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A lightweight YOLO network
using temporal features for high-
resolution sonar segmentation
Sen Gao1,2, Wei Guo1,2*, Gaofei Xu1,2, Ben Liu1,2, Yu Sun1

and Bo Yuan1
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Introduction: High-resolution sonar systems are critical for underwater robots to

obtain precise environmental perception. However, the computational demands of

processing sonar imagery in real-time pose significant challenges for autonomous

underwater vehicles (AUVs) operating in dynamic environments. Current

segmentation methods often struggle to balance processing speed with accuracy.

Methods:We propose a novel YOLO-based segmentation framework featuring: (1)

A lightweight backbone(ghostnet) network optimized for sonar imagery processing

(2) A bypass BiLSTM network for temporal feature learning across consecutive

frames. The system processes non-keyframes by predicting semantic vectors

through the trained BiLSTM model, selectively skipping computational layers to

enhance efficiency. The model was trained and evaluated on a high-resolution

sonar dataset collected using an AUV-mounted Oculus MD750d multibeam

forward-looking sonar in two distinct underwater environments.

Results: Implementation on Nvidia Jetson TX2 demonstrated significant

performance improvements. (1) Processing latency reduced to 87.4 ms

(keyframes) and 35.3 ms (non-keyframes)(2)Maintained competitive segmentation

accuracy compared to conventional methods and achieved low latency.

Discussion: The proposed architecture successfully addresses the speed-

accuracy trade-off in sonar image segmentation through its innovative

temporal feature utilization and computational skipping mechanism. The

significant latency reduction enables more responsive AUV navigation without

compromising perception quality. The newly introduced dataset fills an

important gap in high-resolution sonar benchmarking. Future work will focus

on optimizing the keyframe selection algorithm and expanding the dataset to

include more complex underwater scenarios.
KEYWORDS

lightweight network, image segmentation, autonomous underwater vehicles, forward-
looking sonar, collision avoidance
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1 Introduction

Underwater robots have been applied in the domain of deep-sea

surveys in recent years (Soreide et al., 2006; Singh et al., 2010). As

some investigations are typically concentrated in areas with

complex terrains, most underwater robots are equipped with

forward-looking sonars for obstacle perception (Ødegård et al.,

2016). It is difficult to acquire global underwater topographic data

before exploration missions, thus underwater robots are often

operated within unknown and dynamic environments. In these

scenarios, it is essential to employ an algorithm to identify obstacles

in the forward-looking sonar (Cheng et al., 2021). The sonar

imaging process is complex, and artifacts generated during signal

processing can degrade the image quality (Zhang et al., 2024b).

Moreover, processing sonar images requires extensive computation,

making it challenging to improve real-time performance (Zhang

et al., 2024c). Typical sonar image segmentation methods include

those based on gray-level threshold (Weng et al., 2012; Yuan et al.,

2016), features of MRF (Chen et al., 2022; Luyuan and Huigang,

2020), wavelet (Tian et al., 2020) and graphical boundary (Aleksi

et al., 2020) etc. These approaches depend on artificially designed

feature extractors, may fail in dynamic environments with volatile

features. Deep networks can learn features adaptively from data and

are widely used in image segmentation (Steiniger et al., 2022; Huy

et al., 2023). YOLO (Redmon et al., 2016), a prominent deep

learning framework, has maintained significant popularity since

its introduction. It has been continually improved and has reached

the state-of-the-art in the field of image processing (Jiang

et al., 2022).

Learning-based algorithms rely on dedicated datasets for

training and assessment. However, due to the constraints of cost,

acquisition equipment, underwater environmental conditions, and

operation methods, the existing public sonar datasets are scarce.

Most of the datasets are unsuitable for general application across

different tasks (Irfan et al., 2021). The existing datasets mainly focus

on the recognition of small objects, and such targets pose minimal

risk to the safe navigation of underwater robots. In contrast, the

dataset proposed in this work is specifically designed for underwater

robot obstacle avoidance. These images were acquired from

different underwater environments and included various obstacle

samples. This dataset serves as a benchmark for addressing path

planning, navigation, and mapping challenges in underwater

robotics that utilize forward-looking multi-beam sonar.

However, the limited computing capacity of the embedded

devices carried by underwater robots makes it challenging to

process deep networks in real-time. Therefore, lightweight

networks are necessary. Certain lightweight convolutional

structures can achieve model compression, such as depthwise

separable convolution (Howard et al., 2017), grouped convolution

(Krizhevsky et al., 2012), deformable convolution (Dai et al., 2017)

etc. These works simplify the computational complexity of feature

extraction by modifying the fundamental structure of convolution

operations, thereby achieving network lightweighting. The

computational resources required by the network are reduced by

modifying the network structure, making deep networks more
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applicable for mobile robots. We propose a deep network suitable

for underwater robots that simplifies computational complexity by

leveraging temporal features and modifying the convolutional

structure, leading to a lightweight design. The contributions of

this work are:
• A Dataset of Forward-looking Sonar: The dataset used in

this work was collected using a forwardlooking multi-beam

sonar in different underwater environments, labeled with

two categories: obstacle and background noise. The sonar

dataset is available for public access.

• Lightweight Backbone: A GhostNet with SE attention

modules is employed to replace the Backbone of

YOLOv8, enhancing network’s accuracy while reducing

its computing complexity.

• Learning-based Temporal Module: Instead of CNNs, a

BiLSTM network is used to predict semantic vectors of

segmentation in consecutive sonar images. This approach

skips certain convolutional layers, further enhancing the

network’s speed.
The rest of this study is structured as follows: Section 2 provides

a brief overview of the existing sonar datasets and segmentation

algorithms. Section 3 introduces the proposed sonar datasets and

lightweight segmentation network. Section 4 presents the detailed

experimental results and analysis. Section 5 presents a

comprehensive synthesis of the entire paper.
2 Related work

2.1 Sonar datasets

There are many famous visual image datasets, such as ImageNet

(Deng et al., 2009), COCO (Lin et al., 2014), etc. However, due to the

fact that sonar images often face problems such as scarcity of target

samples and difficulty in acquisition, there are fewer public sonar

datasets available. Most of the current public sonar datasets have

certain specificities to be adapted to different tasks. For the

classification task of sonar data with long-tailed distribution, Jiao et al.

proposed NKSID dataset (Jiao et al., 2024) for small target detection

tasks. NKSID employs a remotely operated vehicle to collect sonar data,

including targets such as propellers, iron pipes, tires, and other small-

scale artificial structural targets. Notably, the dataset does not include

natural terrains like rocks or slopes. SCTD (Zhang et al., 2022b) and

UATD (Xie et al., 2022) are both datasets that are widely applied and

contain sonar images of various underwater targets. However, these two

datasets mainly consist of small targets too, and do not include pixel-

level segmentation labels. In the task of sonar image segmentation, the

dataset (Singh and Valdenegro-Toro, 2021) encompasses various small

targets such as underwater debris. This dataset comprises a substantial

collection of sonar images of marine debris, meticulously annotated at

the pixel level. Nonetheless, the sonar images in this dataset were

captured within a tank environment, which struggles to replicate the

intricate actual underwater conditions. In summary, the existing sonar
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datasets primarily focus on small targets, and there are fewer sonar

datasets for segmentation of large topographical obstacles which affect

the navigation safety of the underwater robots.
2.2 YOLO based networks

YOLO network has undergone multiple versions, achieving a

significant performance in both speed and accuracy. Many

researchers have focused on lightweighting the YOLO network.

Zheng et al. introduced adaptive anchor boxes to incorporate prior

information into the YOLO network, achieving satisfactory accuracy.

However, their method primarily focuses on algorithmic accuracy,

sacrificing processing speed, which results in slower inference when

processor capability is limited (Zheng et al., 2023). Wang et al. proposed

the PEP module, which reduces the parameters of the YOLO network

and achieves promising results in underwater video target recognition

(Wang et al., 2020). But the FPN structure in its network transmits

semantic but not localization information, limiting its multi-scale target

fusion capability. Similarly, Zhang et al. reduced the latency of the

YOLOv5model by 9 ms by pre-clustering annotation information from

sonar images (Zhang et al., 2022a). But due to the background speckle

noise in the underwater environment, some false alarms affect the

accuracy of the algorithm. Xu et al. employed an adaptive attention

module to capture inter-channel features and utilized depthwise

separable convolutions for network lightweighting, but neglected the

multi-scale features (Xu et al., 2024). For image segmentation tasks,

YOLACT (Bolya et al., 2019), a segmentation network based on the

YOLO architecture, employed multiple predict heads to decouple the
Frontiers in Marine Science 03
task into classification, bounding box regression and mask prediction,

achieved faster speed than Mask-RCNN (He et al., 2017) in image

segmentation tasks. This network architecture has exhibited remarkable

performance in the domain of visual image segmentation. Based on

YOLACT, Liu et al. leveraged temporal redundancy information in

continuous videos, performing feature transformation using an optical

flow network. Their method achieved a 3–5x speedup compared to

existing approaches on edge devices (Liu et al., 2021).

YOLOv8 (Jocher et al., 2023), proposed in 2023, integrates

multiple tasks such as classification, detection, segmentation, and

tracking into one project, demonstrates excellent performance on

numerous public datasets. The YOLOv8 network consists of three

components: Backbone, Neck and Predict head. The Backbone is

used for extracting shallow spatial features. The Neck, which is

composed of FPN and PAN (Liu et al., 2018), is used for fusing

features of different scales. PAN adds a bottom-up fusion path,

enhancing target localization and improving multi-scale fusion

accuracy. The Predict head module of YOLOv8 has a similar

structure to (Bolya et al., 2019; He et al., 2017) in the task of

image segmentation. Figure 1 illustrates the process of image

segmentation using YOLOv8. The network achieves effective

image segmentation by decomposing it into two parallel tasks:

prediction of prototypes and semantics. The weighted sum of the

mask coefficients and prototypes, along with some subsequent post-

processing, ultimately produces the network’s output.

Even the smallest version of YOLOv8 network still contains a large

number of parameters. Besides, taking the YOLOv8n network (the

smallest variant) as an illustration, the PAN module contains a

considerable proportion of parameters (24.55%), as well as the Predict
FIGURE 1

YOLOv8 segmentation network. The red arrows denote the prediction of semantics, while the blue ones denote those of prototypes.
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head (27.94%). These components contain a large number of parameters

but produce only low-dimensional and abstract semantic information

for segmentation, such as classes, bounding boxes, andmask coefficients,

which affect the network’s speed. This study adopts YOLOv8n as the

baseline model due to its highly lightweight architecture.
2.3 Temporal sequence prediction

There are two types of temporal sequence prediction methods

in general: statistical-based and learning based. The statistical-based

model have poor adaptability to non-stationary data such as the

ARIMA model. BiLSTM network is a learning-based temporal

prediction method that can learn bidirectional temporal features

of the data (Siami-Namini et al., 2019). It achieves higher detection

accuracy and adapts well to dynamic temporal features but requires

more batch data for training. The BiLSTM network has extensive

applications in the feature extraction of consecutive images. In the

framework of (Bin et al., 2019), the BiLSTM network is used to

extract temporal features from continuous images, allowing the

model to make full use of the contextual semantic information over

a longer period. The method demonstrates that BiLSTM possesses a

robust capability for extracting continuous temporal features,

although it has not been tested on sequences with unstable

temporal feature variations. In (Madake et al., 2022), the BiLSTM

network is effectively used as an encoder to utilize the preceding and

following information of consecutive images to generate subtitles.
3 Dataset and network

3.1 High resolution sonar dataset

We propose a dedicated forward-looking sonar dataset for

underwater robot obstacle segmentation and recognition. This
Frontiers in Marine Science 04
dataset contains sonar images collected from different marine

environments and conditions, with detailed annotation

information for each image, including the location, category and

mask of the target, making it suitable for supervised learning and

evaluating for the performance of networks.

In primary work (Xu et al., 2023; Yang et al., 2023), we built an

AUV that can be used for underwater archaeological surveys. As

shown in Figure 2, an Oculus MD750d forward-looking sonar is

integrated for data collection. This sonar has two operating

frequency bands. The high-frequency mode offers higher data

resolution but a shorter range, whereas the low-frequency mode

is the contrary. The AUV cruised at a speed of 0.5m/s and

maintained a fixed depth to acquire stable sonar images. During

data acquisition, the pitch and roll angles of the AUV are both less

than ±3°. In contrast to the clarity of images, the obstacle detection

task pays more attention to the spatial scope of the image, therefore,

we use the frequency of 750kHz to achieve a larger detection range.

The sonar range was set to 100 meters.

We collected more than 5000 forward-looking sonar images from

two distinct locations in China: Qiandao Lake in Zhejiang Province

and Nanshan Harbor in Hainan Province. These locations were

carefully selected to ensure diversity in the dataset, representing

both structured and unstructured underwater environments. As

shown in Figure 3, the sonar images collected in Qiandao Lake

contain rocks and slopes, while the images obtained in Nanshan

Harbor include piers and vessels. By incorporating these varied

environments, the dataset encompasses a broad spectrum of

obstacle types, enhancing its applicability to real-world underwater

navigation scenarios. Structured obstacles, such as piers and vessels,

have defined geometric shapes and predictable sonar reflections,

whereas unstructured obstacles, like rocks and sloped surfaces,

exhibit irregular contours and varying sonar signatures. The

combination of these elements contributes to a more

comprehensive dataset, enabling underwater robots to handle

diverse navigational challenges effectively.
FIGURE 2

The AUV for data collection.
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We selected 381 sonar images containing various types of

obstacles for annotation. Each image is manually labeled with

instance-level class labels, corresponding bounding boxes, and

segmentation masks. The sonar images are randomly split into

342 training images and 39 testing images. The class distribution

across the entire dataset is relatively balanced, though minor natural

imbalances exist due to variations in scene content across the

two locations.

The size of each sonar image is 800 pixels×1300 pixels. Due to

the acoustic reflections from the bottom, there are a lot of

background noises in forward-looking sonar images. These areas

are also the brighter regions in the sonar image, leading to false

alarms in obstacle avoidance tasks. We labeled two classes of

samples in the dataset, one is obstacle, and the other is

background noise, as shown in Figure 4. The annotations are in

json and txt formats. There is a yaml file located in the root

directory of the dataset, which defines the root path of the dataset

as well as the location of the validation subset and the training

subset. The file name of the sample is the 13-bit timestamp

representing the acquisition time. The distribution of the

experimental dataset is shown in Figure 5. The dataset is publicly

available at https://www.kaggle.com/datasets/gaoxiansen93/high-

resolution-sonar-dataset.
Frontiers in Marine Science 05
Structured obstacles, such as piers and vessels, typically exhibit

clear geometric edges and predictable sonar reflections, while

unstructured obstacles, like rocks and sloped terrain, show

irregular contours and diffuse echo patterns. Furthermore, the

underwater environments in these locations introduce additional

complexity by including various biological entities, such as schools

offish. While these organisms do not pose a direct physical threat to

the navigation of underwater robots, they can generate misleading
FIGURE 3

Data set and its acquisition area. (a) Qiandao Lake. (b) Nanshan Harbor.
FIGURE 4

Samples labeled in dataset.
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sonar echoes, potentially triggering false alarms in obstacle

detection systems. As a result, the dataset also serves as a valuable

resource for developing and refining filtering techniques that can

distinguish between genuine obstacles and non-threatening marine

life, thereby improving the reliability and accuracy of sonar-based

navigation in complex underwater settings.
3.2 Lightweight backbone

The features in sonar images are rather sparse, therefore, the

computations of shallow layers can be simplified to increase the

speed of the networks. The numerous convolutional layers in

the Backbone of YOLOv8, though enhancing the feature

extraction capability of the network, also produce a significant

amount of redundant feature maps. An efficient network,

GhostNet (Han et al., 2020), with fewer parameters, is used to

replace the Backbone of YOLOv8 in our work, achieving higher

computational speed. The concept of GhostNet is to obtain more

feature maps by cheap operations. The fundamental block in

GhostNet is the Ghost bottleneck, as shown in Figure 6a, which

improves upon the residual block by incorporating the Ghost

module. Ghost module generates features using a small number

of convolution kernels and linear transformations with lower

computational costs, significantly reducing the number of
Frontiers in Marine Science 06
parameters. As shown in Figure 6c, half of the feature maps are

computed through convolution, while the other half is obtained by

performing depthwise convolution on the former. Each kernel in

the depthwise convolutional layer contains only one channel,

improving computation speed by eliminating redundant

correlations between channels. The speed-up ratio of the Ghost

module is expressed as Equation 1:

rs =
n�h0�w0�c�k21

n
s�h0�w0�c�k21+(s−1)�n

s�h0�w0�k22
= s�c

s+c−1 ≈ s
(1)

where c denotes the number of channels of the input feature

maps, w0 � h0 � n denotes the size of output feature maps, k1, k2
denote the kernel size of intrinsic convolution and depthwise

convolution, usually k1 = k2. s is the scale factor. Generally, s = 2

is chosen, which means that half of the feature maps are generated

by conventional convolution, while the other half are produced

using lightweight linear operations. To achieve stronger feature

extraction capability, c is usually large (commonly set to 32, 64, 128,

or even higher). Therefore, s ≪ c, this shows that the speed-up

improvement mainly depends on s. Similarly, the compression ratio

is expressed as Equation 2:

rc =
n� c � k21

n
s � h0 � w0 � s−1

s � k22
=

s� c
s + c − 1

≈ s (2)
FIGURE 5

Sample distribution of the dataset. (a) Quantity of samples. (b) Size of samples. (c) Position of samples.
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The depthwise convolutions in the Ghost module ignore the

correlations among channels, leading to a decline in the network’s

accuracy. The SE (Squeeze-and-Excitation) block (Hu et al., 2018) is

a kind of channel-wise attention module, which extracts the

correlations among channels and calibrates the feature maps. As

shown in Figure 6b, the SE block consists of three processes:

squeeze, excitation, and reweight.

The squeeze process compresses each feature map into 1 × 1 × C

channel-wise descriptor using global average pooling. The process is

expressed as Equation 3:

zc = Fsq (uc) =
1

H �Wo
H

i=1
o
W

j=1
uc (i, j) (3)

where uc represents a channel in the input feature maps. H ×W

is the size of feature maps. The excitation process associates the

channel-wise descriptor zc with channel-wise weights, representing

the correlations among channels. The squeeze process is expressed

as Equation 4:

s = Fex(z,W) = s(W2 � d (W1 � z)) (4)

where W1 and W2 are weight matrices, s ( · ) is the sigmoid

activation function and d ( · ) is the ReLU activation function,W1 ∈
RC

r�C ,W2 ∈ RC�C
r and r is a hyper-parameter. Finally, The feature

maps are multiplied by the channel weights, to restore its channel

correlation, as Equation 5:

~uc = Fscale(uc, sc) = sc � uc (5)
3.3 Semantics prediction by BiLSTM

Semantic vectors used for segmentation, such as classification

scores, bounding boxes, and mask coefficients, consume a large
Frontiers in Marine Science 07
amount of convolutional computations. We use temporal

prediction to simplify the inference of semantic vectors. Inspired

by (Bolya et al., 2019), we divide the forward-looking sonar data

into keyframes and non-keyframes, as shown in Figure 7. For

keyframes, the GhostNet-YOLOv8 model is used to segment

obstacles and store the semantic vectors in data memory. For

non-keyframes, the BiLSTM model predicts semantic vectors of

the segmentation, allowing certain layers to be skipped. The number

of parameters involved in non-keyframes is less than half of those in

keyframes. In contrast to deep convolutional layers, the inference

latency of the BiLSTM is negligible (less than 1 ms), thus

significantly enhancing the computational efficiency of the

entire network.

Suppose that the sequence of input images I be divided into

keyframes I(k) and non-keyframes I(n), the network is expressed as

Equation 6:

N (I) =
P(I)⊗NMS(C(I)), I ∈ I(k)

P(I)⊗ ~C(I), I ∈ I(n)

(
(6)

where P( · ) denotes the sub-network for calculating prototypes,
including Backbone, FPN and Protonet. C( · ) represents the sub-

network for the prediction of semantic vectors, including Backbone,

FPN, PAN,and Predict head. ~C( · ) indicates the predictions of

semantic vectors carried out with the BiLSTM network. The

training data used for temporal feature assisted prediction has

already been filtered by NMS, so no additional NMS is required

during prediction.

Since underwater robots may move forward or backward, the

temporal features in consecutive sonar images are bidirectional. The

BiLSTM operates two LSTM networks: one in the forward direction

and the other in the backward direction. The hidden states in the

BiLSTM are derived from the weighted sum of the hidden states

obtained from both the forward and reverse time sequences,
FIGURE 6

The lightweight Backbone. (a) GhostNet Backbone. (b) SE attention block. (c) Ghost Module.
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expressed as Equation 7:

ht+1
��!

= LSTM
���!

(Xt , ht
!
)

ht+1
 ��

= LSTM
 ���

(Xt , ht
 
)

ht+1 = Wh½ ht+1
��!

ht+1
 �� � + bh

8>>><
>>>: (7)

where Xt is the semantic vectors at time t, ht+1
��!

is the hidden

state of the forward time sequence and ht+1
 ��

is the hidden state of

the backward time sequence. Wh is the weight matrix, bh is the

bias and ht+1 is the hidden state in the BiLSTM. A fully connected

layer is applied after the BiLSTM model to ensure that the output

has the same dimension as semantic vectors. The Adam

optimizer (Kingma and Ba, 2014) with the MSE loss function

is employed to compute the gradients for updating the network
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parameters in BiLSTM. The Adam optimizer adjusts the learning

rate through adaptive estimation of the first and second

moments. By offering better stability for complex or sparse cost

functions, it makes the optimization process more efficient and

robust. The expression of the MSE loss function is presented as

Equation 8:

MSE =
1
No

N

i=1
(ẑ i − zi)

2 (8)

Where ẑ i denotes the estimation of the semantic vectors, and zi
denotes the label of the semantic vectors.

The switching method between keyframes and non-keyframes

is illustrated in the blue dashed box in Figure 7. The multi-scale

cosine similarity is derived from feature maps of different sizes. It is
FIGURE 7

Temporal Auxiliary Network. (the yellow blocks indicate the layers that are computed, while the gray ones indicate the layers that are skipped in
non-keyframes. The blue dashed box below illustrates the method of switching between keyframes and non-keyframes.).
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expressed as Equation 9:

r =
Yn
i=1

F i =
Yn
i=1

ai · bi
∥aibi ∥

(9)

where n represents the number of scales, ai, bi are the flattened
feature maps of i-th convolution layer in Backbone. They are

respectively derived from the output feature maps of the current

frame and the previous keyframe. These feature maps are reshaped

into a one-dimensional format to compute their cosine similarity.

When the multi-scale cosine similarity between the current image

and the previous adjacent keyframe exceeds the threshold, and the

BiLSTM model has been trained, the current frame is selected as a

non-keyframe, and the BiLSTM is used to predict the semantic

vector. Otherwise, it is treated as a new keyframe.
4 Result and discussion

4.1 Benchmarks

We utilize IoU as the metric for evaluating segmentation, it is

expressed as Equation 10:

IoU =
Prediction ∩ Truth
Prediction ∪ Truth

(10)

A predicted IoU greater than the threshold is regarded as a

correct prediction. Otherwise, it is considered incorrect. Typically,

the threshold is set to 0:5. The model’s performance is evaluated

using precision and recall, as Equations 11 and 12:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

where P denotes the precision, R denotes the recall, TP refers to

the number of true samples correctly predicted as positive, FP refers

to the number of actual positive samples incorrectly predicted as

negative and FN denotes the number of true samples incorrectly

predicted as negative. The mAP is a metric that combines both
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precision and recall, facilitating a comprehensive evaluation of the

model’s performance. Its formulation is as Equation 13:

mAP =
1
Co

C

c=1

Z 1

0
Pc(Rc)dRc (13)

where Pc denotes the precision of each category and Rc indicates

the recall of each category.
4.2 Experiments of lightweight backbone

We conducted an ablation experiment on the SE block with

different scales of GhostNet as the Backbone. The network was

deployed on the high-performance GPU, the Nvidia Jetson TX2,

and the conventional CPU for a better illustration of the

computational speed. The average inference latency per image

was used as a metric. Besides, GFLOPs are used as a metric for

quantifying the computational complexity of a model, representing

the total number of floating-point operations required during

inference. The results are shown in Table 1. After scaling down

the parameters, the networks achieve a higher speed. However, this

reduction in scale is accompanied by a corresponding decrease in

mAP. While the SE block introduces additional parameters, it

significantly improves the network’s performance.

We utilize ResNet (He et al., 2016), MobileNet (Howard et al.,

2017) and EfficientVIT (Liu et al., 2023) as Backbone to conduct

comparative experiments with our network. Table 2 shows mAP

and latency of different computing devices. ResNet and

MobileNet result in a notable enhancement in the network’s

speed. However, this improvement is associated with a

corresponding decline in mAP. The model utilizing GhostNet

as the Backbone demonstrates superior performance in both

accuracy and speed. Compared to the baseline network, the

mAP50 of the model increased by 2.2%, and latency on the

Nvidia Jetson TX2 was reduced by 10.6 ms.

Figure 8a illustrates the variations in the two metrics: mAP50

and mAP50–95 of each epoch. Figure 8b shows the precision and

recall at each epoch during model training. Figures 8c, d

respectively illustrate the losses for the training set and validation

set across each epoch. After 200 epochs, while the losses on the
TABLE 1 Ablation experiment of SE block and backbone scale.

SE block Scale Parameters GFLOPs
Average latency (ms)

mAP50
GPU11 GPU22 CPU3

– ×1 22.2 9.9 9.4 103.3 126.7 0.749

✓ ×1 36.0 10.8 8.9 105.6 130.0 0.762

– ×0.5 19.5 9.2 8.1 86.1 101.2 0.758

✓ ×0.5 22.9 9.3 8.2 87.4 104.4 0.804
1Nvidia GeForce RTX 3060.
2Nvidia Jetson TX2.
312th Gen Intel(R) Core(TM) i5-12490F.
Bold values indicate the best-performing methods.
A checkmark (✓) denotes the use of the SE block in the respective method, whereas a dash (–) signifies its absence.
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training set shows a slight decrease, the losses on the validation set

remain stable, indicating that the model has converged.

Figure 9 presents the heat map generated by the Grad-CAM

(Selvaraju et al., 2019) network visualization tool. In this heat map,
Frontiers in Marine Science 10
the color gradients represent the significance or attention

distribution in the original sonar image, highlighting the regions

that most influence the network’s output. Warmer colors (e.g., red

and yellow) correspond to areas of higher significance, while cooler
FIGURE 8

Performance and losses of each epoch. (a) mAP. (b) Precision and recall. (c) Losses on training set. (d) Losses on validation set.
TABLE 2 Comparative experimental results of different backbones.

Backbone Params GFLOPs
Average latency (ms)

mAP50
GPU11 GPU22 CPU3

ResNet18 23.6 10.1 6.7 94.7 96.8 0.769

ResNet34 24.3 10.3 6.9 97.0 98.3 0.774

ResNet101 28.8 11.7 7.8 106.2 108.1 0.779

MobieNet 30.2 10.3 8.5 90.1 109.7 0.737

EfficientVit 28.6 10.2 19.8 152.3 121.7 0.775

Baseline 32.5 12.0 8.7 96.7 119.8 0.782

Proposed 22.9 9.3 8.2 87.4 104.4 0.804
1Nvidia GeForce RTX 3060.
2Nvidia Jetson TX2.
312th Gen Intel(R) Core(TM) i5-12490F.
Bold values indicate the best-performing methods.
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colors (e.g., blue and green) indicate lower importance. When

comparing the heat map from the proposed algorithm with that

of the YOLOv8 network, a notable difference is observed in how the

models focus on obstacle locations. The YOLOv8 network tends to

exhibit a more diffuse and spread-out attention across the image,

indicating that it may not always pinpoint obstacles with the same

level of precision or focus. In contrast, the heat map generated by

our proposed algorithm shows a more concentrated response

around the positions of obstacles. This more localized focus

suggests that the proposed network is better at discerning fine-

grained features in sonar images and is more effective in isolating

obstacles, even in complex underwater environments where the

sonar reflections can be intricate and overlapping.
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4.3 Semantic vector prediction
On non-keyframes, the BiLSTM model is utilized to predict

semantic vectors. The loss function of the BiLSTM model for

predicting semantic vectors is solved using the Adam optimizer,

with the initial settings: The exponential decay rates for the first

moment and the second moment are set to 0.9 and 0.999,

respectively; The learning rate is set to 0.001. The network skips

part of the convolutional layer, making it more lightweight.

Figure 10 illustrates the comparison of computational latency

among the baseline, the keyframes network, and the non-

keyframes network. The improvement is more pronounced on
FIGURE 9

Grad-CAM Heatmaps comparison.
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platforms with limited computing capacity. In contrast to the

keyframe network, the latency of the non-keyframe network is

reduced by 61.4 ms on Nvidia Jetson TX2.

To evaluate the effectiveness of the BiLSTMmodel in predicting

semantic vectors, we trained both LSTM and BiLSTM models using

identical hyperparameters. Taking the semantic vectors predicted

by the keyframe network as labels, we trained for 50 epochs on a

time series dataset consisting of 200 frames. Figure 11a shows the

losses of each epoch of the two models during the training process.
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It can be observed that, in both the training and validation sets, the

loss of the BiLSTM decreases at a faster rate than that of the LSTM.

We evaluated the estimation errors of LSTM and BiLSTM models

on semantic vectors (including bounding box position, size, and

mask coefficients) in this sequence. Errors were quantified using

RMSE, and segmentation accuracy was assessed via IoU between

masks predicted by keyframe models and those generated from

temporal models. As shown in Figure 11b, BiLSTM provides more

accurate semantic estimation, leading to lower segmentation errors
FIGURE 10

Latency of semantic vector prediction.
FIGURE 11

The losses and prediction errors of LSTM and BiLSTM models. (a) Losses of LSTM and BiLSTM. (b) RMSE of semantic vector prediction.
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than LSTM, which proves that BiLSTM has a stronger ability to

extract temporal features.

The algorithm was implemented across three sequences. As

shown in Figure 12, the first row displays the original sonar image

input, the second row shows the prototype generated by lightweight

Backbone, and the third row shows the segmentation results

obtained by predicting semantic vectors using the BiLSTM model.

The fourth row illustrates the ground truth. The analysis reveals

that the segmentation results from the BiLSTM model show a

negligible difference compared to the ground truth. The

experimental results show that BiLSTM can extract more

comprehensive feature representations by combining the hidden

states from both forward and backward directions, demonstrating

superior capability in temporal feature extraction of mask

coefficients. However, since BiLSTM requires running both

forward and backward LSTM simultaneously, the model has a

larger number of parameters and longer training times.
Frontiers in Marine Science 13
5 Conclusion

The forward-looking sonar dataset we propose contains a rich

variety of terrain samples, making it a valuable resource for both

training and evaluating sonar image processing algorithms. The

dataset plays a crucial role in advancing obstacle detection and

avoidance strategies for underwater robots, particularly in complex

and dynamic underwater environments. By encompassing diverse

obstacle types, including both structured and unstructured elements,

this dataset enhances the robustness and generalization capabilities of

machine learning models applied to sonar-based navigation.

Besides, we present a lightweight YOLO-based neural network

tailored for deployment on embedded devices with constrained

computing resources, such as those carried by underwater robots.

Our approach leverages temporal features extracted from consecutive

forward-looking sonar images, allowing certain convolutional layers to

be skipped. This selective computation strategy significantly accelerates
FIGURE 12

Result of segmentation in three sequences.
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the network’s processing speed while maintaining a high level of

precision. Furthermore, we integrate a Squeeze-and-Excitation (SE)

block within the Ghost bottleneck architecture to refine feature

representation. This enhancement leads to more accurate obstacle

detection and segmentation, even in challenging underwater scenarios

where sonar reflections may be ambiguous.

Experimental results demonstrate the effectiveness of our

proposed model. Compared to the baseline network, our

approach achieved a 2.2% improvement in mean Average

Precision (mAP), indicating enhanced detection performance.

Additionally, our model significantly reduced inference latency on

the Jetson TX2 platform, achieving a speedup of 9.3 milliseconds for

keyframes and 61.4 milliseconds for non-keyframes. These

improvements make our method highly suitable for real-time

sonar image processing on resource-limited embedded platforms.

In theory, since multibeam sonar (Ni et al., 2019), synthetic

aperture sonar (Zhang et al., 2024a), and sidescan sonar (Huo et al.,

2020) all contain continuous temporal information, this segmentation

method is also applicable to different types of sonar images. However,

due to differences in image quality and noise distribution, its accuracy

may not be ideal and requires further research.

Despite these advancements, certain limitations remain. If

consecutive sonar frames exhibit substantial differences due to

environmental changes, sensor noise, or rapid robot movement,

the performance of our model may degrade, leading to less stable

detection results. Besides, in the YOLOv8 network, a semantic

vector is assigned to each object, which limits the proposed

method to handling a fixed number of targets.

However, in complex underwater environments, it is often

difficult to determine the total number of objects in advance. In

future work, we plan to incorporate a feature embedding module to

align the dimensionality of semantic vectors. Additionally,

achieving a balance between training efficiency and real-time

inference performance remains an open research question.
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