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YOLO-NeRFSLAM: underwater
object detection for the visual
NeRF-SLAM
Zhe Wang1, Zhibin Yu1,2* and Bing Zheng1,2

1Faculty of Information Science and Engineering, Ocean University of China, Qingdao,
Shandong, China, 2Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya
Oceanographic Institution, Ocean University of China, Sanya, Hainan, China
Accurate and reliable densemapping is crucial for understanding and utilizing the

marine environment in applications such as ecological monitoring,

archaeological exploration, and autonomous underwater navigation. However,

the underwater environment is highly dynamic: fish and floating debris frequently

appear in the field of view, causing traditional SLAM to be easily disturbed during

localization and mapping. In addition, common depth sensors and depth

estimation techniques based on deep learning tend to be impractical or

significantly less accurate underwater, failing to meet the demands of dense

reconstruction. This paper proposes a new underwater SLAM framework that

combines neural radiance fields (NeRF) with a dynamic masking module to

address these issues. Through a Marine Motion Fusion (MMF) strategy—

leveraging YOLO to detect known marine organisms and integrating optical

flow for pixel-level motion analysis—we effectively screen out all dynamic

objects, thus maintaining stable camera pose estimation and pixel-level dense

reconstruction even without relying on depth data. Further, to cope with severe

light attenuation and the dynamic nature of underwater scenes, we introduce

specialized loss functions, enabling the reconstruction of underwater

environments with realistic appearance and geometric detail even under high

turbidity conditions. Experimental results show that our method significantly

reduces localization drift caused by moving entities, improves dense mapping

accuracy, and achieves favorable runtime efficiency in multiple real underwater

video datasets, demonstrating both its potential and advanced capabilities in

dynamic underwater settings.
KEYWORDS

visual SLAM, NeRF-SLAM, underwater SLAM, object detection, novel view reconstruction
1 Introduction

Underwater exploration and mapping play a pivotal role in marine ecological studies,

underwater archaeology, and autonomous navigation. Achieving high-quality 3D

reconstruction and object detection is essential for these applications, yet conventional

vision-based SLAM systems—successful in terrestrial environments—encounter serious
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limitations underwater. A shortage of reliable depth information

and the complexities of dense reconstruction pose major challenges.

Although improvements in underwater SLAM have enhanced

feature detection, they have not thoroughly addressed dynamic

interference from marine life or realized a truly pixel-level

mapping framework.

Underwater conditions present three fundamental difficulties.

First, they are inherently dynamic: fish, plankton, and floating

debris constantly drift through the field of view, making feature

matching and pose estimation prone to drift. Second, accurate

depth data are typically absent or unreliable: scattering and non-

uniform lighting frequently degrade depth sensors and offline

estimation methods, undermining the feasibility of dense 3D

reconstruction. Third, optical attenuation and color distortion—

caused by absorption and scattering in seawater—further diminish

image quality, reducing the fidelity of dense reconstructions.

Consequently, underwater SLAM must simultaneously address

dynamic interference and the lack of accurate depth measurements.

To solve dynamic environments, while some approaches

incorporate object detection to exclude moving elements—such as

DynaSLAM Bescos et al. (2018) or CNN-SLAM Tateno et al. (2017)

—these methods are often trained on terrestrial imagery and fail to

account for the diverse marine organisms and debris, as well as the

distinctive underwater optical properties. Moreover, most semantic

SLAM pipelines rely on feature-level or bounding-box-based

strategies, lacking an efficient pixel-level reconstruction solution.

To adapt to underwater conditions, we propose a Marine Motion

Fusion (MMF) module that combines YOLObased detection for

known marine species with optical flow to capture unrecognized

motion, excluding all dynamic regions in both the SLAM frontend

and NeRF reconstruction. This ensures that only truly static parts of

the scene are accurately processed. Also, current semantic SLAM

methods do not fully meet the need for high-fidelity mapping in

underwater settings. We further employed NeRF for picture level

reconstruction. Research has shown that combining NeRF with

SLAM can improve both mapping and rendering, as in iMAP Sucar

et al. (2021) or NICE-SLAM Zhu et al. (2022), yet these frameworks

frequently rely on depth data to bolster reconstruction quality and

often struggle with dynamic disturbances or severe optical

degradation. Other single-view NeRF-SLAM variants, such as

ORBEEZ-SLAM Chung et al. (2023), also face difficulties in

underwater scenarios, yielding subpar reconstructions and

inadequate handling of moving objects. Although these

techniques are effective in controlled indoor environments, they

largely assume stable depth inputs and near-static scenes, rendering

them ill-suited for real-world underwater domains. To achieve

high-accuracy, pixel-level reconstruction in an environment

where depth sensors or reliable depth estimations are generally

impractical, we leverage neural radiance fields (NeRF) as the SLAM

mapping backend. We further introduce specialized loss functions

—including light attenuation and color consistency—to address

seawater-specific optical issues, such as brightness falloff and color

shifts caused by scattering. Our experiments on multiple real

underwater datasets demonstrate that the proposed framework

outperforms conventional underwater SLAM approaches and
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other solutions that rely on inaccurate depth estimates or fail to

manage dynamic entities. We additionally evaluate its runtime

feasibility, showing it can provide high-precision localization and

mapping without imposing excessive computational overhead.

In summary, this study integrates SLAM, underwater-specific

NeRF design, dynamic object detection, and optical flow into a

single system tailored to underwater applications. The result is a

novel approach that delivers both dense pixel-level reconstruction

and robust detection—an essential capability for tasks demanding

detailed spatial mapping and real-time assessment of marine

biodiversity. The principal contributions of this work are:
• Optical Flow based dynamic Masking coupling dynamic

masking with depth-free dense mapping via the Marine

Motion Fusion module, thereby excluding moving objects

during SLAM and NeRF processes more efficiently.

• Depth-free high-Quality NeRF reconstruction for

underwater environment: We employed underwater-

specific NeRF reconstruction constraints to account for

optical attenuation and color distortion without depth

inputs for dense mapping.

• Comprehensive Experimental Evaluation: We conducted

extensive evaluations on real-world underwater video

sequences, confirming significant improvements in

trajectory accuracy, dense reconstruction quality, and

runtime efficiency, thus providing a practical solution for

resource-limited underwater platforms.
To evaluate the performance of our framework, we conducted

extensive experiments under various underwater conditions,

demonstrating its superior performance over traditional SLAM

systems in mapping precision and reconstruction quality. Our

results highlight the effectiveness of combining NeRF, SLAM, and

the MMFmodule, marking significant progress in underwater scene

understanding and dense mapping.
2 Related work

2.1 Related work on traditional SLAM

Filter-based SLAM approaches, such as EKF-SLAM Bailey et al.

(2006) and Particle Filter SLAM Thrun (2002), estimate robot pose

and map probabilistically but suffer from high computational costs

and linearization issues. In contrast, optimization-based methods,

notably Graph SLAM Grisetti et al. (2010), reframe SLAM as a pose

graph optimization, enabling more accurate and scalable solutions.

Visual SLAM has gained prominence due to the richness of camera

data, with well-known systems like PTAM Klein and Murray

(2007), LSD-SLAM Engel et al. (2014), and ORB-SLAM Mur-

Artal et al. (2015); Mur-Artal and Tardós (2017) each offering

various balances of direct vs. feature-based techniques. However,

these methods generally assume static scenes and often degrade in

underwater environments characterized by low visibility, light

absorption, and scattering.
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Existing deep-learning SLAM methods improve robustness by

detecting and masking moving elements. For instance, CNN-SLAM

Tateno et al. (2017) and DynaSLAM Bescos et al. (2018) use deep

learning to identify dynamic regions, while YOLO Redmon (2016);

Redmon and Farhadi (2018) has been integrated with SLAM Bescos

et al. (2021) for real-time object detection. Yet, these solutions

typically assume land-based imagery and struggle underwater,

where domain mismatches result in poor detection accuracy,

partial bounding boxes, and overlooked marine life.
2.2 Related work on underwater SLAM
methods

Underwater environments pose unique challenges for SLAM,

including unpredictable lighting, turbidity, and dynamic marine

life. Early work by Eustice et al. Eustice et al. (2006) employed

advanced registration to improve underwater image matching,

while Negahdaripour and Firoozfam Negahdaripour and

Firoozfam (2006) introduced specialized motion estimation in

scattering media. Modifications to ORB-SLAM2 for underwater

scenarios include applying color corrections and enhancements Liu

et al. (2023), as well as leveraging stereo setups and artificial

illumination Pizarro et al. (2009). Dual-SLAM Huang et al.

(2020) further maintains two parallel threads for robust tracking

and refined mapping but can encounter difficulties when rapid

environmental changes or marine life movements obscure

visual features.

Recent research increasingly focuses on image preprocessing and

feature extraction tailored for underwater conditions. Our previous

work, ULL-SLAM Xin et al. (2023), incorporated low-light

enhancement into SLAM’s front end, bolstering feature detection

under insufficient illumination. Similarly, Zheng et al. Zheng et al.

(2023) proposed real-time GAN-based image enhancement for

monocular SLAM in turbid waters. While such techniques

mitigate visibility issues, they offer only partial solutions when

confronting highly dynamic scenes, where moving objects can still

disrupt feature matching and pose estimation.

Although these methods advance underwater SLAM by

addressing poor illumination and color distortion, major gaps

persist. Handling the lack of reliable depth information and

managing dynamic interference remain significant barriers to

stable pose estimation and dense mapping in complex underwater

domains. This work aims to fill these gaps by introducing a

framework that integrates dynamic masking and depth-free dense

r e c on s t r u c t i on me t hod s s p e c ifi c a l l y d e s i g n ed f o r

underwater conditions.
2.3 Related work on Neural Radiance Fields
and NeRF-SLAM

Neural Radiance Fields (NeRF) Mildenhall et al. (2020) have

revolutionized scene representation by using neural networks to

model the volumetric density and view-dependent emitted radiance
Frontiers in Marine Science 03
at any 3D point in a scene. NeRF optimizes a continuous 5D

function (spatial coordinates and viewing directions) to produce

photorealistic novel views from input images. While NeRF achieves

impressive results , it requires dense sampling and is

computationally intensive, often taking hours or days to train on

a single scene.

Efforts to improve efficiency include Fast NeRF Garbin et al.

(2021) and PlenOctrees Yu et al. (2021), which accelerate rendering

times but still face challenges in dynamic scenes and complex

environments. Instant Neural Graphics Primitives (instant-ngp)

Müller et al. (2022) introduces a multi-resolution hash encoding

to achieve real-time rendering and training speeds, significantly

reducing computational requirements. NeRF requires highly

accurate camera poses, typically obtained using ground-truth

systems like COLMAP Schönberger et al. (2016); Schönberger

and Frahm (2016). The absence of reliable ground truth pose

estimation methods in underwater settings makes this a

significant challenge. Furthermore, NeRF assumes high-quality,

static input images, which are rarely available in underwater

env i r onmen t s cha r a c t e r i z ed by l ow v i s i b i l i t y and

dynamic disturbances.

Meanwhile, combining NeRF with SLAM has shown promise

for unifying tracking and rendering. iMAP Sucar et al. (2021) and

NICE-SLAM Zhu et al. (2022) and VoxGraph Reijgwart et al.

(2019) embed neural scene representations into SLAM for real-

time dense mapping demonstrate progress in dense mapping for

terrestrial environments, yet heavily rely on depth sensors that

underperform underwater due to scattering and turbidity. And

BARF Lin et al. (2021) jointly optimizes camera parameters and

radiance fields. However, these methods typically assume static

conditions or include partial depth cues that are unreliable in

underwater domains. NeRF-SLAM Rosinol et al. (2023) still

depends on depth sensors, limiting its applicability to monocular

underwater cameras. Other works like Orbeez-SLAM Chung et al.

(2023) merges ORB-SLAM2 with NeRF for monocular dense

mapping but struggles underwater when facing sparse features

and heavy distortions. As shown in Figure 1, general-purpose

models like Monodepth2 Godard et al. (2019) (middle row)

struggle to generalize to underwater conditions, producing

inconsistent and inaccurate depth maps in areas with low texture

or dynamic elements. Specialized networks like UDepth Yu et al.

(2023) remain too slow (processing 602 frames in 8.5 minutes) for

real-time SLAM. These shortcomings highlight the pressing need

for a depth-free dense mapping framework that can handle dynamic

scenes in underwater environments.
3 Materials and methods

This study introduces a novel integration of YOLO for dynamic

object detection, NeRF for dense 3D reconstruction, and SLAM for

localization and mapping. This system is meticulously designed for

underwater environments, addressing challenges like dynamic

interference, low visibility, and occlusions. The system comprises

four primary modules: YOLO for real-time object detection and
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masking, a SLAM frontend for feature extraction and tracking,

NeRF for photorealistic scene reconstruction. By unifying these

components, the system achieves precise localization, robust

mapping, and accurate object detection, enabling diverse

underwater applications such as marine habitat exploration and

underwater archaeology.
3.1 System architecture

The overall system architecture, shown in Figure 2,

demonstrates the tight integration of underwater object detection

with optical flow, SLAM, and NeRF modules. The underwater

object detection with an optical flow module identifies dynamic

objects, such as marine life, creating masks to prevent interference

with SLAM localization. Simultaneously, NeRF processes the

fi ltered data to generate a dense, high resolution 3D

reconstruction of the underwater scene. This architecture

supports real-time object detection, dynamic-aware mapping, and

environment understanding, making it particularly suitable for
Frontiers in Marine Science 04
underwater environments that require both adaptability and

precision. Integrating YOLO for real-time object detection

ensures that moving objects do not corrupt SLAM’s feature

tracking process, which is critical in dynamic underwater

environments. This module prevents localization drift and enables

real-time object recognition, providing valuable information about

the underwater scene. The output from the SLAM backend is

further enhanced by NeRF with specially designed underwater

loss, which reconstructs the environment with high spatial

resolution, enabling photorealistic visualizations as shown in

Figure 3. By effectively integrating these components, our system

achieves robust localization and accurate mapping while

simultaneously generating high-fidelity, photorealistic 3D

reconstructions of underwater scenes.
3.2 Marine Motion Fusion module

Underwater environments are inherently dynamic, with fish,

plankton, and floating debris (see Figure 4) frequently disrupting
FIGURE 1

Underwater depth generation methods and RGB-D reconstruction result. (a) Comparison of depth maps generated by Monodepth2 Godard et al.
(2019) and a dedicated underwater depth model (UDepth Yu et al. (2023)) across five underwater sequences. The top row shows the original
underwater images (seq1 to seq5). The middle row displays the depth maps predicted by Monodepth2 Godard et al. (2019), a general-purpose
monocular depth estimation model trained on terrestrial datasets. The bottom row illustrates the depth maps produced by UDepth Yu et al. (2023),
a model specifically designed for underwater environments. (b) RGB-D reconstruction result using UDepth depth generation method.
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SLAM’s assumption of static scenes. When confronted by such

motion, traditional algorithms suffer from incorrect feature

associations and drift. Although many YOLO-SLAM methods

work on land, they struggle underwater due to low visibility, light

distortion, and intensive marine movement, thus relying solely on

YOLO detection is insufficient. Our approach addresses these

obstacles by integrating Optical Flow analysis with YOLO,

forming a hybrid pipeline that effectively handles both known

categories (e.g., fish, holothurians, echinus) and unidentified or

subtle background motion. This strategy ensures that only truly

static areas contribute to SLAM feature extraction and pose

estimation, mitigating erroneous associations and improving

localization in dynamic underwater settings.

3.2.1 YOLO detection and exclusion
YOLO treats object detection as a regression problem,

predicting bounding boxes and class probabilities in one forward

pass. Let the detection results for each input frame be represented in

Equation 1:
Frontiers in Marine Science 05
B = (x(i)min , y(i)min , x(i)max , y(i)max , c(i), s(i))
n oN

i=1
, (1)

where x(i)min , y(i)min , x(i)max , y(i)max  indicate the top-left and

bottom-right coordinates of the i-th bounding box, c(i) is the

detected object class (e.g., fish, echinus), and s(i) is the

confidence score.

For each input RGB image frame I, the YOLO outputs are

converted into a preliminary binary mask MYOLO(x, y) that

identifies known dynamic objects as shown in Equation 2:

MYOLO(x, y) =
0, if (x, y) lies inside any bounding box in B,

1, otherwise :

(

(2)

Any feature points within a YOLO detection box are considered

dynamic and thus ignored by SLAM’s feature extraction. This step

significantly reduces mismatches caused by clearly recognized

moving objects. It also ensures that SLAM focuses exclusively on

static features, reducing drift and enhancing localization robustness.
FIGURE 3

An example of the proposed YOLO-NeRF-SLAM system in action. The left panel shows the dynamic object detection module using YOLO, where
marine species are detected and marked with bounding boxes. The right panel illustrates the dense 3D reconstruction process powered by NeRF,
visualizing the camera trajectory and the reconstructed underwater scene.
FIGURE 2

System architecture of the proposed YOLO-NeRF-SLAM framework. The yellow modules represent the integration of YOLO detection and optical
flow for handling dynamic objects, unknown species, and floating debris in the underwater environment, ensuring only static areas are used for
feature matching. The green module highlights the SLAM tracking thread, where ORB features are extracted and matched to improve pose
estimation accuracy. The orange module represents the underwater dense mapping and multi-view reconstruction process using NeRF, optimized
with specialized loss functions.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1582126
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1582126
3.2.2 Optical flow
While YOLO excels at detecting predefined object classes, it

cannot capture all dynamic entities, such as non-classified marine

debris or subtle background motion caused by water currents. To

address this gap, we incorporate the Lucas-Kanade Optical Flow

Method Lucas and Kanade (1981), which analyzes pixel-level

motion and identify general dynamic regions. The integration of

optical flow complements YOLO by expanding the scope of

dynamic masking, ensuring that all significant motion,

whether class-specific or not, is effectively excluded from

SLAM computations.

Optical flow is a computer vision technique that estimates pixel

motion between consecutive frames, generating a dense motion

field to identify dynamic regions even where there are no distinct

features by analyzing apparent motion patterns in underwater

sequences. This is especially valuable in scenes with sandy seabeds

or open water, where feature-based methods often fail, and in

scenarios featuring unpredictable motion from marine life, both

of which demand pixel-level motion analysis.

The motion vector v(x, y)of optical flow is calculated in

Equation 3 as:

v(x, y) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u(x, y))2 + (v(x, y))2

q
, (3)

where u(x, y) and v(x, y) are the horizontal and vertical

components of optical flow, respectively. A threshold t is applied

to classify pixels with significant motion as shown in Equation 4:

Mflow(x, y) =
1, if v(x, y) > t ,

0, otherwise :

(
(4)

Any feature lying in these high-motion areas is also excluded,

extending the dynamic filtering beyond YOLO’s known classes.
3.2.3 Fusion of YOLO and optical flow
Our approach combines underwater object detection

capabilities with optical flow motion analysis to achieve precise

dynamic exclusion. We combine bounding box detection with

pixel-level motion to form a comprehensive exclusion strategy, as

shown in Equation 5:
Frontiers in Marine Science 06
M(x, y) =
0, if (x, y) ∈ YOLO regions or high −motion areas (optical flow),

1, otherwise :

(

(5)

Here, (x, y) ∈ YOLO regions indicates that the features within
the bounding box detected by YOLOv5, and (x, y) ∈ Mflow(x, y)

indicates that the features are classified as a high-motion area by

optical flow. In practice, rather than explicitly masking images, we

simply do not use any feature points for SLAM if:

M(x, y) = 0:

Hence, our SLAM pipeline omits key points within bounding

boxes or high-motion areas. Integrating optical flow with YOLOv5

enables the system to handle both known object classes and

unclassified motion, enhancing robustness by capturing subtle

movements, improving precision by minimizing dynamic noises.

Restricting SLAM computations to genuinely static elements

reduces the noise and drift often encountered in conventional

systems when faced with fish, drifting debris, or other moving

targets. In addition, isolating the static background prevents

artifacts in NeRF’s 3D reconstructions, mitigating localization

drift and mapping inconsistencies. Consequently, our YOLO-

based detection and dynamic masking strategy proves resilient

even under highly dynamic underwater conditions.
3.3 Dynamic-aware SLAM frontend for
pose estimation

Once dynamic regions are excluded by the YOLO+Optical Flow

pipeline, the SLAM frontend focuses on extracting features from the

remaining static areas. This dynamic-aware strategy is crucial for

underwater scenarios, where motion interference from marine life

can easily degrade pose estimation.

3.3.1 Feature extraction and matching with mask
We adopt ORB (Oriented FAST and Rotated BRIEF) features in

static regions only. Let M(x, y) be the binary mask indicating

whether pixel (x, y) is static (M = 1) or belongs to a detected

dynamic region (M = 0). The FAST detector is then applied only
FIGURE 4

The filtered feature extraction comparison. The left image is the unfiltered feature extraction process. And the right image is the filtered feature
extraction process.
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where M(x, y) = 1, ignoring any feature points inside YOLO

bounding boxes or high-motion optical flow areas.

Each ORB feature f i = (pi, di) consists of: pi = (xi, yi): the 2D

keypoint location, valid only if M(xi, yi) = 1, di: the corresponding

BRIEF descriptor, typically 256 bits.

To match features between consecutive frames, we compute the

Hamming distance (Equation 6):

C(f i, f j)  =  o
L

l=1

 dil − dj l

�� ��, (6)

and retain descriptor pairs with the smallest distance (below a

threshold). Critically, any feature fi falling in dynamic regions

(where M(xi, yi) = 0) is discarded at this stage. From Figure 4, we

can see that all he moving stuffs like fishes have been excluded from

the feature extraction part. Thus, only features from static areas

contribute to matching.

3.3.2 Pose estimation with RANSAC and masked
residuals

Let Wstatic denote the set of matched keypoint pairs that survive

the dynamic mask in frames k and k + 1. We aim to find the relative

pose (Equation 7) Tk, k+1 ∈ SE(3), composed of a rotation R ∈
SO(3) and translation t ∈ R3:

Tk, k+1  =
R t

0⊤ 1

" #
  : (7)
3.3.3 Masked reprojection error
For each match i ∈ Wstatic, let p

(k+1)
i be the observed 2D location

in frame k + 1, and P(k)
i the corresponding 3D point in frame k’s

coordinate system. We minimize the total reprojection error:

E = o
i∈Wstatic

∥ p(k+1)i −  p(Tk, k+1 P
(k)
i ) ∥2, (8)

where p( · ) projects a 3D point onto the image plane via the

intrinsic matrix K. Since Wstatic only contains key points passing the

mask test (M = 1), dynamic outliers are excluded from the start.

We use RANSAC (Random Sample Consensus) to robustly find

Tk, k+1: a minimal subset of matches is sampled to estimate an initial

pose, and the number of inliers with low reprojection error is

counted. Iterating over multiple samples yields the best-fitting

transformation. Finally, a nonlinear refinement (e.g., Levenberg-

Marquardt) over all inliers in Wstatic further minimizes Equation 8.

Removing dynamic points beforehand makes the RANSAC

procedure less prone to spurious matches, thus improving pose

accuracy in underwater applications.
3.4 NeRF-based reconstruction for
underwater scenes

NeRF (Neural Radiance Fields)Mildenhall et al. (2020) replaces

the traditional SLAM backend mapping to achieve dense and high-

quality 3D reconstruction in this framework. Unlike conventional
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SLAM, which often generates sparse or semi-dense maps, NeRF

parametrizes the scene as a volumetric radiance field, allowing for a

more accurate representation of fine details. Instant-NGP Müller

et al. (2022) is utilized as the NeRF baseline to ensure real-time

performance. This is essential in scenarios where computational

resources are limited or real-time feedback is necessary.

For each 3D point x = (x, y, z), NeRF models the scene by

learning a volumetric density s (x) and an RGB color c(x, d), where

d represents the viewing direction. The observed pixel color C(r)

along a ray r(t) is computed using the following volumetric

rendering Equation 9:

C(r) =
Z tf

tn
T(t)s (r(t))c(r(t), d) dt, (9)

where T(t) denotes the transmittance along the ray up to point

t, defined as Equation 10:

T(t) = exp ( −
Z t

tn
s (r(s)) ds), (10)

representing the probability that the ray is not occluded up to t.

The term s (r(t)) represents the density at a point along the ray, and
c(r(t), d) gives the color at that point as a function of the viewing

direction d.
The volumetric rendering process ensures the scene is

reconstructed with fine details, even in dynamic underwater

environments. By integrating this into our SLAM pipeline, the

system achieves real-time performance and significantly enhances

the quality of the reconstructed scene compared to traditional

SLAM methods.

Once the volumetric rendering formula is incorporated, we

optimize the NeRF parameters through gradient-based learning.

The following section introduces four core losses used during

training, two of which (Light Attenuation Loss and Smoothing

Loss) are especially adapted to underwater conditions.
3.5 Loss functions for underwater NeRF

The training of our underwater NeRF model involves a

combination of standard and specialized loss functions designed

to address the unique challenges of underwater environments.

While the photometric loss Mildenhall et al. (2020) and

regularization loss Krogh and Hertz (1991) are common in

NeRF-based methods, our framework introduces two additional

loss functions: a light attenuation loss to compensate for color

distortion caused by wavelength-dependent absorption in water and

a smoothing loss to mitigate noise and discontinuities in the

reconstructed geometry. This combination ensures high-fidelity

underwater 3D reconstructions with improved realism

and robustness.

3.5.1 Base loss
Photometric Loss We adopt a standard photometric

(reconstruction) loss by comparing the rendered color Cpred
i

against the ground-truth color Cgt
i for each static pixel i:
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Lphoto =
1
No

N

i=1
∥Cpred

i − Cgt
i ∥2, (11)

where N in the Equation 11 is the number of static pixels used in

training. This loss encourages the network to synthesize realistic

colors consistent with actual underwater imagery Mildenhall

et al. (2020).

To prevent overfitting and encourage a smoother density field,

we impose a simple L2 penalty on the NeRF parameters q:

Lreg = lreg  ∥ q ∥22, (12)

where lreg is a hyperparameter controlling regularization

strength Krogh and Hertz (1991). Equation 12 helps stabilize

training, especially when only a limited number of high-quality

underwater images are available.
3.5.2 Light attenuation loss
A key challenge in underwater environments is wavelength-

dependent light absorption, leading to color casts and brightness

decay over distance. To address this issue, we incorporate a light

attenuation loss inspired by underwater image formation models

Akkaynak and Treibitz (2018):

For each 3D sample along the ray, we postulate that color cbase
(x, d) is further modulated by an exponential factor:

cwater(x, d) = cbase(x, d) ⊙  exp ( − a d(x)), (13)

where d(x) in the Equation 13 is the distance from the camera

(or light source) to x, and a = ½ar ,ag ,ab�⊤ is a vector of learnable

absorption coefficients for each color channel.

Upon rendering, the resulting pixel color Cpred(a) depends on
a . We compare it to the observed color Cgt as shown in Equation

14:

Latten =
1
No

N

i=1
∥Cpred

i (a) − Cgt
i ∥2 : (14)

By minimizing Latten, the network learns appropriate

attenuation coefficients to correct underwater color distortion.

This term is particularly beneficial for scenes with large distance

variations or strong wavelength dependent absorption.
3.5.3 Smoothing loss
Even after accounting for attenuation, the reconstructed

geometry or radiance fields may exhibit spurious noise and sharp

discontinuities—especially in underwater scenes with uneven

illumination. A Smoothing Loss as shown in Equation 15

penalizes abrupt changes in the density or surface geometry,

encouraging more natural surfaces:

Lsmoothing =
1
Mo

M

j=1
∥∇s (xj) ∥

2, (15)

where ∇s (xj) denotes the gradient of density with respect to

spatial coordinates at sample point xj. This approach—similar to

surface regularization used in mesh or implicit-surface reconstructions
Frontiers in Marine Science 08
—helps eliminate high-frequency artifacts and yields more coherent

underwater surfaces.
4 Experiments and results

In this section, we compare our proposed method against

several state-of-the-art SLAM systems in challenging underwater

scenarios. We choose ORB-SLAM3 Campos et al. (2021) as our

primary baseline due to its versatility in monocular, stereo, and

RGB-D setups with robust feature-based tracking. We also evaluate

the original ORB-SLAM2 Mur-Artal and Tardós (2017), ORBEEZ-

SLAM Chung et al. (2023), Dual-SLAM Huang et al. (2020), iMap

Sucar et al. (2021), and NICE-SLAM Zhu et al. (2022).
• ORB-SLAM2 Mur-Artal and Tardós (2017) is a classic

feature-based SLAM that supports monocular, stereo, and

RGB-D inputs. It remains a popular choice for both

academic benchmarks and real-world applications.

• ORB-SLAM3 Campos et al. (2021) extends ORB-SLAM2 by

integrating inertial data and a refined system architecture,

del iver ing robust performance across mult iple

sensor modalities.

• ORBEEZ-SLAM Chung et al. (2023) combines ORB-

SLAM2 for camera tracking with InstantNGP Müller

et al. (2022) for mapping, enabling real-time, high-quality

3D reconstruction on land.

• Dual-SLAM Huang et al. (2020) operates by maintaining

two parallel SLAM threads—one focusing on accuracy, the

other on robustness.

• iMap Sucar et al. (2021) is an implicit mapping approach

that incrementally builds a scene representation in real-time

using a neural SDF (Signed Distance Function). Although

primarily used for RGB-D datasets on indoor and static

scenarios, we include it here for completeness.

• NICE-SLAM Zhu et al. (2022) expands on neural implicit

mapping by jointly optimizing camera poses and a grid-

based latent code for the scene. Similar to iMap, used for

RGB-D datasets.
4.1 Implementation details

We use YOLOv5 as our basic object detection model, which is

typically implemented in Python based on the PyTorch framework.

At the same time, the SLAM system is a visual SLAM framework

written in C++. To integrate the two and enable real-time semantic

mapping, this paper adopts LibTorch Imambi et al. (2021) as the

solution, leveraging it to combine the object detection module with

the SLAM system efficiently.

To adapt YOLO for underwater object detection, we trained it

on the RUOD Fu et al. (2023) dataset, which contains 14,000

underwater images and 74,903 annotated objects, covering 10

categories of underwater targets. This dataset includes the
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primary object categories relevant to underwater research:

holothurian, echinus, starfish, scallop, and fish.

Our training and inference processes were conducted on an

NVIDIA RTX 3090 GPU, providing the computational power

necessary to handle the tasks of real-time SLAM.
4.2 Datasets

URPC Dataset. We adopt the URPC dataset Liu et al. (2021),

which provides underwater imagery with multiple underwater

marine life (see Figure 5). We follow the same data structures as

in the paper ULLSLAM Xin et al. (2023). According to ULL-SLAM

Xin et al. (2023), the URPC dataset’s camera intrinsics and

distortion parameters were obtained through COLMAP

Schönberger and Frahm (2016); Schönberger et al. (2016) as

pseudo-ground truth. COLMAP jointly optimizes camera poses

and intrinsic parameters by matching sparse features across

underwater image sequences. While COLMAP’s model does not

explicitly model underwater refraction, the implicit compensation

through reprojection error minimization partially accounts for

refractive effects in shallow-water scenarios with stable optical

conditions. Specifically, COLMAP applies the Brown–Conrady

photogrammetric model to approximate lens distortion, which

includes radial distortion (k1,k2) and tangential distortion (p1,p2)

coefficients. COLMAP’s sparse bundle adjustment then minimizes

the reprojection error, implicitly absorbing refractive effects into the

optimized parameters Jordt-Sedlazeck and Koch (2013). And

underwater calibration can approximate refraction via changes in

focal length and distortion Jordt-Sedlazeck and Koch (2013).

Self-Collected Dataset With Pseudo Ground-truth.

Additionally, we capture five underwater video segments using a

FIFISH ROV with a 4K camera aroundWuzhizhou Island in Sanya,

Hainan Province, China, at diving depths of 6–10m. The recorded

segments with multiple marine life (see Figure 5) contain 1226,

2506, 1250, 3669, and 1204 frames, respectively. We continue to use

the previous method of obtaining ground truth poses for

underwater SLAM datasets Ferrera et al. (2019); Rahman et al.

(2022), employing COLMAP Schönberger and Frahm (2016);

Schönberger et al. (2016) to obtain ground-truth camera

trajectories under challenging underwater conditions. As in the

URPC dataset, the COLMAP pipeline here also adopts the Brown–

Conrady distortion model, with intrinsic parameters and distortion
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coefficients estimated directly from image sequences. Although this

method does not explicitly model the underwater refraction

physical process, as Telem and Filin (2010) states, the empirical

distortion parameters effectively compensate for the refraction effect

in shallow water environments.

EASI Tank Dataset With Real Ground Truth. To further test

our model, we select a public underwater SLAM dataset named

EASI Yang et al. (2023). This dataset was collected in a controlled

turbidity water tank (1.8m length, 1.1m depth) equipped with high-

contrast feature patterns at the bottom to enhance SLAM feature

detection. Ground truth was acquired via four overhead Vicon

tracking cameras covering a 3×3m area: a dual-sided rigid frame

held an underwater GoPro camera for image capture, while aerial-

side retroreflective markers enabled synchronized 6-DOF pose

recording by the Vicon system with 0.1mm positional accuracy.

The intrinsic parameters of the underwater camera used here is

provided in Yang et al. (2023), we directly used their provided radial

distortion (k1,k2) and tangential distortion (p1,p2) coefficients to

solve the approximates refractive effects.
4.3 Evaluation metrics

To evaluate SLAM performance, we utilize three key metrics:

(1) absolute trajectory error (ATE), (2) relative pose error (RPE),

and (3) initialization efficiency. The ATE measures the deviation

between the ground truth camera trajectory and the trajectory

estimated by SLAM. RPE evaluates the accuracy of relative

motion estimation between consecutive frames. The initialization

efficiency evaluates how quickly SLAM initialization occurs,

represented by the number of frames required for successful

initialization. To evaluate the reconstruction mapping result, we

test the rendered image quality using the Peak signal-to-noise ratio

(PSNR) and structural Similarity Index (SSIM).
4.4 SLAM performance analysis

This section evaluates the performance of various SLAM

systems on two datasets: the URPC dataset and a self-collected

dataset. For each dataset, we compare different SLAM methods

based on two key metrics: Absolute Trajectory Error (ATE) and

Relative Pose Error (RPE).
FIGURE 5

Schematic illustrations of marine organisms in the dataset. (a) is example image of self-collected dataset. (b) is example image of URPC dataset.
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4.4.1 URPC dataset
Monocular SLAM quantitative result(ATE, RPE) From Table 1,

it is clear that our method achieves the best results on the URPC

dataset, with the lowest values for both ATE and RPE. Our method

shows its superiority by significantly reducing errors compared to

the other methods, making it the most accurate solution.

Monocular SLAM trajectory result The Figure 6 compares the

performance of several SLAM methods. (a) The trajectory

comparison shows that while all methods follow the general path

of the ground truth (GT), our method exhibits the closest match,

with smaller deviations than methods like ORB-SLAM3. (b) Fitting

results indicate that our method performs better in aligning with the

X, Y, and Z axes and maintains more consistent rotational estimates

(roll, pitch, and yaw) compared to the others. (c) The boxplot of

Absolute Trajectory Error (ATE) highlights Our’s superior

performance, with the smallest median error and fewer large
Frontiers in Marine Science 10
deviations, confirming its higher accuracy and stability over the

other methods.

4.4.2 Self-collected dataset
For the self-collected dataset, we compare the same four

monocular methods and also include three RGB-D SLAM

methods. The RGB-D methods, which use depth information

from the UDepth Yu et al. (2023), are expected to provide more

accurate results compared to monocular SLAM.

Monocular SLAM quantitative result(ATE, RPE, Initialization)

From Table 2, the results demonstrate that our method consistently

achieves superior localization accuracy and robustness. This

improvement is attributed to the integration of YOLO for

dynamic object detection and optical flow for masking, which

ensures that feature matching is limited to static regions, reducing

ambiguities caused by moving objects.

Monocular SLAM trajectory result Figure 7 illustrates the

estimated trajectories for all five monocular SLAM systems. While

ORB-SLAM2 performs well in static regions, it suffers from

significant drift in dynamic environments. ORBEEZ-SLAM offers

moderate improvements but struggles with fast-moving objects. In

contrast, our system maintains stable and accurate trajectories

under all tested conditions, demonstrating robustness and

accuracy in challenging underwater conditions with low visibility

and dynamic interference.

Quantitative result compared with RGB-D SLAM From

Table 3, the comparison confirms that our monocular SLAM

method outperforms the RGB-D SLAM methods in some

sequences, demonstrating its ability to achieve higher accuracy
TABLE 1 Quantization errors of four different monocular SLAM systems
on URPC dataset.

Method ATE↓ RPE↓

ORB-SLAM2 Mur-Artal and Tardós (2017) 2.472832 0.047186

Dual-SLAM Huang et al. (2020) 2.383535 0.061062

ORB-SLAM3 Campos et al. (2021) 2.858885 0.050863

ORBEEZ-SLAM Chung et al. (2023) 2.425408 0.044877

Ours 2.069632 0.044870
↓ means the lower the number the better result. The bold text indicates the best performance
of the method under the corresponding evaluation index.
FIGURE 6

The estimated trajectory performance of different SLAM systems on URPC dataset. (a) Trajectory comparison between ground truth in different
SLAM methods. (b) Fitting results on the X, Y, and Z axes as well as roll, pitch, and yaw trajectories. (c) Boxplot of Absolute Trajectory Error (ATE) for
different methods.
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and robustness even without depth information. This highlights the

effectiveness of our approach in challenging scenarios where RGB-

D methods typically rely on depth maps, which our method handles

with similar or better precision.

4.4.3 EASI Tank Dataset with real ground truth
Since the previous two datasets relied on pseudo-ground truth

to evaluate SLAM performance, we further validate our model’s

effectiveness by introducing the EASI dataset—an underwater

dataset with real ground truth—for more rigorous verification.

Monocular SLAM quantitative result(ATE) From Table 4, it is

clear that the absolute trajectory error (ATE) comparison reveals

significant limitations in both ORB-SLAM2 and ORBEEZ-SLAM.

This performance constraint stems from their shared architectural
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foundation - ORBEEZ-SLAM directly inherits ORB-SLAM2 as its

baseline framework. While ORBEEZ-SLAM attempts to improve

upon the original system through various modifications, its

fundamenta l SLAM pipel ine remains constrained by

ORBSLAM2’s inherent design choices. The quantitative results

demonstrate that neither approach achieves satisfactory accuracy

in our underwater evaluation scenarios, suggesting that the baseline

architecture itself may be ill-suited for challenging aquatic

environments. This shared limitation highlights the need for

more specialized underwater SLAM architectures rather than

incremental improvements to existing land-based systems. Our

method shows its superiority by significantly reducing errors

compared to the other methods, making it the most

accurate solution.
TABLE 2 Our method and four monocular SLAM systems performed in five segments of real underwater challenge environments provided by our
self-captured videos.

Video clips Method ATE↓ RPE↓ Initialization↓

seg1

ORB-SLAM2 Mur-Artal and Tardós (2017) 2.892000 0.014883 19

ORB-SLAM3 Campos et al. (2021) 2.628203 0.110978 15

Dual-SLAM Huang et al. (2020) 2.441731 0.217128 15

ORBEEZ-SLAM Chung et al. (2023) 2.361609 0.045725 22

Ours 1.965533 0.036166 13

seg2

ORB-SLAM2 Mur-Artal and Tardós (2017) 3.496794 0.430973 17

ORB-SLAM3 Campos et al. (2021) 2.857591 0.056270 11

Dual-SLAM Huang et al. (2020) 2.559526 0.039886 10

ORBEEZ-SLAM Chung et al. (2023) 3.248732 0.038621 11

Ours 3.228299 0.232200 8

seg3

ORB-SLAM2 Mur-Artal and Tardós (2017) 3.394621 0.696246 21

ORB-SLAM3 Campos et al. (2021) 3.350094 0.014883 21

Dual-SLAM Huang et al. (2020) 3.523472 0.379043 16

ORBEEZ-SLAM Chung et al. (2023) 2.908638 0.160419 24

Ours 2.492974 0.148776 16

seg4

ORB-SLAM2 Mur-Artal and Tardós (2017) 3.196740 0.179387 19

ORB-SLAM3 Campos et al. (2021) 2.981525 0.122864 16

ORBEEZ-SLAM Chung et al. (2023) 2.617896 0.066356 14

Dual-SLAM Huang et al. (2020) 2.887165 0.261579 17

Ours 2.547515 0.064097 14

seg5

ORB-SLAM2 Mur-Artal and Tardós (2017) 2.807136 0.077025 10

ORB-SLAM3 Campos et al. (2021) 1.729453 0.064448 12

ORBEEZ-SLAM Chung et al. (2023) 2.745240 0.048803 14

Dual-SLAM Huang et al. (2020) 2.963576 0.207393 19

Ours 1.269742 0.083663 11
Under the evaluation index of the SLAM system, our method can achieve greater results in challenging dynamic underwater environments compared with other systems.
↓ means the lower the number the better result.
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FIGURE 7

The estimated trajectory performance of different SLAM systems across five real-life underwater video segments. The dashed black line represents
the ground truth (GT) trajectory, while the red, green, blue, purple, and yellow lines represent ORB-SLAM2, our proposed method, ORBEEZ-SLAM,
ORBSLAM3, and Dual-SLAM, respectively.
TABLE 3 Our method and three other RGB-D SLAM systems performed in five segments of real underwater challenge environments provided by our
self-captured videos.

Video clips Method ATE↓ RPE↓

seg1

i-MAP Sucar et al. (2021)+UDepth Yu et al. (2023)
NICE-SLAM Zhu et al. (2022)+UDepth Yu et al. (2023)

ORBEEZ-SLAM Chung et al. (2023)+UDepth Yu et al. (2023)
Ours

2.297465
2.248826
1.963923
1.965533

0.057245
0.049274
0.037347
0.036166

seg2

i-MAP Sucar et al. (2021) +UDepth Yu et al. (2023)
NICE-SLAM Zhu et al. (2022)+UDepth Yu et al. (2023)

ORBEEZ-SLAM+UDepth Yu et al. (2023)
Ours

3.927464
3.582692
3.319824
3.228299

0.328764
0.285217
0.221976
0.232200

seg3

i-MAP Sucar et al. (2021)+UDepth Yu et al. (2023)
NICE-SLAM Zhu et al. (2022)+UDepth Yu et al. (2023)

ORBEEZ-SLAM+UDepth Yu et al. (2023)
Ours

2.932657
2.738374
2.452714
2.492974

0.187153
0.183642
0.148923
0.148776

seg4

i-MAP Sucar et al. (2021)+UDepth Yu et al. (2023)
NICE-SLAM Zhu et al. (2022)+UDepth Yu et al. (2023)

ORBEEZ-SLAM+UDepth Yu et al. (2023)
Ours

2.648826
2.578376
2.562716
2.547515

0.089274
0.084736
0.071289
0.064097

seg5

i-MAP Sucar et al. (2021)+UDepth Yu et al. (2023)
NICE-SLAM Zhu et al. (2022)+UDepth Yu et al. (2023)

ORBEEZ-SLAM+UDepth Yu et al. (2023)
Ours

1.473563
1.753552
1.249617
1.249742

0.108463
0.174548
0.092353
0.083663
F
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Monocular SLAM trajectory result The Figure 8 compares the

performance of four SLAM methods on seg 1. (a) The trajectory

comparison shows that ORB-SLAM2 and Orbeez-SLAM does not

follow the basic line of the general ground truth while ORB-SLAM3

and our method follow the general path of the ground truth (GT),

our method exhibits the closest match, with smaller deviations than

methods like ORB-SLAM3. (b) Fitting results indicate that our

method performs better in aligning with the X, Y, and Z axes

compared to the others.

In conclusion, our proposed method demonstrates superior

performance in challenging underwater environments by effectively

addressing dynamic interference and low visibility. Integrating

YOLO, optical flow enables robust localization, setting a new

benchmark for underwater SLAM systems.
4.5 Novel view reconstruction results

In this section, we generate novel view images from several

dense SLAM approach’s 3D reconstruction to visually assess their

performance under dynamic underwater conditions. Other dense
Frontiers in Marine Science 13
approaches tend to blur finer textures or exhibit color shifts around

moving objects, whereas our YOLO-NeRFSLAM consistently

preserves scene detail and color fidelity.

Figure 9 illustrates the mapping outcomes of several dense

mapping results from SLAM systems and colmap systems in

underwater scenarios, highlighting their respective dense or semi-

dense reconstruction traits. Colmap relies on sparse feature points,

resulting in point clouds that capture only partial scene details.

In contrast, methods such as iMAP Sucar et al. (2021) and

NICE-SLAM Zhu et al. (2022) attempt to fuse neural scene

representations into SLAM pipelines, using estimated depth and

color maps to produce denser reconstructions. However, as both

were originally designed for near-static indoor environments, they

frequently yield depth errors or visible residual artifacts under high

scattering or dynamic disturbances common in underwater settings.

Similarly, ORBEEZ-SLAM Chung et al. (2023) combines

monocular ORB-SLAM2 with NeRF for a form of dense

mapping, yet in the presence of drifting debris or fish, its results

often appear blurred or incomplete due to insufficient handling of

dynamic interference.

By contrast, our framework leverages the Marine Motion

Fusion (MMF) module to robustly exclude most underwater

dynamic elements at the SLAM frontend, then employs a custom

NeRF-based reconstruction approach specifically tuned for

underwater conditions. Operating without dedicated depth

sensors, our system still captures significantly richer details of

seabed structures and marine objects (see the rightmost column

in Figure 10), even in low-texture or scattering-heavy regions. The

introduced dynamic masking further mitigates the artifacts and

distortions that typically arise from fish activity or uneven optical

attenuation, leading to a more coherent and accurate dense

reconstruction. Overall, our approach merges effective dynamic

exclusion with an underwater-specific NeRF pipeline, offering a

more comprehensive solution for high-fidelity mapping in

challenging marine environments.

Novel view reconstruction’s numerical result is a key metric for

evaluating SLAM systems, as it directly reflects the quality and

fidelity of the generated 3D scene. We compared our method with

ORBEEZSLAM Chung et al. (2023) to evaluate its performance.

Metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural

Similarity Index (SSIM), and Learned Perceptual Image Patch

Similarity (LPIPS) were used to assess reconstruction quality, as

shown in Table 5.

Our method outperforms ORBEEZ-SLAM and the baseline

across all evaluated scenes, achieving higher PSNR and SSIM

values while maintaining lower LPIPS values. For instance, in

segment 2, our system achieved a PSNR of 23.40, SSIM of 0.79,

and LPIPS of 0.19, compared to ORBEEZ-SLAM’s 20.62, 0.71, and

0.18. The inclusion of specialized loss functions plays a crucial role

in preserving fine details and structural accuracy under challenging

underwater conditions.

Figure 10 visually compares reconstruction results across five

scenes. The first column shows results from ORBEEZ-SLAM, which

struggles with dynamic interference and produces blurred

reconstructions with noticeable artifacts. The second column
TABLE 4 Our method and three monocular SLAM systems performed in
five segments of tank experiments provided by EASI dataset.

Video clips Method ATE↓

seg1

ORB-SLAM2 Mur-Artal and Tardós (2017) 2.826594

ORB-SLAM3 Campos et al. (2021) 0.019573

ORBEEZ-SLAM Chung et al. (2023) 2.732843

Ours 0.019274

seg2

ORB-SLAM2 Mur-Artal and Tardós (2017) 2.318397

ORB-SLAM3 Campos et al. (2021) 0.018925

ORBEEZ-SLAM Chung et al. (2023) 2.467274

Ours 0.018736

seg3

ORB-SLAM2 Mur-Artal and Tardós (2017) 1.928345

ORB-SLAM3 Campos et al. (2021) 0.029384

ORBEEZ-SLAM Chung et al. (2023) 1.293847

Ours 0.019868

seg4

ORB-SLAM2 Mur-Artal and Tardós (2017) 2.493547

ORB-SLAM3 Campos et al. (2021) 0.017291

ORBEEZ-SLAM Chung et al. (2023) 2.837644

Ours 0.018283

seg5

ORB-SLAM2 Mur-Artal and Tardós (2017) failed

ORB-SLAM3 Campos et al. (2021) 0.035837

ORBEEZ-SLAM Chung et al. (2023) failed

Ours 0.023938
Under the evaluation index of the SLAM system, our method can achieve greater results in
challenging dynamic underwater environments compared with other systems.
↓ means the lower the number the better result.
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shows results from our system without the specialized loss

functions, highlighting improved structural fidelity but lacking

fine details in complex regions. The third column demonstrates

the full capabilities of our method, with sharper edges, enhanced

textures, and higher structural consistency, particularly in dynamic

and low-light conditions.
4.6 Real-time analysis

In this section, we compare the runtime performance of our

method with state-of-the-art NeRF-based SLAM models on our

dataset. The runtime is evaluated for frames per second (fps), where

higher values indicate better real-time performance. Despite

incorporating additional components such as target detection and

optical flow for enhanced accuracy, our method remains real-time,

showing competitive performance when compared to existing

models. Table 6 summarizes the results for five different segments

of the dataset, demonstrating that our method performs efficiently

even with these additional features.
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4.7 Ablation study

To thoroughly evaluate the contributions of various

components in our proposed framework, we conducted an

ablation study on both the SLAM and NeRF modules using three

underwater scenes. The study focuses on assessing the impact of

dynamic object masking, optical flow integration, and specialized

loss functions under different configurations. For the SLAM

module, we tested three configurations: without dynamic object

masking, with YOLO-based masking only, and with the full system

integrating both YOLO and optical flow. The results, summarized

in Table 7, reveal that dynamic masking significantly improves

localization accuracy, as indicated by lower ATE and RPE values

across all scenes. For example, in segment 1, the ATE decreased

from 2.372 without masking to 2.212 with YOLO masking and

further to 1.966 when optical flow was added. Similarly, optical flow

integration provided additional robustness by addressing non-

classified dynamic interference, such as floating debris and subtle

water currents, ensuring more reliable feature matching and

localization. The integration of YOLO and optical flow also
FIGURE 8

The estimated trajectory performance of different SLAM systems on EASI dataset seg 1. (a) EASI seg1 trajectory comparison. (b) Fitting result of EASI
seg1 on X, Y, and Z axes.
FIGURE 9

Visually comparison of different SLAM systems for underwater environment reconstruction.
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reduced initialization time, demonstrating the system’s efficiency in

handling complex underwater environments.

For the NeRF module, we evaluated the effect of dynamic object

masking and specialized loss functions, including light attenuation,

smoothing, and regularization losses, which were added on top of

the common photometric loss. As shown in Table 8, dynamic

masking alone substantially improved reconstruction quality by

excluding interference from dynamic objects, leading to higher

PSNR and SSIM values. For instance, in segment 2, the PSNR

increased from 20.94 in the baseline configuration to 21.80 with

masking. Incorporating the specialized loss functions further

enhanced reconstruction fidelity, achieving a PSNR of 23.40 and

an SSIM of 0.79 in the same segment. These results demonstrate

that dynamic masking reduces interference in mapping, while the

specialized losses address underwater-specific challenges, such as
Frontiers in Marine Science 15
light attenuation and turbidity, resulting in sharper details and

better structural consistency.

Overall, the ablation study highlights the effectiveness of the

proposed enhancements in both SLAM andNeRFmodules. Dynamic

object masking through YOLO significantly improves SLAM

performance by reducing ATE and RPE, while optical flow

integration ensures robustness in handling non-classified motion.

In the NeRF module, masking dynamic regions improves

reconstruction quality, and specialized loss functions further refine

structural fidelity, allowing the system to adapt to the complexities of

underwater environments. Across all tested scenes, the full system

configuration consistently outperformed the baselines, setting a new

benchmark for underwater SLAM and 3D reconstruction tasks.
4.8 Result analysis and future work

Result Analysis. Our model demonstrates robust performance

and high accuracy in dynamic and multi-illumination

environments. Compared to traditional ORB-SLAM, our method

is more resilient in dynamic scenes, effectively handling noise from

moving objects. Compared with Instant-NGP, our model offers

superior map quality and consistency, producing high-fidelity 3D

reconstructions suited for applications requiring detailed mapping,

such as underwater archaeology and ecological monitoring.

The ablation study confirms the effectiveness of the YOLO

module and photometric consistency loss. These modules improve

the system’s adaptability and maintain stable, high-accuracy

localization and mapping in complex environments.
FIGURE 10

Novel view reconstruction comparison across five real
underwater scenes.
TABLE 5 Results on our dataset.

Scene Method PSNR↑ SSIM↑ LPIPS↓

seg1

Orbeez-SLAM Chung
et al. (2023)

22.85 0.73 0.22

Ours 24.79 0.77 0.21

seg2

Orbeez-SLAM Chung
et al. (2023)

20.62 0.71 0.18

Ours 23.40 0.79 0.19

seg3

Orbeez-SLAM Chung
et al. (2023)

24.15 0.83 0.20

Ours 26.85 0.86 0.20

seg4

Orbeez-SLAM Chung
et al. (2023)

19.71 0.72 0.19

Ours 22.74 0.75 0.17

seg5

Orbeez-SLAM Chung
et al. (2023)

21.39 0.79 0.17

Ours 23.41 0.82 0.16
fron
Our model outperforms ORBEEZ-SLAM across all scenes, achieving the best PSNR, SSIM,
and LPIPS values. PSNR↑/SSIM↑/LPIPS↓.
The bold text indicates the best performance of the method under the corresponding
evaluation index.
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Future Work. While our current method achieves accurate

dense reconstruction in real-world underwater scenes, future

work will explore the integration of explicit refraction models to

further improve geometric consistency under complex optical

conditions. This enhancement may extend the applicability of our

system to more challenging underwater environments, such as

deep-sea scenarios or areas with severe light distortion.
5 Conclusion

This paper proposes a SLAM framework that combines

underwater object detection, optical flow analysis, and a NeRF-
Frontiers in Marine Science 16
based approach specifically tailored for the challenges of dynamic

interference and low visibility in underwater environments. By

employing YOLO to detect moving objects and integrating optical

flow to capture unclassified motion, the system precisely excludes all

dynamic areas during SLAM computat ions , focusing

feature extraction and pose estimation solely on static backgrounds.

Leveraging a customized NeRF for pixel-level 3D reconstruction in

underwater scenarios, this framework not only overcomes the

limitations of conventional SLAM in turbid waters but also

achieves high-precision dense mapping underwater. Experimental

results on multiple real-world underwater datasets demonstrate

notable advantages in reducing localization drift, enhancing

trajectory stability, and recovering underwater scene details, even in
TABLE 6 Runtime comparison.

Method Setting Segments

seg1 seg2 seg3 seg4 seg5

Orbeez-SLAM Chung et al. (2023) w/o Depth 18.932 17.575 19.746 16.347 22.192

w/Depth 1.111 1.106 1.113 1.101 1.120

Ours w/o Depth 17.492 16.274 18.398 16.074 20.375
We compare performance with and without depth generation.
Frame per second [fps] (↑) when running on our dataset.
TABLE 7 Ablation study results for the SLAM module across five scenes.

Scene No Masking YOLO Only YOLO + Optical Flow

ATE↓ RPE↓ ATE↓ RPE↓ ATE↓ RPE↓

seg1 2.372 0.041 2.212 0.048 1.966 0.036

seg2 3.354 0.347 3.213 0.302 3.228 0.232

seg3 2.732 0.169 2.434 0.141 2.493 0.149

seg4 2.856 0.949 2.457 0.787 2.548 0.054

seg5 1.945 0.943 1.763 0.075 1.269 0.083
Metrics include ATE (m) ↓, RPE (m) ↓, and initialization time (s) ↓.
The bold values represent the best result.
TABLE 8 Ablation study results for the NeRF module across five scenes.

Scene Baseline with
base loss

+ Masking + Masking + Light
Attenuation Loss

+ Masking +
Smoothing Loss

+ Masking +
Full Loss

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

seg1 22.15 0.71 23.32 0.76 24.79 0.77 24.42 0.77 24.79 0.77

seg2 20.94 0.74 21.80 0.77 22.79 0.77 23.06 0.77 23.40 0.79

seg3 24.48 0.79 25.95 0.81 26.14 0.84 26.55 0.84 26.85 0.86

seg4 21.86 0.71 21.97 0.71 22.29 0.73 22.44 0.75 22.71 0.75

seg5 22.64 0.77 23.24 0.79 23.31 0.81 23.39 0.81 23.41 0.82
fro
Metrics include PSNR ↑ (higher is better) and SSIM ↑ (higher is better).
The bold values represent the best result.
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settings with high dynamics or sparse texture. Overall, this research

offers a scalable and robust solution for underwater localization and

mapping, laying a solid foundation for further advances in

underwater robotics and environmental monitoring.
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