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Training marine species object 
detectors with synthetic 
images and unsupervised 
domain adaptation 
Heather Doig1, Oscar Pizarro2* and Stefan Williams1 

1Australian Centre for Robotics, University of Sydney, Sydney, NSW, Australia, 2Department of Marine 
Technology, Norwegian University of Science and Technology, Trondheim, Norway 
Visual surveys by autonomous underwater vehicles (AUVs) and other underwater 
platforms provide a valuable method for analysing and understanding the benthic 
environment. Scientists can measure the presence and abundance of benthic 
species by manually annotating survey images with online annotation software or 
other tools. Neural network object detectors can reduce the effort involved in 
this process by locating and classifying species of interest in the images. 
However, accurate object detectors often rely on large numbers of annotated 
training images which are not currently available for many marine applications. 
To address this issue, we propose a novel pipeline for generating large amounts 
of synthetic annotated training data for a species of interest using 3D modelling 
and rendering software. The detector is trained with synthetic images and 
annotations along with real unlabelled images to improve performance 
through domain adaptation. Our method is demonstrated on a sea urchin 
detector trained only with synthetic data, achieving a performance slightly 
lower than an equivalent detector trained with manually labelled real images 
(AP50 of 84.3 vs 92.3). Using realistic synthetic data for species or objects with 
few or no annotations is a promising approach to reducing the manual effort 
required to analyse imaging survey data. 
KEYWORDS 

benthic monitoring, object detection, unsupervised domain adaptation, synthetic 
images, benthic imaging 
1 Introduction 

Increasing human activity in our oceans, such as wind energy, aquaculture and mining, 
can lead to changes in marine communities. Regular photographic surveys of the seafloor 
allow scientists to measure changes in the presence and abundance of a variety of marine 
species that may be impacted. Detection of specific benthic species supports the study and 
exploration of a healthy underwater environment (Estes et al., 2021; Perkins et al., 2022; Er 
et al., 2023; Peng et al., 2021). Images of the seafloor can be used to detect endangered 
(Stuart-Smith et al., 2020), invasive (Liu et al., 2022, 2021b) and sentinel species (Perkins 
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et al., 2022) captured by Autonomous Underwater Vehicles 
(AUVs), Remote Operated Vehicles (ROVs) and other 
underwater platforms. Using neural network object detectors to 
locate and classify a species of interest can help marine scientists 
efficiently review the large volume of images captured during 
underwater surveys. Ideally, the detector is trained in a supervised 
manner with large amounts of data to provide high performance 
(Inoue et al., 2018; Zhang et al., 2022; Munir et al., 2023), but this is 
often not available for underwater images (Liu et al., 2020; Er 
et al., 2023). 

A high-performing detector often relies on training the model 
with large numbers of images annotated by experts who can identify 
the species of interest. These annotations may comprise bounding 
boxes around the objects of interest but may also include simple 
point annotations, object boundaries or full pixel-level semantic 
labelling. For underwater scenes, there are often few labelled 
annotations to train supervised models such as an object detector 
(Xu et al., 2023). Underwater images present particular challenges 
for reliable object detection due to variations in the attenuation of 
light in water, water clarity and camera platforms. The low number 
of annotations may not provide a good distribution of examples to 
train a model to generalise for variations in light, water and camera 
platforms. Generating synthetic images with 3D modelling software 
offers a new method to alleviate these issues by providing abundant 
annotations with variations in simulated water, light and camera 
conditions increasing the ability for the detector to perform well 
(Zhang et al., 2022; Oza et al., 2024; Er et al., 2023). 

Synthetic images have been used to address the lack of 
annotated data in other domains such as autonomous driving 
(Johnson-Roberson et al., 2017) but only in a limited manner in 
the underwater domain (Sans-Muntadas et al., 2022; Zwilgmeyer 
et al., 2021; Lin et al., 2023). 3D modelling and simulation software 
such as Blender1, Unity2 and Unreal Engine3 are increasingly 
popular in providing photorealistic images and animations to 
supplement or replace real data (Saini et al., 2022; Ebadi et al., 
2022; Peñarroya et al., 2023; Lu et al., 2023; Becktor et al., 2022; 
Diamanti et al., 2024). Blender has combined functionality to 
produce large numbers of synthetically rendered images with 
variety and realism for underwater scenes. Through its Python 
interface, it provides procedural generation of scenes and assets 
creating randomisation (Santos et al., 2024; Raistrick et al., 2024, 
2023), add-ons to generate annotations for training machine 
learning models (Denninger et al., 2023; Raistrick et al., 2023) 
and the ability to simulate the effect of light in water (Zwilgmeyer 
et al., 2021; Sans-Muntadas et al., 2022). 

Infinigen (Raistrick et al., 2023) is a framework based on 
Blender that generates natural scenes using procedurally 
generated objects, providing the opportunity to generate a vast 
range of realistic images. Creating realistic 3D models of the 
morphospecies or object of interest allows the generation of a 
tailored synthetic dataset. The 3D model can be placed in various 
1 https://www.blender.org/ 

2 https://unity.com/ 

3 https://www.unrealengine.com/ 
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benthic scenes with random variations of water conditions and 
camera configurations. 

Our work proposes a new method for training an object 
detector for a target marine species or object by generating large 
volumes of realistic benthic images with Blender and Infinigen 
combined with domain adaptation during training. While the 
synthetic data provides larger volumes of annotations for 
supervised training, the different distributions between the 
synthetic and real images must be addressed to perform 
effectively during real-world deployment. Previous work has used 
image-to-image translation to bridge this gap but this requires 
training an additional translation network (Sans-Muntadas et al., 
2022; Lin et al., 2023). In our method, we apply two domain 
adaptation methods to reduce the domain gap during training 
without image-to-image translation. 

The contributions of this paper are: 
 

•	 a new method to train an object detector of a target marine 
species or object with no manually annotated training data 

•	 a framework to generate realistic and varied synthetic 
images of benthic scenes for a target underwater 
object with annotations for object detection and 
semantic segmentation 

•	 a training pipeline for high-performing object detection in 
underwater images using synthetic data and unlabelled real 
images using state-of-the-art unsupervised domain 
adaptation and semi-supervised methods 

•	 experimental validation of our method on two real datasets 
with images of sea urchins captured with different 
underwater vehicles, water conditions and locations 
Our results shows that synthetic data can be used to train good-
quality detectors without requiring any manually annotated real 
images. While we focus on object detection, our method could also 
be applied to semantic segmentation. 

The remainder of this paper is organised as follows. Section 2 
presents an overview of work using synthetic training images and 
training object detectors with domain adaptation. Section 3 
describes our method to generate synthetic training images and 
train an object detector with domain adaptation. Section 4 describes 
the application of the method to the detection of black spiny urchins 
in images from AUV and ROV platforms, while Section 5 provides 
a summary of the insights from this method followed by concluding 
remarks in Section 6. 
2 Related work 

2.1 Object detection of marine species 

Underwater object detection with low numbers of annotations 
has been improved with enhancements to network architectures, 
augmentation and pre-processing strategies (Liu et al., 2023, 2020; 
Israk Ahmed et al., 2024). Recent work has addressed the lack of 
labelled data for training underwater detectors with augmentation 
frontiersin.org 
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using style transfer of different water types as well as a domain 
alignment step during training (Liu et al., 2020). Israk Ahmed et al. 
(2024) trained an object detector for green sea urchins using 
labelled images from an AUV with data augmentation, colour 
correction and enhancements to the detector architecture. Our 
method is independent of image pre-processing and detector 
architecture and could be applied in addition to these 
enhancements without the need for labelled data. 
 

2.2 Synthetic data 

Synthetic images have been generated for other domains to 
address the lack of labelled data using 3D modelling software such 
as Unity gaming engine, Unreal Engine and Blender providing 
photorealistic renderings of scenes (Saini et al., 2022; Ebadi et al., 
2022; Diamanti et al., 2024). The Sim10k dataset (Johnson-
Roberson et al., 2017) provides 10,000 images of street scenes 
captured from a car dashboard generated from the Grand Theft 
Auto video game. Mayer et al. (2016) created large-scale datasets 
generated from Blender to train optical flow models that performed 
well on real video data. Procedural generation of assets and scenes 
using Blender’s geometry nodes and Python interface provided 
randomisation in synthetic images (Santos et al., 2024). 

Synthetic data has also been created to train neural networks for 
underwater image tasks (Lin et al., 2023; Sans-Muntadas et al., 2022; 
Zwilgmeyer et al., 2021). OysterNet (Lin et al., 2023) created

simulated oyster reefs using Blender followed by an image-to

image translation step to provide realistic water effects for a 
segmentation task. Sans-Muntadas et al. (2022) used simulated 
underwater images with a simple box structure followed by an 
image-to-image translation step to train a segmentation model for 
robotic localisation. The effect of water on light was modelled using 
Blender’s volume shaders to simulate absorption and scattering 
(Sans-Muntadas et al., 2022; Zwilgmeyer et al., 2021; Diamanti 
Frontiers in Marine Science 03 
et al., 2024). Our framework generates a more visually complex and 
varied 3D model of the scene and objects to be detected than 
previous work, combined with simulated water effects with domain 
adaptation methods that do not require a separate image-to-image 
translation network. 
2.3 Domain adaptation 

Unsupervised Domain Adaptation (UDA) methods update a 
model during training to reduce the domain gap between labelled 
source data and unlabelled target data. UDA for classification tasks 
commonly update feature representations to be domain-invariant at an 
image level using adversarial learning (Ganin et al., 2016; Tzeng et al., 
2017) or other alignment strategies (Baktashmotlagh et al., 2013; Sun 
and Saenko, 2016). Domain adaptation object detection (DAOD) uses 
several approaches to reduce the domain gap including aligning feature 
distributions (Saito et al., 2019; Chen et al., 2018, 2021) and pseudo
labelling (Chen et al., 2022; Zhu et al., 2023; Maurya et al., 2023). We 
use ALDI++ (Kay et al., 2025) which is state-of-the-art for the 
synthetic-to-real object detection benchmark between Sim10k and 
Cityscapes (Cordts et al., 2016). Semi-supervised training is a related 
training approach to UDA as it has the same training inputs of small 
amounts of labelled data and larger amounts of unlabelled training data 
(Zhang et al., 2021). Mean Teacher (Tarvainen and Valpola, 2017) uses  
pseudo-labelling to reduce the domain gap and can be applied to other 
object detector architectures and other tasks such as semantic 
segmentation (Zhou et al., 2023). We have used Mean Teacher as an 
additional method to reduce the domain gap. 
3 Method 

Our method uses synthetic training data generated from a Blender-
based framework followed by a training pipeline using UDA to create 
FIGURE 1 

Overview of our method. (A) 3D models of marine objects, terrain and water are combined to create a unique scene for generating images and 
annotations. The training pipeline (B) uses the labelled synthetic data and real unlabelled target images to train the object detector with domain 
adaptation. 
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an object detector with good performance for detecting a target marine 
species. An overview of our method is shown in Figure 1. 
3.1 Synthetic data generation 

Synthetic training data is generated to provide a large volume of 
annotated data to train an object detector to address the lack of 
annotated real images. Images and annotations are generated using 
the Blender-based framework, Infinigen (Raistrick et al., 2023), with 
our enhancements for the benthic environment. The framework 
generates large numbers of realistic images taken from a simulated 
camera rig from a vehicle like an AUV or ROV, following a typical 
survey path. Blender provides physically-based rendering (PBR) 
(Cornetto and Suway, 2019) of light which can be combined with 
Blender’s Absorption Volume and Scattering Volume shaders to 
simulate absorption and scattering of light underwater. Figure 2 
shows examples of scenes with and without the water effects 
provided by the Volume shaders. Bounding box annotations, 
semantic segmentation masks and depth maps are also generated 
by the framework. 

Based on Blender, Infinigen generates realistic natural scenes 
using procedural generation, allowing an infinite variety of natural 
terrain and assets to increase the variety of training data (Raistrick 
et al., 2023). Our method enhances Infinigen with a simulated 
camera rig that follows a ‘mow-the-lawn’ survey track over the 
scene, similar to paths used in AUV missions. The camera features 
vehicle-mounted lighting, lens distortion based on real AUV 
camera calibration (Williams et al., 2012), sensor noise and 
motion blur. Updated natural and new man-made assets have 
also been added (see Supplementary Material for examples). 
Blender v3.6.0 has been used with Infinigen v1.6.6. The code for 

.enhancements for benthic scenes is available on GitHub 
4 

To simulate the effect of water on light, we have used Blender’s 
Volume Absorption shader and Volume Scattering shader. This is 
based on previous work that uses the ‘Principled Volume Shader’ 
(Zwilgmeyer et al., 2021; Sans-Muntadas et al., 2022; Diamanti 
et al., 2024), which combines the Absorption and Scattering shaders 
but does not allow all variables to be set. Using the separate Volume 
Absorption and Volume Scattering shader allows density to be 
defined for each shader giving more control over the amount of 
absorption and scattering instead of using one value for the density 
of both. Figure 2 gives examples with two different sets of 
parameters for the absorption and scattering shaders at the upper 
and lower ranges of values used. For each scene, a random value 
between the lower and upper thresholds is set for each parameter. 
3.2 Object detector training 

Our method uses the two-stage object detection architecture 
Faster R-CNN. The detector is trained using both labelled synthetic 
images and unlabelled real images from underwater surveys. 
4 https://github.com/hdoi5324/infinigenBenthic 
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Labelling provides a tight-fitting bounding box around the species 
or object of interest with a classification label. For this work, we 
have one target species being classified. 

The domain gap between the generated synthetic data and the real 
images is reduced using domain adaptation with unlabelled real 
images. Following the naming conventions from domain adaptation 
methodologies, the labelled training data is called the source, and  the  
unlabelled data is called the target. A state-of-the-art UDA method 
called ALDI++ by Kay et al. (2025) has been used to reduce the 
domain gap between the synthetic images and the target images. In 
addition, a semi-supervised training method called Mean Teacher by 
Tarvainen and Valpola (2017) has also been used. Mean Teacher is a 
flexible semi-supervised approach that can be applied to other 
detection architectures and is a state-of-the-art method for semi-

supervised semantic segmentation (Tarvainen and Valpola, 2017). 
These approaches to reducing the domain gap have the advantage of 
not needing to train an additional network for image-to-image 
translation as used in Lin et al. (2023) and Sans-Muntadas et al. (2022). 

If some labelled target data is available, the synthetic images can 
be used to augment the labelled target dataset. In this scenario, the 
object detector can be trained without domain adaptation. This 
method can be applied to any object detection architecture. 
4 Experiment and results 

We have demonstrated our method on the detection of black 
spiny urchins and performed evaluation on two publicly available 
datasets of images taken from AUVs and ROVs. 
4.1 Datasets 

Synthetic data A dataset of 2,406 synthetic images with 23,248 
annotations of urchins was generated using the enhanced Infinigen 
framework. Images were generated from an ROV setup with 
variations in the angle of the camera and altitudes and an AUV-
like configuration with a downward-looking camera at around 2m 
altitude. The scenes provide a variety of benthic terrain and marine 
assets such as kelp, seaweed, seashells and fish. Water absorption and 
scattering were varied in each scene produced. Figure 3 provides 
examples of the generated synthetic images with bounding box 
annotations. The synthetic images and annotations are available at 
https://huggingface.co/datasets/hdoi5324/SyntheticUrchin. 

Target data Two target datasets with black spiny urchins have 
been used to test the ability to train a good-quality detector with 
synthetic data. Each dataset has a training and test split to provide 
evaluation with unseen data. Table 1 provides the numbers of 
images and annotations in each dataset. The first dataset is UDD 
(Underwater Detection Dataset) (Liu et al., 2021a) with images 
captured by divers and ROVs in an open-sea farm with sea urchins, 
sea cucumbers and scallops. Only the sea urchin annotations 
are used. 

The second urchin dataset, called IMOS AUV, is from AUV 
surveys off the coast of Tasmania, Australia, performed as part of 
the Integrated Marine Observing System5 (IMOS). The IMOS AUV 
 frontiersin.org 
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dataset has training images from 2009 and test images from 2011 to 
investigate whether the model can generalise to images from a 
different time period. The AUV images and annotations are 

.available at the underwater image repository Squidle+ 
6 
4.2 Evaluation 

To validate our method, we follow other UDA methodologies 
(Deng et al. (2021); Chen et al. (2021); Kay et al. (2025); Chen et al. 
(2022)), by comparing performance of models trained with our 
method to an oracle, which is a reference upper limit of 
performance from a fully-supervised model trained with available 
labelled training target data. The base model refers to a model 
trained without any domain adaptation. A separate test split of the 
target data is used for evaluation using the average precision for 
detection with an intersection over union (IoU) of 50 or AP50. 
Performance is measured using the model from the final iteration of 
training. Due to the scarcity of labelled training data, there is no 
separate validation dataset for selecting the best-performing model 
from an earlier iteration. 
5 https://imos.org.au/ 

6 https://squidle.org/ 
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4.3 Training setup and results 

In this section, we describe the setup for the object detector 
training. We use a two-stage object detector, Faster-RCNN, which 
has state-of-the-art performance for UDA (Kay et al., 2025; Chen 
et al., 2018, 2021). Our implementation is based on ALDI++ and the 
Detectron2 framework (Kay et al., 2025; Wu et al., 2019). In all 
experiments we use the same training parameters as Detectron2 
Faster-RCNN training with changes noted below. 

We use a total batch size of 16 with two GPUs and an initial 
learning rate of 0.02. The total iterations are 9000, which is one-tenth of 
the iterations used by Detectron2 due  to  the smaller size of the  datasets  
for this research. We use a ResNet-50 with FPN backbone (Lin et al., 
2017) initialised with weights from pre-training on the ImageNet 
dataset (Deng et al., 2009). Weak augmentation uses a horizontal 
and vertical flip, and in addition, strong augmentation uses random 
adjustment to brightness, contrast and saturation, and random 
blurring. The training was performed on Nvidia P100 GPUs. 

Results are provided in Figure 4 for base models trained only 
with synthetic data, models trained with synthetic data and unlabelled 
target data using Mean Teacher and ALDI++ and finally, the fully-
supervised oracle model. Base models are trained with weak 
augmentation and strong augmentation. Training with strong 
augmentation uses a student-teacher configuration updating 
the weights of the teacher model using an exponential moving 
average (EMA) of the student model’s weights  based on  Laine and 
FIGURE 2
 

Synthetic images showing two scenes with no absorption or scattering (A, D) then two different combinations of absorption and scattering (B, C, E,  F).
 
The absorption and scattering parameters are shown below the images with colour shown in hue, saturation, value (HSV).
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Aila (2017) (Strong Augmentation with EMA). Mean Teacher and 
ALDI++ start training with the base model with strong augmentation 
with EMA. The oracle is also trained with strong augmentation with 
EMA. Table 2 shows the AP50 for each model trained for the UDD 
and IMOS AUV datasets. Figure 5 provides annotated examples from 
each dataset. 
4.4 Augmenting labelled target data with 
synthetic data 

The labelled synthetic data can also be used to augment 
labelled target data to create a larger and more varied training 
dataset. Synthetic data was added to a subset of labelled real data 
and trained using strong augmentation with EMA. The model from the 
final iteration of training is used for evaluation. The results were 
averaged from three training runs due to the variation when training 
with small amounts of data (Gao et al., 2022). Figure 6 shows AP50 for 
training with increasing amounts of labelled target data with and 
without synthetic data with the standard deviation shown around the 
line. The UDD datasets benefited the most from the addition of 
synthetic data achieving higher performance than the oracle. The 
IMOS AUV dataset benefited from the synthetic augmentation data 
only when there were less than 200 labelled target images in the 
training dataset. 
Frontiers in Marine Science 06
5 Discussion 

Our method trained an object detector for a marine species without 
any manually labelled training data. Performance using synthetic data 
with Mean Teacher adaptation was within 13.9% and 8.6% of the oracle 
performance for UDD and IMOS AUV datasets, respectively (See 
Table 2). Strong augmentation with student-teacher training updating 
weights with EMA (Strong Augmentation with EMA in Table 2) gave  
the largest increase in AP50, followed by domain adaptation methods. 
Strong augmentation is also part of the Mean Teacher and ALDI++ 
methods. These results may be further improved with other strong 
augmentation strategies (e.g., mixup (Zhang et al., 2018)) or 
improvements to image pre-processing and detector architecture 
(Israk Ahmed et al., 2024). 

Both domain adaptation methods successfully improved 
performance with the Mean Teacher method producing a slightly 
better result than ALDI++. Ideally, when training a neural network, 
a separate validation dataset is used for hyperparameter tuning and 
model selection. In our case, we have no labelled target data 
preventing any model selection. We have used the model from 
the final training iteration for evaluation. Being able to measure 
performance without a labelled validation dataset could lead to 
further increases in performance as seen in domain adaptation for 
classification (Hu et al., 2023). 
TABLE 2 AP50 for urchin detection trained with synthetic source data 
and unlabelled target data. 

Training method UDD IMOS AUV 

Base model - Weak Augmentation 16.0 55.3 

Base model - Strong Augmentation with EMA 53.0 83.0 

ALDI++ (Kay et al., 2025) 68.5 80.8 

Mean Teacher (Tarvainen and Valpola, 2017) 75.0 84.3 

Oracle - Strong Augmentation with EMA 86.9 92.3 
 

Also shows base models trained with weak and strong augmentation and the fully supervised 
oracle model. Highest performing model is shown in bold. 
TABLE 1 Dataset counts for images and annotations. 

Dataset 

Train Test 

Images Annotations Images Annotations 

Synthetic 2,406 23,248 n/a n/a 

UDD 1,707 10,652 400 2,940 

IMOS 
AUV 

1,462 6,595 220 650 
n/a, not applicable. 
FIGURE 3 

Examples of synthetically generated images from two underwater scenes with urchins, coral and kelp with bounding box annotations (blue for 
urchins, pink for coral). (A) shows a forward-looking view and (B) shows a downward-looking view. 
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FIGURE 5 

Examples of the target images with ground truth shown with a green border with the label ‘seaurchin’ and predictions in blue with the probability. 
(A, B) are from the UDD dataset, and (C, D) are from the IMOS AUV dataset. 
FIGURE 4 

AP50 for urchin detection for UDD and IMOS AUV datasets using different training methods. The base models are only trained with synthetic data, 
while Mean Teacher and ALDI++ also use unlabelled target data. The oracle is the performance from the fully supervised model for reference. 
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While scarce labelled target data could be used for model selection 
during training, it could also be used as training data augmented with 
synthetic data. Augmentation with synthetic data was beneficial for 
both datasets when training with less than 100 labelled images, as 
shown in Figure 6. For the UDD dataset, training data augmented 
with synthetic data also produced better performance with any 
amount of labelled target data. The UDD images had more cases of 
blurry images and low clarity, turbid water with a strong yellow-green 
tinge (See Figure 5). The IMOS AUV images were generally better lit 
with and had little blurring. For the UDD dataset, the improvement 
from synthetic data augmentation may have continued with 
increasing amounts of labelled target data as the synthetic data 
behaved like a colour space augmentation (Shorten and 
Khoshgoftaar, 2019), training the model to ignore colour. 

The species or objects used in the underwater scenes could be 
generated based on physical examples. 3D Blender models of 
marine species and man-made structures have been generated for 
volumetric measurements and simulations (Zhang et al., 2023; 
Adamczak et al., 2019; Diamanti et al., 2024). Scanning images or 
a physical object to generate a 3D model in Blender could extend the 
variety and availability of realistic assets to place within an 
underwater scene. Using these models for the procedural 
generation of assets could provide a range of realistic variations. 
6 Conclusion 

Our method has trained a high-performing detector of 
marine species in images from photographic surveys using 
Frontiers in Marine Science 08
generated synthetic labelled data combined with domain 
adaptation during training. The synthetic images are generated 
with a flexible framework based on Infinigen with variations 
in water conditions and camera configurations. New marine 
species or man-made objects could be added by creating 
new procedural models based on existing assets or scans of 
images or physical objects. Blender’s modelling capability 
would allow for a variety of marine species to be created, 
including rare species with few real images available. Future 
research into addressing low annotations in benthic images 
could investigate performing model selection without a labelled 
validation dataset and how synthetic data can be a successful 
augmentation strategy. 
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