eini

a are the initial energy of each sensor and

AUV, respectively. Equation 21c indicates that the number of

clusters should be less than that of AUVs. Equations 21d and 21e

impose the energy constraints of sensor nodes and AUVs. Equation

21f means that all the AUVs are released from the data center and

then return back after completing data collection tasks. Equation

21g reflects that each sensor is visited only once. The meaning of

Equations 21h, 21i and 21j has been demonstrated in Section 3.2.

Obviously, Equation 21 is a MILP problem, which is NP-hard.

Observing the expression of the optimization functions, ES is

determined by the association gm,n and the position of hm. Besides

the above factors, EV is also affected by the path of AUVs. A
−
is

determined by the data uploading time, the navigation time of

AUV, the number of sensors in each cluster, and the uploading

sequence of sensors. The uploading time of sn is influenced by the

association gm,n and the location of hm. Thus, we can find that the

optimization problem is determined jointly by the clustering result,

the location of HPs, the navigation path of AUVs, and the

uploading sequence of sensors in each cluster.
4 Proposed scheme

In this section, we propose a two-stage solution to solve the

optimization problem formulated in Equation 21a. First, we design a

cluster-based AUV scheduling data transmission protocol to optimize the

clustering result, the locations of HPs, and the transmission sequence of

sensors in each cluster. Then, considering the complexity of the problem,

we propose a combinatorial heuristic algorithm to perform cluster

allocation and path planning for AUVs. Based on the transmission

protocol and path planning, the AoI and energy consumption in multi-

AUV-assisted data collection are jointly optimized.
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4.1 Cluster-based AUV scheduling data
transmission protocol

In general, sensor nodes are deployed randomly to imitate the

practical scenario in UASNs. To reduce the path length of AUVs,

sensor nodes are divided into groups so that AUVs can visit each

group to collect data efficiently. Kmeans clustering is the ideal

method for clustering groups. However, two problems often arise in

the practical application of the Kmeans algorithm. The first issue is

that the Kmeans clustering algorithm requires the number of

clusters as an input parameter, which is not easily known in

advance. The second issue is that initial clustering centers must

be selected before Kmeans clustering. These two parameters affect

the final clustering results. In UASNs, the coordinates of the sensors

are available, but the number of clusters and the initial clustering

centers are difficult to estimate. In order to solve this problem, we

adopt the Canopy algorithm as a preliminary step to the Kmeans

clustering algorithm. The Canopy algorithm is a rough clustering

method, which only requires the coordinates of sensor nodes as

input and outputs the number of clusters and cluster centers.

Nevertheless, the clustering result of the Canopy algorithm is

with low accuracy. To this end, we use the number of clusters

and cluster centers from the Canopy algorithm as input parameters

to the Kmeans algorithm to obtain the final clustering results. We

call the proposed algorithm as the CK clustering algorithm, which

combines the advantages of Canopy and Kmeans algorithms. The

details of the CK clustering algorithm are shown below.

The Canopy algorithm is an unsupervised pre-clustering

algorithm. As shown in Figure 2, for the given sensor set S, the
Canopy algorithm sets two area radius thresholds Z1 and Z2, where

(Z1 > Z2). Then, a sensor si is randomly selected as the first canopy

center. Next, the sensor that is set as center would be removed from

S, i.e., S′ = S\si. For each sensor in S′, calculate the distance between

it and the current canopy center. There are three possible cases. If

the distance is less than Z2, the sensor is considered to be a member

of the corresponding canopy and cannot belong to another canopy.

Afterwards, the sensor will be removed from S′ to avoid adding to

another canopy. If the distance is greater than Z1, the sensor is

regarded as a new canopy center and removed from S′. If the

distance is greater than Z2 and less than Z1, the sensor is kept in S
′ to

participate in the next round of clustering process. The above

process should be repeated until the dataset reaches empty.

Through theCanopyalgorithm,wecanget thenumberof canopies

and their centers. For the sake of precise clustering, the result of the

Canopy algorithm is used as input to Kmeans algorithm. The canopy

centers are selected as initial cluster centers of Kmeans algorithm.

Then, calculate the distance between the remaining sensor nodes with

each initial cluster center. The sensor nodes will be associated with the

nearest cluster center. After completing the association of all sensor

nodes with cluster centers, the cluster centers are updated according to

Equation 22:
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C0
i =

1
Sij j oqsn∈Si

qsn (22)

where C0
i is the new center of cluster Si· Sij j and qsn denote the

number of sensors in Si and the coordinates of sn, respectively. For

each cluster Si, we check whether C0
i is equal to Ci, where Ci is the

clustering center from the last computation. If all the cluster centers

remain unchanged, the clustering process should be stopped and

output the Kmeans clustering results, i.e., the location of the cluster

centers and the association between the sensor nodes and the cluster

centers. Otherwise, the steps of dividing clusters and updating the

clustering centers would be performed cyclically. The specific steps

of the CK clustering algorithm are depicted in Algorithm 1. The

Canopy algorithm determines the number of canopies and the

initial centers from lines 1 to 13. Kmeans algorithm performs

precise clustering from lines 15 to 21.
Fron
Input:

The sensor set S and their coordinates qsn;

Output:

The number of clusters: M, the positions of cluster

centers: Ci, the association matrix: G = [gm,n];

1: Set the initial distance threshold T1 and T2 based on

GridSearchCV, where T1 > T2;

2: while S ≠ ∅ do

3: Randomly select si∈ S as canopy center Ci, update S =

S\si;
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4: ∀sj ∈ S, calculate the Euclidean distance dij

between sj and Ci;

5: if dij≤ T2 then

6: Associate sj to Ci and remove sj from S: S = S\sj

7: else if dij > T1 then

8: Regard sj as a new canopy center Cj and update S = S

\sj;

9: else if T2 < dij≤ T1 then

10: Keep sj in S;

11: end if

12: end while

13: Print the canopy centers.

14: Kmeans input: the canopy centers as initial cluster

centers;

15: for Each sensor si ∈ S do

16: Associate it with the nearest cluster;

17: end for

18: Compute new center according to Equation 22;

19: while New center ≠ Original center do

20: Repeat steps 15–18.
FIGURE 2

Process of canopy clustering.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1580751
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cao et al. 10.3389/fmars.2025.1580751

Fron
21: end while

22: return M, C1,⋯,CMf g, G* = ½g *m,n�;
Algorithm 1. The CK clustering algorithm.
In previous works (Han et al., 2021; Omeke et al., 2021), the

sensor node closest to the cluster center is appointed as the cluster

head, which is responsible for gathering the data from the cluster

members and forwarding it. However, as we have stated in Section

3, this approach introduces the problem of unbalanced energy

consumption and unnecessary secondary forwarding. In this

paper, we directly select the cluster center as the virtual cluster

head of the cluster, which is not a sensor entity. The virtual cluster

head is a hovering position reserved for the AUV, i.e., hm = Cm.

When the AUV arrives at hm, it establishes communication links

with the sensor nodes in the cluster to collect data. Through CK

clustering and virtual cluster head selection, we associate each

sensor node with the nearest hover point.

To collect data efficiently, we design a scheduling-based data

transmission protocol. For simplicity, we take the data transmission

process in one cluster as an example to illustrate the protocol, which is

shown in Figure 3. Upon hovering at hm, the AUV immediately sends

an ANNUNCIATION packet (AnP) to wake up cluster members.

Since the locations of cluster members are known, the propagation

delay can be easily computed. AnP contains the AUV’s ID and the

propagation delays from the AUV to each cluster member. Note that

the propagation delay has an impact on determining when the sensor

should send its REQUEST packet (ReP) and DATA packet (DaP).

After theAnP is transmitted, the AUV starts a timeout TTO
ReP to wait for
tiers in Marine Science 09
replies from sensors. Ideally, the ReP from sensors that are associated

with hm should arrive at the AUV before TTO
ReP expires. The rule of

thumb is that the sensor responds ReP immediately upon receiving the

AnP. However, ReP collisions occur occasionally, which reduces the

channel utilization and throughput. Fortunately, propagation delays

included in AnP can be used to avoid ReP collisions. First, the sensor

ranks the propagation delays in ascending order. Suppose that the

sensor finds itself with order l, the time at which it should send its own

ReP can be calculated as:

tReP(l) = max f tAnP(l) , tReP(l−1) + dm,(l−1)=vs + Tg + TReP − dm,(l)=vsg (23)

where tAnP(l) is the time at which the sensor receives the AnP,

dm,(l−1) is the propagation delay between AUV and the sensor with

order l − 1, Tg is a small guard time, and TReP is the packet duration

of ReP. In Equation 23, tReP(l−1) is involved in the calculation of tReP(l) .

The tReP(l) can be easily calculated step by step when tReP(1) is known.

Since the AnP is sent from the AUV at the same time, tReP(1) can be

calculated as Equation 24:

tReP(1) = tAnP(1) = tAnP(l) − dm,(l)=vs + dm,(1)=vs (24)

From the perspective of AUV, the length of TAUV
ReP needs to cover

from sendingAnP to the arrival of the lastReP. For the sensor with order

J mj j, the maximum back-off interval could be ( J mj j − 1)(Tg + TReP).

Thus, the expression of TTO
ReP is 2dm,( J mj j)=vs + ( J mj j − 1)(Tg + TReP).

The number of data packets (i.e., Dn) that sensor sn plans to

transmit and its own ID should be included in the ReP. After

sending the ReP, sn starts a timeout TTO
OrP within which it expects to

receive an ORDER packet (OrP) from the AUV. Naturally, for the

sensor with order l, its TTO
OrP can be calculated as tRePJ mj j − tRePl + TReP +

2dm,( J mj j). As we have analyzed, uploading the sequence of sensor
FIGURE 3

Data transmission protocol.
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nodes influences the AoI. When TTO
OrP expires, the AUV is supposed

to determine the uploading sequence and transmission time for all

sensor nodes in the cluster. Based on the Dn extracted from the

received RePs, the AUV can calculate the sensor’s uploading time

qm,n according to Equation 8. We find that the descending order of

qm,n is the optimal uploading sequence. Specifically, for any given

navigation trajectory fk and association matrix G, the first and

second items of Equation 19 are fixed. The AoI is solely determined

by the third item oMk

m=1o
J (m)j j
j=1 jq(m),(j), which depends on the

sensor’s uploading sequence in each cluster. Giving higher

uploading priority to sensor nodes with greater uploading time

can minimize the third term, i.e., Equation 25:

q(m),(1) ≥ q(m),(2) ≥ ⋯ ≥ q(m),( J (m)j j) (25)

It can be proved by the law of contradiction. We assume that the

uploading sequence is not in the descending order of uploading

time, then it certainly satisfies ∃j > i, qm,(j) ≥ qm,(i). Thus, j(qm,(j) −

qm,(i)) ≥ i(qm,(j) − qm,(i)), then shift the terms to get iqm,(i) + jqm,(j) ≥

iqm,(j) + jqm,(i), which contradicts our goal of minimizing oMk

m=1

o
J (m)j j
j=1 jq(m),(j). The result can be easily extended to all the non-

descending sequences. Obviously, when the sensors in each cluster

upload data in the descending order of their uploading time, the

value of oMk

m=1o
J (m)j j
j=1 jq(m),(j) gets minimum.

With the determination of uploading sequence, the AUV can

calculate when the sensor should start transmitting its DaP. In this

article, we compute the scheduling time for each sensor, which

refers to the expected time interval from receiving the OrP to the

start of DaP transmission. For the ith sensor, its scheduling time tschi

is denoted as Equation 26.

tsch(i) =

0, i = 1

dm,(1)=vs + (dm,(1)=vs + q(m),(1) + Tg) − dm,(2)=vs, i = 2

tschi−1 + dm,(i−1)=vs + q(m),(i−1) + Tg − dm,(i)=vs, 3 ≤ i ≤ J mj j

8>><
>>:

(26)

Then, the scheduling time is embedded into the OrP and sent to

the sensors. After that, the AUV starts a timeout TTO
DaP to receive

DaPs. The expression for TTO
DaP is shown as Equation 27:

TTO
DaP = tsch(J m) + qm,(J m) + dm,( J mj j)=vs + Tg (27)

If the sensor receives the OrP before TTO
OrP expires and finds its

ID in the packet, it stops TTO
OrP and starts t

sch
(i) . Otherwise, it returns to

an IDLE state and waits for another AnP. When tsch(i) expires, the

sensor transmits DaP to the AUV. All the DaPs will form a packet

train at the AUV. Through the cluster-based AUV scheduling data

transmission protocol, the AUV accomplishes data collection from

sensors within a cluster.
4.2 PGS-based AUV trajectory planning

Based on the CK-clustering and scheduling protocol above, the

association between the HPs and the sensor nodes, the location of
Frontiers in Marine Science 10
HPs, and the uploading sequence of the sensor nodes in each cluster

are determined. In Equations 21a and 21b, the items related to these

variables are also determined. Specifically, they are the ES, the first
item of EV. In addition, the first and the third items of �A are

included. The second item of EV, i.e., oM
i=0oM

j=0li,jP
n
axi,j, and the

second item of �A, i.e., oK
k=1oMk

i=1x
il(i),(i+1) could be further

optimized. The objective of the subproblem is modeled as

Equation 28:

(P2) :min
X

 o
M

i=0
o
M

j=0
li,jP

n
axij

 min
X,fk

 o
K

k=1
o
Mk

i=1
xil(i),(i+1)

s : t : (22c), (22e), (22f), (22g), xij ∈ 0, 1f g :

(28)

Both objective functions are only affected by the AUVs’

trajectories. Moreover, the pathfinder matrix X is decided by the

trajectory of each AUV, i.e., [f1,f2,···,fK]. Then, the next step is to

plan trajectories for the K AUVs to traverse all the HPs. The

problem (P2) can be reformulated as a special multi-AUV

traveling salesman problem (MTSP):

(P3) : min
f1,f2,⋯,fKf g

 o
K

k=1
o
Mk

i=1
(xi + Pn

a )l(i),(i+1)

s : t : (22c), (22e), (22f ), (22g) :

(29)

MTSP is NP-hard. In order to reduce the computational

complexity, we propose a combinatorial heuristic algorithm to

solve this problem. The algorithm is named PGS, which combines

the advantages of particle swarm optimization (PSO) algorithm,

genetic algorithm (GA), and simulated annealing (SA) algorithm.

On the one hand, considering the characteristics of the problem, we

apply the particles updating method of discrete PSO and the

crossover and mutation operation of GA to PGS (Roberge et al.,

2012; Abhishek et al., 2020). On the other hand, PGS retains the

strategies of particle information exchange and collaboration in

PSO and introduces the annealing operation to enhance the global

optimization ability of particles (Lin et al., 2023).

The goal of P3 is to find a path fk = ½hk(0), hk(1),⋯, hk(Mk), h
k
(Mk+1)�

for AUV vk, (k = 1,⋯,K) while minimizing Equation 29. We adopt

the integer sequence as the path encoding in PGS. For example,

path 2 → 5 → 4 → 3 → 1 → 0 can be expressed as [0, 2, 5, 4, 3, 1,

0]. Since the initial solution has a significant impact on the quality

of the final solution in the heuristic algorithm, we apply the light ray

optimization (LRO) algorithm to obtain high-quality initial

solutions. We first introduce several concepts: (1) Current HP’s

density: the shortest path from the current HP to another HP that

has not been visited; (2) Frontier HP’s density: the average path

length among the remaining HPs except the HPs that have been

visited; (3) Reflection: an unvisited HP is randomly selected as the

next one; and (4) Refraction: select the unvisited HP with the

shortest distance from the current HP as the next one. The

procedure of LRO to produce the initial solution is as follows: (1)

Randomly select an HP as the first visited one and calculate the
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current HP’s density and the frontier HP’s density respectively; (2)

Compare them; if the current HP density is greater than the frontier

HP density, perform reflection; otherwise, perform refraction; (3)

Repeat the second step until every HP is included in the trajectory;

and (4) Let each HP serve as the first visited point and repeat the

above three steps to obtain M initial solutions.

In the classic PSO algorithm, the particles update themselves by

inheriting the speed of the previous moment, self-learning, and

information interaction of the population, which is shown as:

nk+1
i = wnk

i + c1r1(p
k
i,best − zki ) + c2r2(G

k
best − zki )

zk+1i = zki + nk+1
i

(30)

where zki represents the position of particle i at time k, nk
i

denotes the velocity of particle i at time k. pki,bestp refers to the local

optimal solution searched by particle i at time k, Gk
best refers to the

global optimal solution searched by the whole population at time k.

w is the inertia factor. c1 and c2 are the local learning factor and

global learning factor, which represent the ability to learn from their

own experience and population experience, respectively. r1 and r2
are random numbers in [0,1], increasing the randomness of the

searching process. However, Equation 30 is designed for continuous

domain and cannot be applied to discrete problems. For the

proposed problem P3, we combine the crossover and mutation

operations with the particles’ dating mode of PSO to achieve

optimization searching in discrete problems:

nk+1
i = w ⊙ nk

i ⊕ r1(p
k
i,best ⊗ zki )⊕ r2(g

k
best ⊗ zki )

zk+1i = zki ⊕ nk+1
i

(31)

where ⊗ and ⊙ denote the crossover and mutation operations,

respectively. ⊕ represents accumulation of operations performed

on particles. The item w ⊙ nk
i indicates that the mutation operation

occurs with probability w. The items r1(p
k
i,best ⊗ zki ) and r2(g

k
best ⊗

zki ) indicate that the outcomes resulting from the crossover

operation of particle i with pki,best and gkbest will be adopted with

probabilities r1 and r2, respectively.

In the PSO algorithm, most of the particles tend to gather near

the local optimal area when the current optimal positions of

particles approach the local optimal solution, i.e., falling into local

optimum. In order to strengthen the global search ability of

particles and augment the probability of escaping from local

optimum, the annealing method in the SA algorithm is

introduced. The Metropolis sampling criterion is the core idea of

annealing, which is used to calculate the probability that the new

solution can be accepted:

Pi→j =
1,  Ej < Ei,

exp  −
Ej−Ei
T

� �
, Ej ≥ Ei :

8<
: (32)

where Ei and Ej are the energy of the particles in state i and j,

respectively. T represents the current temperature. Pi→j denotes the

probability of the system state transferring from state i to state j. In

t h e PG S , w e d e fin e t h e fi t n e s s f u n c t i o n a s f =

oK
k=1oMk

i=1(x
i + Pa

n)l(i),(i+1). Referr ing to Equat ion 32, the

probability of the new solution being accepted is:
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P =
1,  f (zk+1i ) < f (zki )

exp  − f (zk+1i )−f (zki
T

� �
, f (zk+1i ) ≥ f (zki )

8<
: (33)

The details of the proposed PGS algorithm are shown in

Algorithm 2.
Input:

The coordinates of M HPs and the number of AUVs K;

PGS-related parameters: w, r1, r2, max iterations lmax;

1: Initialize the population through the LRO algorithm;

2: for each particle in the initial population do

3: Assign the path to K AUVs;

4: Calculate the fitness value of particle according

to the fitness function f =oK
k=1oMk

i=1(x
i + Pa

n)l(i),(i+1)

5: end for

6: Get p0
i,bestand g0

best;

7: Iteration l = 1;

8: while l ≤ lmax do

9: for each particle i do

10: Compute the velocity and update the location of

particle according to Equation 31;

11: Calculate the fitness value of updated particle;

12: Calculate the probability of new solution being

accepted by Equation 33 and get a Random(0,1);

13: if Random(0,1)< the probability then

14: Accept the new solution

15: end if

16: end for

17: l ←l + 1

18: end while l > lmax

Output:
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Fron
The navigation trajectory of K AUVs f∗1 ,⋯, f∗Kf g,
where f*k = ½hk(0), hk(1),⋯, hk(Mk), h

k
(Mk+1)�
Algorithm 2. PGS algorithm.
4.3 MADCS design

Based on the above solutions, we propose a MADCS to solve the

P1, an AoI and energy joint optimization problem. The procedure

of MADCS is shown in Algorithm 3 and the main steps of MADCS

are as follows. First, we construct the cluster-based network by

Algorithm 1 to determine associations between sensor nodes and

HPs, and then find the position of HPs. In the second phase, we

plan the navigation path for each AUV via Algorithm 2 according to

the different numbers of AUVs. Upon arriving at HPs, the AUV

starts the scheduling protocol described in Section 4.1 to complete

data transmission. After traversing the HPs assigned to it, the AUV

returns to the surface data center to offload all the collected data.
Input:

The sensor set S and their coordinates qsn; The number of

AUVs: K;

Canopy parameters: T1 and T2; PGS-related parameters:

w, r1, r2, max iterations lmax;

1: Run Algorithm 1 to get the number of clusters M and the

location of HPs: h*1 , h
*
2 ,⋯, h*M

n o
, and the association

matrix between sensor nodes and HPs: G* = ½g *m,n�;

2: Run Algorithm 2 to find the navigation path for K AUVs:

f∗1 ,⋯ f∗Kf g;

3: Apply AUV scheduling data transmission protocol when

the AUVs arrive at the corresponding HPs.

Output:

The solution for Problem P1: M, H, G,X, fk, pm.
Algorithm 3. MADCS.
5 Simulation results and analysis

5.1 Simulation setup

In this section, extensive simulations are carried out to evaluate

the performance of the proposed MADCS algorithm. We first

introduce the scenario setup of simulations. Consider an AUV-

assisted UASN that consists of a data center,M AUVs, andN sensor
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nodes. The value of N is set to 150 unless otherwise specified. The

sensor nodes are randomly deployed in a 3D underwater

environment with a size of 5,000 m × 5,000 m × 1,000 m. The

data center is located at the sea surface with coordinate (0, 0, 1,000).

All AUVs start from the data center and return back after traversing

the assigned HPs. The parameters of underwater acoustic modems

are chosen from technical specifications of the EvoLogics S2C

modems (Favaro et al., 2013; EvoLogics, 2023). The transmission

power is set to 154 dB re µPa2, which yields a transmission range of

approximately 1,000 m. The carrier frequency and the bandwidth of

the PHY layer are 26 and 16 kHz, respectively. Other detailed

parameters are listed in Table 3.
5.2 Analysis of hyper-parameters in
clustering

In simulations, the CK algorithm is firstly used to obtain the

association matrix between the sensor nodes and the HPs, and the

positions of HPs. T1 and T2 are two important hyper-parameters in

clustering and have a great impact on the clustering results. On the

one hand, if T1 is too large, it will result in a high overlap of

canopies, where one node belongs to multiple canopies. On the

other hand, if T2 is excessively large, it will lead to a low number of

canopies. Conversely, when T2 is too small, the number of canopies

increases, leading to an increase in computational time. In this

paper, we adopted the GridSearchCV method to choose the values

of T1 and T2. The mean distance of node pairs among S is denoted

as �d = 1
N(N−1)oN

i,j=1d(si, sj). The minimum distance between nodes

in the S is denoted as dmin = min  d(si, sj) ❘ i ≠ j
� �

. We set the grid

search range of T1 and T2 are ½�d+dmin  
4 , �d� and ½dmin ,

�d+dmin  
2 �,

respectively. The search steps of T1 and T2 are
�d
10 and

�d
20. In

addition, three classical cluster validity indices are applied to

evaluate the effectiveness of T1 and T2, i.e., the silhouette

coefficient, the Calinski–Harabasz index, and the Davies-Bouldin

index. The specific meanings and equations of the three indices are

listed in Appendix 2.

Take the number of 150 sensor nodes as an example; the results

of three evaluation indices are summarized in Tables 4–6. Observed

from the three tables, we can get that when T1 = 1,150 and T2 = 650,

the three evaluation indices reach optimal values. Through the CK

clustering algorithm with T1 = 1,150 and T2 = 650, 150 sensor nodes

are grouped into 25 clusters, which is shown in Figure 4. We use

different colors to distinguish different clusters; however, the same

color is used in several non-adjacent clusters due to the lack

of color.
5.3 Performance comparison and analysis

To evaluate the performance of the proposed MADCS, we

compare it with three benchmark algorithms, CKA-DPSO,

LEACH-TSP, and DEKCS. CKA-DPSO is based on the cluster-

based AUV scheduling data transmission protocol in Section 4.1,
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while applying DPSO algorithm to solve Problem P3 rather than the

PGS algorithm. Given that LEACH (Heinzelman et al., 2002) is a

data collection protocol without path planning, thus we add a path

planning phase in LEACH. The path planning is formulated as a

TSP problem that is solved by PGS. It is called LEACH-TSP.

Moreover, the details of DEKCS are described in Omeke

et al. (2021).

Obviously, the number of AUVs affects the average AoI. Since

the CK algorithm divides the 150 sensor nodes into 25 clusters,

we first study the trend of the average AoI with the number of

AUVs varying from 1 to 25, as shown in Figure 5. In Figure 5A, it
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is difficult to distinguish the values of all average AoI under 1–25

AUVs in one graph because of the large span of average AoI

values. For a clearer observation, we segregate Figure 5A into

three figures, Figures 5B–D. They show the variation of average

AoI at AUV numbers of 1–5, 6–15, and 16–25, respectively. As

seen in Figure 5B, the average AoI decreases sharply when the

number of AUVs increases from 1 to 2. It is because nearly half of

the clusters are traversed by the other AUV, which means nearly

half of the navigation time and uploading time is reduced, so that

the average AoI curve is the steepest there. As the number of

AUVs increases, the average AoI of four algorithms decreases.

The explanation is that each AUV visits fewer HPs in its

trajectory, so the packets wait for less time before arriving at

the data center. Among the four data collection algorithms, the

MADCS algorithm achieves the smallest average AoI under any

number of AUVs, implying that the data are the freshest. In

addition, we can find in Figure 5D that the average AoI is the

same when 25 AUVs are dispatched to collaborate on data

collection. Back to Figure 4, the sensors are grouped into 25

clusters, and each AUV visits one HP with a straight-line path

when 25 AUVs are dispatched. Consequently, there is no

difference between four algorithms in the case of 25 AUVs.

Naturally, the average AoI is the same.

Figure 6 shows how the AUVs’ total energy consumption is

affected by the number of AUVs. We only chose several typical

numbers to depict the tendency. It is seen that as the number of

AUVs increases, the AUVs’ total energy consumption increases and

tends to the same maximum value. Because more AUVs navigate

greater distances, the total energy consumption increases. As the

number of AUVs increases, the navigation energy consumption

between HPs is constant, while each AUV consumes more energy to

depart from and return to the data center. On the other hand, in the

case of 25 AUVs, the energy consumption is the same among four

algorithms, which has been analyzed before. Since the shortest path

is considered in LEACH-TSP, it always consumes minimal energy,

while MADCS comes in a close second. However, the proposed

MADCS performs much better in average AoI than LEACH-TSP.
TABLE 3 Simulation parameters.

Parameters Value

Network size 5,000 m �5,000 m �1,000 m

The number of sensor nodes (N) 150

Carrier frequency (fc) 26 kHz Favaro et al. (2013)

Bandwidth (B) 16 kHz Favaro et al. (2013)

Communication range (rcn) 1,000 m

Packet length (L) 1,024 bit

Cruise speed of AUV (V) 6 m/s Han et al. (2021)

Spreading factor (k) 1.5 Fang et al. (2021)

Shipping activity factor (s) 0.5 Fang et al. (2021)

Wind speed (w) 0 m/s Fang et al. (2021)

Initial energy of sensors (Eini
sn ) 40 kJ

Initial energy of AUV (Eini
a ) 600 kJ

Unit energy consumption of AUV 7 J/m Han et al. (2021)

Navigation power of AUV (Pn
a ) 42 W

Hovering power of AUV (Ph
a ) 15 W Cruz (2019)

Transmission power of sensor (Pn
tr) 2.8 W EvoLogics (2023)
TABLE 4 Silhouette score.

T2 T1 650 900 1,150 1,400 1,650 1,800 2,050 2,300 2,500

150 0.2752 0.2057 0.1742 0.1605 0.1296 0.1373 0.1379 0.1275 0.1249

275 0.3411 0.3364 0.3261 0.3175 0.3050 0.3000 0.4302 0.3005 0.4206

400 0.3499 0.3217 0.3477 0.3556 0.3527 0.3311 0.3314 0.3445 0.3425

525 0.4445 0.4494 0.3841 0.4167 0.4106 0.3852 0.3881 0.3812 0.3563

650 0.4963 0.4876 0.5012 0.4873 0.4733 0.4695 0.4745 0.4766 0.4664

775 * 0.4586 0.4966 0.4562 0.4533 0.4967 0.4963 0.4812 0.4812

900 * 0.4436 0.4491 0.4485 0.4688 0.4493 0.4631 0.4846 0.4599

1,025 * * 0.4414 0.4293 0.4529 0.4490 0.4469 0.4451 0.4420

1,150 * * * 0.4267 0.4402 0.7949 0.4444 0.4495 0.4231
The bold values represent the optimal values of three indices. And symbol * means that there are no values, because the values of T1 and T2 are illegal to compute the cluster validity indices.
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Next, we plot the relationship between the collection utility and

the number of AUVs in Figure 7. We find that the proposed

MADCS algorithm always holds a higher collection utility among

four algorithms. This illustrates the effectiveness of the MADCS

algorithm. Interestingly, the collection utility of different

approaches increases with the rise of the number of AUVs and

then decreases after reaching a peak value. The peak value is

reached when the number of AUVs is 5. The justification behind

this is that the collection delay decreases with the rise of AUVs’

number, leading to an improvement in the collection utility.

However, more AUVs bring more energy consumption.

Therefore, when continuing to increase the number of AUVs, the

increase in energy consumption will outweigh the decrease in

collection delay, which, in turn, degrades the collection utility.

We have investigated the performance of the four algorithms in

terms of average AoI, energy consumption, and collection utility,

and the proposed MADCS algorithm performs the best overall. In

order to more intuitively demonstrate how the AUVs travel in the

3D scenario when the MADCS algorithm is applied, we show the

trajectories of 1, 8, 16, and 25 AUVs under MADCS in Figures 8A,
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B, C, D, respectively. As shown in Figure 8, the number of HPs

traversed by each AUV decreases with the AUVs increasing. Hence,

the navigation time and hovering time of each AUV are reduced,

which results in a smaller AoI. In the case of fewer than 25 AUVs,

the trajectory of each AUV can be optimized, including the number

of HPs visited by it and the traversal order. Yet, in the case of 25

AUVs, the trajectory of each AUV is fixed, i.e., every AUV visits

only one HP, collecting data and then returning to the data center. It

is the evidence why the above-mentioned indicators are the same in

the case of 25 AUVs.

In the previous analysis, we have mentioned that reducing

energy consumption and average AoI simultaneously is difficult

to do because they compete with each other. It is necessary to find

the optimal trade-off between energy consumption and average

AoI. Figure 9 depicts the Pareto frontiers for average AoI and

energy consumption in MADCS. The results are consistent with the

intuition that average AoI and energy consumption compete with

each other. It is worth noticing that the Pareto points distribute

sparsely and overlap, because both average AoI and energy

consumption are functions of the AUVs’ trajectory, which is
TABLE 5 Calinski Harabasz score.

T2 T1 650 900 1,150 1,400 1,650 1,800 2,050 2,300 2,500

150 297.22 369.20 406.43 427.33 456.82 459.91 450.66 462.45 463.56

275 232.53 245.48 271.17 271.87 276.94 272.19 261.52 268.33 271.19

400 216.85 210.35 222.18 213.03 224.37 217.22 222.87 232.71 217.86

525 256.22 253.81 236.79 241.82 230.92 236.49 225.78 225.58 226.42

650 259.83 258.32 280.87 275.87 267.95 262.79 266.65 265.95 260.02

775 ∗ 219.64 258.65 213.29 215.37 258.65 259.83 261.18 241.02

900 ∗ 199.95 204.57 203.29 218.63 209.15 212.78 244.70 215.57

1,025 ∗ ∗ 200.19 190.69 212.82 201.14 197.41 202.51 192.68

1,150 ∗ ∗ ∗ 182.98 189.84 189.26 197.22 201.38 188.23
The bold values represent the optimal values of three indices. And symbol * means that there are no values, because the values of T1 and T2 are illegal to compute the cluster validity indices.
TABLE 6 Davies Bouldin score.

T2 T1 650 900 1,150 1,400 1,650 1,800 2,050 2,300 2,500

150 0.3689 0.2669 0.2219 0.2125 0.1850 0.1804 0.1910 0.1722 0.1776

275 0.5941 0.5635 0.5063 0.4614 0.4488 0.4193 0.4302 0.4528 0.4206

400 0.7911 0.8568 0.7654 0.7418 0.6945 0.7376 0.7042 0.6705 0.7382

525 0.7131 0.7452 0.8545 0.7736 0.7867 0.8258 0.7782 0.81162 0.8627

650 0.6406 0.6746 0.6432 0.6606 0.6811 0.6811 0.6967 0.6799 0.7056

775 * 0.7099 0.6448 0.7103 0.7465 0.6448 0.6406 0.6735 0.6781

900 * 0.7557 0.6899 0.7506 0.6923 0.7612 0.7008 0.6698 0.7263

1,025 * * 0.7076 0.7613 0.7172 0.7356 0.7314 0.7376 0.7445

1,150 * * * 0.7649 0.7749 0.7949 0.7600 0.7354 0.7893
The bold values represent the optimal values of three indices. And symbol * means that there are no values, because the values of T1 and T2 are illegal to compute the cluster validity indices.
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FIGURE 5

Average AoI with different number of AUVs, (a) 1-25, (b) 1-5, (c) 6-15, (d) 16-25.
FIGURE 4

CK clustering result of 150 sensor nodes.
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determined by discrete integer variables and thus cannot vary

smoothly. Furthermore, generating an operating solution from

the Pareto front is always meaningful in practice. As shown in

Figure 9, the closest solution to the utopian point is dispatching five

AUVs. Therefore, we choose five AUVs as the operating point and

will analyze the impact of other factors on the performance of the
Frontiers in Marine Science 16
MADCS algorithm in the case of five AUVs. The location and the

performances of the operating point are marked with a black circle

and rectangle, respectively, in Figure 9.

The velocity of AUVs affects their navigation time, which is

correlated with AoI. Faster velocity requires higher propulsion

power, leading to increased energy consumption. In the following
FIGURE 7

Collection utility with different numbers of AUVs.
FIGURE 6

Energy consumption with different numbers of AUVs.
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FIGURE 9

Pareto front for average AoI and energy consumption.
FIGURE 8

Trajectories of different number of AUVs under MADCS, (a) 1AUV, (b) 8AUVs, (c) 16AUVs, (d) 25AUVs.
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experiment, we investigate the impact of AUV’s velocity on the

performance of MADCS and the benchmark schemes. As shown

in Figure 10, we compare the average AoI in different AUV

velocities. Apparently, the average AoI of the four algorithms

decreases as the velocity of AUVs increases. The greater the

velocity of AUVs, the shorter the navigation time. Thus, the

average AoI becomes smaller. In addition, the MADCS

algorithm always holds the freshest average AoI under any
Frontiers in Marine Science 18
velocity. It can be seen that the average AoI decreases sharper

under small velocity than at large velocity. The reason is that the

average AoI consists of navigation time and hovering time, while

only the navigation time could be affected by the velocity of AUVs.

When the velocity is small, the navigation time accounts for the

majority of average AoI, whereas the collection time only accounts

for a small portion. However, the situation reverses when in

large velocity.
FIGURE 11

Network lifetime for different numbers of nodes.
FIGURE 10

Average AoI with different velocities based on five AUVs.
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To demonstrate the effectiveness of the cluster-based AUV

scheduling data transmission protocol, the performance of

network lifetime and the residual energy standard deviation of

sensors are explored. Network lifetime is defined as the duration

until the first node runs out of its energy. CKA-DPSO differs from

MADCS only in terms of path planning, so the performance of both

metrics is the same. The network lifetime with different numbers of

sensor nodes is shown in Figure 11, where MADCS, LEACH-TSP,

and DEKCS are compared. From Figure 11, it can be seen that the

network lifetime of MADCS increases with the number of sensor

nodes, while the network lifetime of LEACH-TSP and DECKS

decreases. The reason is as follows. In LEACH-TSP and DECKS, all

the sensor nodes in the cluster transmit data to the cluster head, and

then the cluster head transmits the data to the sink node and AUV,

respectively. Sending the aggregated data of the whole cluster

consumes a lot of energy of the cluster head. Moreover, when the

network coverage area is fixed, the increase in the number of sensor

nodes increases the node density. Then, the number of sensors in a

cluster grows, which leads to the cluster heads spending more

energy to collect and transmit data, thus reducing lifetime, whereas

in MADCS, the AUV hovers at the cluster center position to act as a

cluster head and the nodes within the cluster transmit data directly

to the AUV. The energy consumption for secondary forwarding of

data is saved. Therefore, the nodes consume less energy for data

transmission than LEACH-TSP and DECKS and the network

lifetime is extended. The distance between the nodes and AUVs is

shortened as the number of nodes increases. Thus, the

communication energy consumed by the nodes is reduced and

the network lifetime is slightly increased.

The residual energy standard deviation of sensors [i.e., sSin
Equation 12] is depicted in Figure 12. The performance of the

proposed MADCS is relatively steady and also smaller than the
Frontiers in Marine Science 19
other two algorithms. This is due to the fact that the nodes only

transmit their data to AUVs directly, which not only saves but also

balances the energy consumption of the sensor nodes. There are

cluster heads in both LEACH-TSP and DECKS, which inevitably

leads to uneven energy consumption.
6 Conclusion

In this paper, we investigate a multi-AUV-assisted underwater

data collection framework for UASNs. In order to jointly optimize

the AoI and energy consumption, we modeled it as a multi-objective

MILP. A two-stage scheme MADCS, which consists of the cluster-

based AUV scheduling data transmission protocol and the PGS-

based trajectory planning algorithm, is proposed to solve the

problem. Aiming at balancing and reducing the energy

consumption of underwater sensors, the CK clustering algorithm

is designed to make clustering more efficient and practical. The

AUV scheduling-based transmission protocol is proposed to avoid

packet collision and enhance channel utilization. According to the

cluster-based network, trajectory for optimizing average AoI and

energy consumption of AUV is planned through the proposed PGS

algorithm. Simulation results validate that the proposed multi-

AUV-assisted underwater data collection scheme outperforms

three benchmark algorithms and achieves a proper trade-off

between average AoI and energy consumption. We believe that

the proposed multi-AUV-assisted underwater data collection

scheme has potential application prospects in UASNs with

demand for large-scale communication, large system capacity,

long-term monitoring, and high data throughput. In future work,

collaboration among multiple AUVs and trajectory optimization

under real-time ocean currents will be considered.
FIGURE 12

Residual energy standard deviation for different numbers of nodes.
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Appendix 1 Proof of proposition 1

According to Equation 17, the AoI of the jth sensor node in the

last cluster of the AUV vk’s trajectory is:

A(k)
(Mk),(j)

= o
J

(Mk )

�� ��
i=j

q(Mk),(i) + l(Mk),(Mk+1)

Thus, the overall AoI of sensors in the last cluster of the AUV

vk’s trajectory is:

Ak
(Mk) = o

J
(Mk )

�� ��
j=1

o
J

(Mk )

�� ��
i=j
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0
@

1
A = o

J
(Mk )

�� ��
j=1

jq(Mk),(j) + J (Mk)

�� ��l(Mk),(Mk+1)

Likewise, the overall AoI of sensors in the mth cluster of the

AUV vk’s trajectory is:

Ak
(m) = o

J (m)j j
j=1

o
J (m)j j
i=j

q(m),(i) +o
Mk

i=m
l(i),(i+1) + o
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l=m+1
o
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 !
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y (l) +o
Mk

i=m
l(i),(i+1)

 !
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J (m)j j
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where y (l) =o
J (l)j j
i=1 q(l),(i) denotes the total amount of

uploading time of the sensors in the lth cluster visited by vk.

Then, the above equation can be used to derive the sum AoI of

all sensors collected by AUV vk:

Ak = o
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m=1
Ak
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We further define x(l) =ol
i=1 J (i)

�� �� as the number of sensors

visited from the first cluster to the lth cluster in the trajectory of vk.

Thus, we can get:

Ak = o
Mk

m=2
xm−1y (m) +o

Mk

i=1
xil(i),(i+1) + o

Mk

m=1
o
J (m)j j
j=1

jq(m),(j)

As a result, the proof of Proposition 1 is completed.
Appendix 2 Cluster validity indices

Let X = x1, x2,⋯, xnf g be the dataset containing n sensor nodes

in a 3D space, and xi ∈ R3. Z1,Z2,⋯,Zc are c disjoint subsets of X,
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i.e., clusters. n1, n2,⋯, nc are the number of sensor nodes that

belong to the corresponding cluster, thus oc
i=1ni = n : o1, o2,⋯, oc

denote the centroid of Zi and O is the global centroid. d(i,j) is

defined as the Euclidean distance between node i and j.

1. The silhouette coefficient can be expressed as:

SI =
1
N o

N

k=1

b(xi) − a(xi)
max   a(xi), b(xi)f g

where a(xi) represents the cohesiveness of the sensor nodes and

denotes the average distance among xi and other sensor nodes in the

same cluster. b(xi) represents the average distance from sensor node

xi to all sensor nodes in another most adjacent cluster:

a(xi) =
1

nk − 1 o
xi ,xj∈Zk ,i≠j

d(xi, xj)

b(xi) = min
Zk≠Zl

1
nlj j o

xi∈Zk ,xj∈Zl

d(xi, xj)

Observing from the formula, we get that SI ∈ [−1,1] and the

index closer to 1 refers to a better partition.

2. The Calinski–Harabasz index can be expressed as:

CHI =
n − c
c − 1

· oc
j=1njd(oj,O)

2

oc
j=1onj

i=1d(xi, oj)
2

where the numerator represents the separation among clusters

and the denominator represents the compactness of a cluster. Thus,

the larger index refers to a better partition.

3. The Davies–Bouldin index can be expressed as:

DBI =
1
c o

c

k,l=1

max 
k≠l

Rkl

where Rkl represents the similarity among clusters, which is Rkl

= Dk+Dl
d(Ok ,Ol)

:Dk is the diameter of a cluster, the expression is:

Dk =
1
nk
o
nk

i=1
d(xi, ok)

The value range of DBI is [0,+∞] and the index closer to 0 refers

to a better partition.
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