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Eddy-induced underwater
acoustic field reconstruction
and computation based on
sound speed classification
and B-spline surface fitting
Luochuan Xu1, Jian Xu1, Xuegang Zhang2*, Anmin Zhang1,
Yi Liu1, Dan Chen1, Linglong Chen1 and Zhongpeng Wu2

1School of Marine Science and Technology, Tianjin University, Tianjin, China, 2Science and
Technology on Underwater Test Control Laboratory, Dalian, China
In polar regions, the unique conditions created by sea ice coverage pose

challenges for both remote sensing and in-situ observation methods. As a

result, underwater acoustic detection has emerged as an effective approach

for observing complex oceanic physical phenomena in these environments.

Focusing on anomalies in local seawater acoustic properties caused by eddies,

we propose a method for reconstructing the three-dimensional structure of

eddies. An ice-edge eddy observed during the ACOBAR project serves as a case

study to demonstrate the implementation of this approach. By combining an

unsupervised learning strategy with B-spline surface fitting, the proposed

approach reconstructs the eddy structure without relying on highly idealized

axisymmetric assumptions. Using a sound speed anomaly threshold of -3 m/s to

define the eddy boundaries, the reconstruction achieves an accuracy of 74%. To

further assess the method’s effectiveness, the reconstructed eddy is used to

simulate the eddy-induced underwater acoustic field through finite element

method (FEM) modeling. The results show that this approach reduces

computational time and resource consumption by more than 30%, while

maintaining a mean transmission loss error of only 1.2 dB over a 20 km range.

This work represents an effective integration of acoustic sensing, machine

learning, and FEM simulation in oceanographic research, offering a practical

and efficient solution for studying subsurface phenomena in ice-

covered regions.
KEYWORDS

oceanic eddies, machine learning, B-spline surface, underwater acoustic field, finite
element method
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1 Introduction

The Fram Strait is the primary channel for water exchange

between the Arctic Ocean and the Atlantic Ocean (Geyer et al.,

2020; Hattermann et al., 2016; Storheim et al., 2021). It is

characterized by the West Spitsbergen Current (WSC) and the

East Greenland Current (EGC) (Zhao et al., 2021). The WSC

transports warm, salty Atlantic Water (AW) northward along the

Svalbard Islands into the Arctic Ocean, while the EGC carries cold,

fresh Polar Water (PW) southward along the western side (de Steur

et al., 2009). This region is influenced year-round by this distinct

circulation system, which produces strong spatial gradients across

the strait (Rudels et al., 1999; Schourup-Kristensen et al., 2021).

These gradients contribute to the prevalence of oceanic mesoscale

eddies in the region, which typically detach from the WSC and drift

westward into the EGC at speeds of several kilometers per day,

retaining the properties of their source water masses (Kozlov et al.,

2019). Consequently, the thermohaline structure of water masses

within eddies differs markedly from that outside the eddies,

significantly affecting underwater acoustic propagation (Chen

et al., 2022) and increasing the uncertainty of the acoustic

environment in the transitional region (Timmermans and

Marshall, 2020).

During the Arctic Ice Formation Period (AIFP, from September to

April of the following year), uncertainty in the marine acoustic

environment in the Fram Strait becomes particularly pronounced.

First, eddy kinetic energy during AITP is three times greater than that

during the summer period (Pnyushkov et al., 2018), and enhanced

eddy activity exacerbates the unpredictability of the acoustic

conditions. Moreover, extensive sea ice cover during the AIFP (Lu

et al., 2023) makes mesoscale eddy detection particularly challenging.

An exception is that an ice-edge eddy is detected during the AIFP of

2010 through the ACOBAR project (Geyer et al., 2023, 2022). Due to

the unique Arctic environmental features, neither satellite remote

sensing data nor in-situ measurements like Argo floats—commonly

used to infer 0-2000m ocean properties—are available in this region.

Therefore, traditional eddy detection methods such as the Contour

Threshold method (Chelton et al., 2007; Nencioli et al., 2010; Xu et al.,

2022), which rely on sea surface height anomalies, or composite

analysis (Zhang et al., 2014, 2013) based on three-dimensional

hydrographic and pressure datasets, are not applicable. This

limitation hinders our understanding of polar eddies. Therefore,

developing new method for eddy characterization in the Fram Strait

is crucial for advancing our understanding of these phenomena.

Unlike conventional studies that focus on eddy-induced

anomalies in temperature, salinity, and pressure, our research

investigates the three-dimensional structure of mesoscale eddies

in the Fram Strait from the perspective of their impact on

underwater acoustic properties. Sound speed profiles, which are

highly correlated with acoustic propagation characteristics, have

been widely used to classify marine acoustic environments (Ariza

et al., 2022; Jensen et al., 2012). While these studies typically divide

marine environments into acoustic sub-regions, this classification

approach has not yet been applied to eddy structure reconstruction.
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A recent research has revealed that mesoscale eddies exhibit

coherent composite patterns in terms of their sound speed

anomalies (Chen et al., 2022). However, this study—like many

others—relies on oversimplified assumptions, particularly the

axisymmetric eddy mode (Chelton et al., 2007), which limit its

applicability in realistic ocean conditions. Despite these limitations,

it demonstrates the potential of acoustic data for revealing internal

eddy structures. Building on this work, we propose a novel

unsupervised learning strategy that classifies eddy-induced sound

speed anomalies to reconstruct the three-dimensional structure of

eddies in the Fram Strait during the AIFP. Compared to previous

studies (Amores et al., 2017; Sandalyuk et al., 2020; Yuan et al.,

2021), which primarily reconstructed eddy structures based on the

assumption of axisymmetry, our method introduces two key

innovations: (1) Employing the machine learning approach,

which has become widely applied to oceanic eddy diffusivities

prediction (Guan et al., 2022), global marine sound-scattering

region classification (Ariza et al., 2022) and other oceanographic

studies, eddy reconstruction is not based on the axisymmetric

assumption; (2) It leverages acoustic features to reconstruct the

three-dimensional boundaries of eddies using sound speed

classification and B-spline surface fitting.

The proposed method is further integrated into a finite element

method (FEM) modeling framework using COMSOL Multiphysics

to simulate eddy-induced underwater acoustic fields. By assigning

distinct density grids inside and outside the reconstructed eddy

boundaries, the model achieves a significant reduction in

computational time and resource usage while maintaining high

simulation accuracy. This improves overall efficiency in modeling

acoustic environments affected by complex eddy processes.

In this paper, we use the ice-edge eddy detected by the

ACOBAR project as a case study to demonstrate the viability of

identifying mesoscale eddies using sound speed anomalies and

reconstructing their three-dimensional structure through our

proposed methodology. The rest of paper is organized as follows:

Section 2 introduces the ACOBAR project and details the detection

of the ice-edge eddy, along with the data and preprocessing steps

used for reconstruction. Section 3 presents the unsupervised

learning framework and B-spline surface fitting approach. Section

4 analyzes the spatial distribution of physical properties inside and

outside the reconstructed eddy, while Section 5 discusses the FEM-

based simulation and its efficiency. Finally, Section 6 concludes the

study with key findings and future outlook.
2 Data and methods

2.1 The ACOBAR project

The ACOBAR acoustic tomography experiment in central Fram

Strait was carried out from September 2010 to September 2012

(Geyer et al., 2022) to develop a system for environmental

monitoring of the interior of the Arctic Ocean by assimilation of

data obtained with acoustic methods (https://acobar.nersc.no/). As
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shown in Figures 1a–c, the project detected an ice-edge eddy

trapped with negative sound speed anomaly (SSA) water mass

from September 5,2010 to September 15,2010 by analyzing the

difference in sound speed profile (SSP).

In Figure 1b, the red dots correspond to the red curve, while the

blue dots correspond to the blue curve. The distribution patterns of

these curves reveal an unexpected phenomenon: the measured

sound speed profile (SSP) near 78°N is significantly lower than

that near 80°N. Although the difference diminishes with depth, it

remains noticeable within the upper 350 meters. These

measurements, obtained from the ACOBAR project, challenge the

widely accepted understanding that upper-ocean temperature—

and, by extension, sound speed—generally decreases with

increasing latitude. This anomaly suggests the possible presence

of an unusually cold water mass converging near 0°E, 78°N.
2.2 The HYCOM model data

However, the limited volume of data collected by the ACOBAR

project can merely help us to diagnose whether the uncommon

colder water mass exists or not, it is insufficient to determine the

causes of the unexpected phenomenon. Therefore, Hybrid

Coordinate Ocean Model (HYCOM), which uses Navy Coupled

Ocean Data Assimilation (NCODA) system (Cummings, 2005;

Wang et al., 2021) for data assimilation, are selected for

further analysis.

The data derived from the HYCOM (https://www.hycom.org)

model include temperature, salinity, depth and SLA. The model

spatial resolution is 1/12°×1/12° and the temporal resolution is 3h.

Interpolation is used to determine the value between data points,

contributing to continuous variations in the ocean field and the 40

layers of the vertical resolution range from 5 m at the sea surface to

5000m at the bottom. Table 1 displays the details of the

HYCOM data.

Based on the HYCOM model, the marine environmental

features on September 15, 2010, are illustrated in Figure 1c. By

combining sea level anomaly (SLA) and sea ice distribution, an eddy
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can be identified at 0°E, 78°N, located along the sea ice edge and

associated with an elevated sea surface height. As shown in

Figure 1b, five ACOBAR observation stations are marked: red

dots inside the eddy and blue dots outside. This spatial

arrangement suggests that the convergence of the ice-edge eddy

with an unusually cold water mass is responsible for the significant

drop in SSP at 0°E, 78°N.

We refer to this eddy—characterized by the presence of a colder

water mass and detected through a significant negative sound speed

anomaly in the SSP—as a Negative Sound Speed Anomaly Eddy

(negative-SSAE). There are two main reasons for selecting this ice-

edge eddy as the focus of our study: First, its clear identification

from an acoustic perspective demonstrates the potential of using

SSP anomalies as indicators for diagnosing eddy presence. Second,

from a polar oceanographic standpoint, ice-edge eddies are

common and distinct phenomena in polar regions (Johannessen

et al., 2003; Shuchman et al., 1987), making this case especially

representative of the environmental uniqueness of the area.
2.3 Sound speed anomaly field

As the HYCOM numerical model provides only temperature

and salinity parameters, the nine-term empirical formula developed

by Mackenzie (Jensen et al., 2011) is employed to progressively

derive the sound speed field, as shown in Equation 1.

c = 1448:96 + 4:591T − 5:304� 10−2T2 + 2:374� 10−4T3

+1:340(S − 35) + 1:630� 10−2z + 1:675� 10−7z2

−1:025� 10−2(S − 35) − 7:139� 10−13Tz3,

(1)

where T denotes temperature, S represents salinity, z is depth,

and c is the corresponding sound speed. Following the approach

(Yuan and Castelao, 2017), we subsequently compute the monthly

mean sound speed (Spcli) from August to October to extract the

large-scale background patterns in the Fram Strait. The sound speed

anomalies are then obtained by subtracting these background

patterns, as described in Equation 2:
FIGURE 1

(a) The map of the Fram Strait region, the red box is the area we study. (b) The red and blue dots are five observation stations of the ACOBAR
project in the ice-free region. The solid red and blue curves show the corresponding mean sound speed profiles (SSPs), while the blue dashed
curves illustrate the range of sound speed variability. (c) Sea ice, sea surface level anomaly (SLA), and seafloor topography in the study area on
September 15, 2010. The black dots represent all the observation stations in ACOBAR project. The top layer represents the combination of sea ice
(Black-White color) and SLA (Blue-Red color); the middle layer represents the SLA, and the lower layer represents the seafloor topography (White-
Blue color).
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Sp} = Sp −   Spcli, (2)

where  Sp} represents sound speed anomaly field, Sp represents

sound speed at a given moment, Spcli represents the large-

scale patterns.
2.4 Data processing methods

After converting the temperature and salinity data output from

HYCOM into sound speed anomaly, the following methods are

applied to prepare for the reconstruction of the three-dimensional

structure of the negative-SSAE.

2.4.1 Correlation calculation
Given that the data at different depths are non-normally

distributed, we employed the Spearman correlation coefficient

(Schober et al., 2018) to assess the correlation between water

masses across depths, which can be described as Equation 3:

cor = 1 −
6o​d2i
n(n2−1) , (3)

where di represents the positional difference for the i-th SSA

data combination, and n represents the total number of SSA data.

2.4.2 Cluster analysis algorithm
Cluster analysis can identify relationships within dataset

characteristics (Dalmaijer et al., 2022; Frades and Matthiesen,

2010; van Eck and Waltman, 2017). We selected hierarchical

cluster analysis for our study as it offers valuable information on

the hierarchical similarity of SSA data (Ariza et al., 2022) and allows

for the determination of the optimal number of clusters without

needing to specify it beforehand.

For hierarchical cluster analysis, distinct separation of SSA data

points within each cluster is desired. The Euclidean distance, as

stated in Equation 4, is the metric used to achieve this in our study:

d SSA
→

i, SSA
→

j

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
p

k=1

SSAi,k − SSAj,k

� �2s
, (4)

where d is the Euclidean distance, i  and j  represent different

categories of dataset respectively and p is the total number of SSA

data, SSAi,k represents the k-th sound speed anomaly value in the i-

th category.

To calculate cluster distances, the Ward method (Murtagh and

Legendre, 2014) is applied. A key principle of Ward’s method is to

minimize the increase in the sum of squared errors (SSE) when two

clusters are merged. The SSE for the m-th cluster is calculated as

shown in Equation 5:
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SSEm =onm
i=1(xi − �xm)

0
(xi − �xm), xi ∈ m, (5)

where SSEm denotes the sum of squared errors within the m-th

cluster, xi and �xm is the centroid of the m-th cluster. When two

clusters A and B are merged, the resulting increase in the SSE error,

denoted as IAB, is calculated by Equation 6:

IAB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½SSEAB − (SSEA + SSEB)�2

q
(6)

The pair of clusters with the smallest IAB value is selected for

merging, leading to the formation of a new cluster.

2.4.3 B-spline surface
The B-spline surface, a widely adopted method for

mathematical shape representation (Elbanhawi et al., 2016), is

employed to reconstruct the three-dimensional structure of the

negative SSAE. The implementation steps are as follows (Abert

et al., 2006; Tang et al., 2023; Xu et al., 2022):

Taking into account there is a three-dimensional lattice V

containing (m + 1)� (n + 1) control points and a knot vector U =

u0, u1,…, umf g with m + 1 knots in the orthogonal space, the B-

spline surface S defined by the lattice V is constructed by stitching

together (m − 2)� (n − 2) sub-surfaces SI,  J (u, v), each of which is

formed from a local control lattice VI _ i,J _ j containing 4� 4 control

points, under the principle of C2 continuity. The resulting surface is

described by Equation 7:

S =o
m−2

I=0
o
n−2

J=0

SI,  J(u, v) =o
m−2

I=0
o
n−2

J=0
o
3

i=0
o
3

j=0

VIi ,JjNIi ,p(u)NJj ,p(v), (7)

where p denotes the order of the B-spline surface, whilem and n

represent the frequencies in the x- and y-directions of the Cartesian

coordinate system, respectively. These parameters are constrained

by the relation m = n + p + 1.

The smoothness of the B-spline surface is determined by its

order p; in general, higher-order surfaces exhibit greater

smoothness but also require increased computational effort

(Elbanhawi et al., 2016). Considering the trade-off between

surface smoothness and computational complexity, cubic B-spline

surfaces (p = 3) were selected for this study. The coordinates u and

v are normalized longitude and latitude values. Ni,p is the p-th B-

spline basis function corresponding to the i-th knot span ui, ui+1), its

Cox-De Boor recursion (Boor, 1972, 1978; Cox, 1972) is defined by

Equation 8:

Ni,0(u) =
1, ui ≪ u < ui+1  

0, otherwise 

(

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u) +

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u)

(8)
TABLE 1 Details of the HYCOM data.

Region Range Date Level Type

Fram strait 76°N–80°N, 10°W–10°E 2010, 08, 15-2010, 10, 15 4 Reanalysis
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Based on the distribution of knots in the knot vector, B-spline

surfaces can be broadly classified into two categories: the uniform

B-spline surface in Figure 2a, which features evenly spaced internal

knots; and the quasi-uniform B-spline surface in Figure 2b, which

has end knots repeated p + 1 times to ensure interpolation at

the boundaries.

As shown in Figure 2a, the uniform B-spline surface generated

by control points does not intersect the control lattice, making it

unsuitable for accurate boundary fitting. Therefore, the quasi-

uniform B-spline surface is selected to reconstruct the three-

dimensional structure of the negative SSAE, as it provides

improved boundary adherence. For simplicity, this surface will

hereafter be referred to as the “B-spline surface.”

2.4.4 Cross-validation
The shape of the B-spline surface is controlled by the

frequencies m and n. If the frequencies are too low, the model

may suffer from underfitting; conversely, excessively high

frequencies can lead to overfitting. To balance fitting accuracy

and computational efficiency, a 10-fold cross-validation approach

(Geisser, 1975; Little et al., 2017) is employed to determine the

optimal frequency combination.

In this procedure, the dataset is randomly divided into ten equal

parts. Nine parts are used for training, while the remaining part

serves as the validation set. The cross-validation is repeated ten

times, each time using a different segment as the validation set. The

mean absolute error (MAE) computed on the validation sets is used

as the evaluation metric to select the frequency combination that

achieves the best generalization performance.
2.4.5 Eddy boundary fitting
Under the optimal frequency combination (m-n), the least

square method (Ding et al., 2013) is employed to perform B-

spline surface fitting. Specifically, the goal is to fit a quasi-uniform
Frontiers in Marine Science 05
bicubic B-spline surface that minimizes the sum of squared errors

between the observed data points Q(u, v) and the surface

approximation. This fitting process is formulated as Equation 9:

min Q(u, v) − o
m−2

I=0
o
n−2

J=0
SI, J(u, v)

" #2

(9)

The objective of the least squares fitting is to adjust the control

point values such that the overall squared deviation between the

observed data and the reconstructed surface is minimized. This

ensures that the resulting B-spline surface provides the best possible

approximation of the three-dimensional eddy-induced sound speed

anomaly field under the given frequency configuration.
3 Results

3.1 Extraction of vertical SSA core area

We calculated the SSA at different depths using Equations 1, 2

as described in Section 2. Since the data from each layer contain

fewer than 5,000 samples, they are treated as small-sample datasets.

To evaluate whether the SSA values follow a normal distribution,

the Shapiro–Wilk (S–W) normality test was conducted. The test

results are summarized in Table 2.

At the 5% significance level, all p-values are below 0.05,

indicating that the SSA data at various depths deviate from a

normal distribution. Consequently, the Spearman correlation

coefficient is employed to assess the correlations between water

masses at different depths.

Figure 3a illustrates the SSA correlation between water masses

at different depths. A distinct stepwise distribution is observed,

reflected in the size and color of the polygon. Based on this pattern,

the study area can be divided into three vertical zones: 0–30 m, 50–

300 m, and below 300 m. Within each zone, water masses exhibit
FIGURE 2

Two categories of B-spline surfaces. Blue dots represent control points, which, together with the black mesh, form the control lattice that defines
the B-spline surface. (a) Uniform B-spline surface. (b) Quasi-uniform B-spline surface.
TABLE 2 The result of normality test.

Depth/m 0 10 20 30 50 75 100 125 150 200 250 300 400 500

S-W test 0.98 0.98 0.96 0.94 0.86 0.87 0.92 0.96 0.98 0.97 0.98 0.99 0.99 0.98
front
P< 0.05.
iersin.org
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strong positive correlations, while displaying markedly different

characteristics compared to those in the other zones.

Using the correlation between adjacent water layers as a basis,

the vertical SSA core regions can be identified. As shown in

Figures 3a, b, two significant drops in correlation occur at depths

of 50 m and 300m, indicating shifts in the acoustic characteristics of

the water masses between 30–50 m and 300–400 m. Three main

factors (Frenger et al., 2015; Zhang et al., 2020) contribute to this

phenomenon: Within the upper 0–30 m layer, SSA characteristics

remain relatively stable due to the influence of surface factors such

as wind. As depth increases, the influence of surface environmental

conditions diminishes, and the intrinsic properties of the negative
Frontiers in Marine Science 06
SSA water mass between 50 and 300 m become more evident. Below

300 m, the influence of the negative SSA effect gradually weakens,

revealing the original characteristics of the deeper water mass in this

region; as a result, the SSA features begin to return to a more

moderate state.

Therefore, based on the observed variations in correlation, it

can be concluded that the presence of negative SSAE divides the

vertical water column into three distinct layers. To minimize the

influence of external factors and best preserve the intrinsic

characteristics of the negative SSAE, the water mass between 50

and 300 meters is selected for reconstructing the three-dimensional

structure of the eddy.
FIGURE 3

(a) Spearman correlation coefficient of SSA at different depths. The blue polygon highlights the location of two adjacent water masses with the
weakest correlation. (b) Correlation strength between adjacent water layers. Larger and darker bubbles indicate stronger correlations between
adjacent water masses.
FIGURE 4

Profile of the negative-SSAE. The region enclosed by the red dotted line represents the vertical SSA core area. (a) Latitude = 78.32: Latitudinal cross-
section of the eddy. (b) Longitude = 2.32: Longitudinal cross-section of the eddy.
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3.2 Extraction of horizontal SSA core area

Following the identification of the vertical SSA core areas, the

subsequent key step is to extract the horizontal SSA core areas. As

shown in Figure 4, the profile of negative SSAE reveals a distinct

vertical core region, outlined by the red dotted line, which is clearly

differentiated from the surrounding water masses. In addition,

Figure 4a highlights another negative SSA core at 4°E within the

eddy structure. The procedure for horizontal core extraction is

as follows:

First, after obtaining SSA data at eight depths—50, 75, 100, 125,

150, 200, and 300 meters—based on the vertical resolution of the

HYCOM model, hierarchical clustering is applied to classify the

horizontal distribution of different water masses. The clustering

results are shown in Figure 5.

The SSA at each depth can be categorized into three distinct

clusters. The red cluster represents areas with a strong positive SSA,

indicating water masses unaffected by the negative SSAE. The green

cluster corresponds to the transitional zone between the core

influence area and the unaffected regions. The blue cluster

denotes the SSA core area in the horizontal direction, capturing

the fundamental characteristics of the negative SSAE. To further

investigate how the horizontal extent of the SSA core area varies

with depth, the results are illustrated in Figure 6.

It can be observed that the SSA core area gradually contracts as

depth increases, forming a bowl-shaped structure that slopes

southwest. This spatial pattern aligns well with the results (Li et al.,

2022), suggesting a consistent three-dimensional manifestation of the

negative SSAE. By integrating vertical correlation analysis with
Frontiers in Marine Science 07
horizontal hierarchical clustering, the three-dimensional structure of

the SSA core region can be effectively delineated. This combined

approach not only captures the vertical layering and horizontal extent

of the SSAE, but also establishes a comprehensive framework for

accurately identifying and characterizing its complex spatial dynamics.
3.3 The reconstruction of eddy three-
dimensional structure

By combining correlation analysis and hierarchical clustering,

the three-dimensional distribution of the SSA core area boundary is

obtained, as illustrated in Figure 7a. By integrating the boundaries at

different depths using B-spline surface fitting, the three-

dimensional structure of the negative SSAE can be reconstructed.

A critical step in this process is determining the optimal frequency

combination in both the longitudinal and latitudinal directions to

minimize the fitting error between control points. To achieve this,

cross-validation is performed, and the results are presented in

Figures 7b, c.

As shown in Figure 7b, the relative error decreases steadily with

increasing frequencies m and n, indicating a transition from

underfitting to a more reasonable fit. However, although higher

frequencies are associated with lower relative error, this does not

necessarily imply a better fitting effect. In fact, higher frequencies

increase the risk of overfitting and require greater computational

resources. To determine the optimal frequency, we further calculate

the gradient between adjacent relative errors. As shown in Figure 7c,

the gradient within the red region remains relatively stable, while
FIGURE 5

Schematic diagram of hierarchical clustering. The top panel shows the clustering dendrogram, where SSA is divided into three clusters represented
by red, green, and blue. The bottom panel displays the spatial distribution of SSA within each cluster.
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the surrounding blue region exhibits significant gradient

fluctuations. This indicates that as frequency increases, the B-

spline surface fitting undergoes substantial changes at the

boundary between the red and blue regions. Beyond this

threshold, the relative error shows minimal variation, suggesting

diminishing returns in fitting improvement.

Therefore, a frequency-stable region—characterized by

smoothly varying error gradients and consistently low relative

errors—can be identified, corresponding to the red region shown

in Figures 7b, c. All combinations of m and n within this stable

region are considered feasible frequencies. However, as frequency

increases, the risk of overfitting also rises. Accordingly, the optimal

frequency must meet two key criteria:
Fron
1. The relative error between the B-spline surface and the

original data points (i.e., the SSA core boundaries shown in
tiers in Marine Science 08
Figure 7a) should be minimized to ensure high

fitting accuracy.

2. The lowest possible frequency values should be used to

reduce the risk of overfitt ing and to optimize

computational efficiency.
Based on these criteria, the optimal B-spline surface frequency

is determined to be m = n = 11, which yields a relative error of

7.33%, and lies within the frequency-stable region. The resulting B-

spline surface fitting is presented in Figure 8:

As illustrated, the B-spline surface provides a reliable

representation of the negative SSAE. The reconstructed eddy tilts

southwestward with increasing depth, and its boundary encompasses

all SSA values greater than 6 m/s (indicated by the yellow to red

regions in Figure 8). Additionally, an SSA core region is observed

near the 4°E profile, suggesting a possible double-core structure.
FIGURE 7

(a) Boundaries of the SSA core area at different depths. The solid black lines indicate the boundaries, while the background shows the SSA field.
(b, c) Results of cross-validation: (b) relative error and (c) relative error gradient, represented by height and color, respectively. The red bar highlights
the frequency stable region where both error and gradient change smoothly.
FIGURE 6

Clustering results of the negative SSAE core area at different depths. The background shows the SSA field, while the black line indicates the
boundary of the core area in the horizontal direction.
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4 Discussion

Using hierarchical clustering and B-spline surface fitting, we

successfully reconstructed the 3D structure of the negative-SSAE

(Figure 8). The reconstruction, based on HYCOM model data,

spans depths from 50 m to 300 m. Although the influence of the

negative-SSAE extends into the upper 50 m of the ocean, this layer

is subject to strong sea surface variability, making its structure

highly dynamic and difficult to represent accurately. As a result, we
Frontiers in Marine Science 09
excluded the upper 50 m from our analysis, and the eddy structure

within this surface layer can be reasonably approximated by

extrapolating the reconstructed eddy structure upward from the

50–300 m depth range.

To quantitatively assess the effectiveness of the reconstruction,

we conduct a detailed analysis of key variables—temperature

anomaly (TA), salinity anomaly (SA), and sound speed anomaly

(SSA)—both inside and outside the reconstructed eddy. The results

of this analysis are presented below.
FIGURE 9

(a) Statistical characteristics of SSA at different depths. From top to bottom along the curve, the purple circles indicate standard deviation, green
triangles represent kurtosis, red stars denote skewness, brown diamonds show the mean, and blue squares indicate the median. (b) Histogram of
SSA distribution at various depths. The black dashed line represents the median, while the red curve illustrates the overall trend of SSA with depth.
The color-filled regions, ranging from blue to red, depict the probability density distribution of SSA. The shaded area highlights the core region that
best represents the essential features of the negative-SSAE.
FIGURE 8

Fitting results of the negative SSAE structure from different viewing angles. The black grid lines represent the fitted mesoscale eddy structure, while
the red-blue background slices show the SSA distribution across various cross-sectional profiles.
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4.1 Differences in the statistical features of
the vertical water mass

First, we analyzed the SSA data at different depths. To

characterize the central tendency, dispersion, and distribution of

the SSA data, we calculated the median, mean, standard deviation,

skewness, and kurtosis, thereby obtaining the statistical properties

of the SSA at various depths, as shown in Figure 9.

As shown in Figure 9a, the curves of blue squares (median) and

brown diamonds (mean) reflect the central tendency of SSA at

different depths. Both exhibit a pattern of initially decreasing and

then increasing values, particularly within the 50–300 m range. This

indicates that the sound speed anomalies at these depths are

significantly clustered toward negative values. The green triangles

(kurtosis) and red stars (skewness) represent the distribution

characteristics of the data, while the purple circles (standard

deviation) reflect the degree of dispersion. In contrast to the central

tendency, the standard deviation first increases and then decreases,

suggesting that the SSA data between 50 m and 300 m are more

widely dispersed compared to those in the upper and deeper layers.

Furthermore, the non-normality of the distribution—evidenced by

higher skewness and kurtosis—is also most pronounced in this depth

range. Therefore, based on the statistical characteristics of the SSA

data, we conclude that the water masses between 50 m and 300 m

differ significantly from those at other depths.

The distribution characteristics of SSA data at different

depths are visualized in Figure 9b. At depths shallower than 50

meters and deeper than 300 meters, the data follow an

approximately normal distribution. In contrast, betiween 50 m

and 300 m, the distribution becomes distinctly skewed, which is

consistent with the statistical analysis discussed earlier. Together,

the statistical measures and the visualized distribution highlight

the existence of a significant negative SSA region within the 50–
Frontiers in Marine Science 10
300 m depth range. This region, associated with the presence of

an eddy, leads to substantial alterations in the acoustic properties

of the seawater—most notably, a pronounced negative anomaly

in sound speed. These observations are in agreement with the SSA

correlation patterns between adjacent water masses analyzed in

Section 3.

Therefore, the correlation between adjacent water masses can

serve as an effective criterion for vertically classifying the eddy

structure. This approach is more efficient than analyzing the

statistical characteristics and distribution patterns of the eddy at

different depths.
4.2 Differences in SSA inside and outside
the eddy

An ideally reconstructed eddy structure should divide the

region into two water masses with clearly distinct acoustic

properties. To assess the effectiveness of the reconstruction in

differentiating water masses, we compare the SSA values inside

and outside the reconstructed eddy using the Equations 11 and 12:

h1 :Value =   (Data<threshold)all data(Data)all data
, (10)

h2 :Value =  
(Data<threshold)inside eddy
(Data<threshold)all data

, (11)

where threshold refers to a predetermined value representing

the SSA at the actual eddy boundary. h1 denotes the proportion of

all data points that are smaller than this threshold, while h2

represents the proportion of those below-threshold data points

that are located within the eddy.

Since the negative-SSAE is the primary cause of negative SSA in

the region, a smaller value of h1 indicates that the threshold more
FIGURE 10

Variation of h1 and h2 values under different predetermined thresholds. The blue-grey bars correspond to the left y-axis and represent the specific
values of h1 and h2, while the red dashed curve corresponds to the right y-axis and illustrates the trend of their variation.
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effectively captures the core characteristics of the negative-SSAE. In

contrast, a larger h1 suggests that the threshold may encompass

additional environmental noise from outside the eddy. Meanwhile,

h2 serves as a key indicator of the reconstruction quality: the higher

the h2, the more negative SSA data—primarily caused by the

negative-SSAE—are encompassed within the B-spline surface,

indicating a better fit. Therefore, reconstruction effectiveness can

be evaluated in terms of the threshold’s ability to clearly separate

water masses with distinct acoustic properties: lower h1 and higher

h2 values reflect a more successful reconstruction. Each

predetermined threshold corresponds to a specific pair of h1 and

h2 values, as shown in Figure 10.

At lower thresholds, h1 is small and h2 is large, indicating that

the region of negative SSA induced by the eddy—and thus the

effective volume of the eddy—is relatively limited. Under these

conditions, the reconstructed structure effectively isolates the eddy-

induced SSA. As the threshold increases, both the apparent volume

of the eddy and the associated SSA range expand. However, this

expansion also introduces more environmental noise into the

reconstructed structure, diminishing its ability to accurately

distinguish the eddy-induced SSA. As a result, h1 increases while

h2 decreases, reflecting a decline in the reconstruction’s

discriminative capability.

Unlike studies that define the 3D eddy structure based on

parameters such as pressure, velocity, or other oceanographic

variables, there is currently no established algorithm to determine

the optimal SSA value for defining eddy boundaries. Nevertheless,
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the selection of the threshold plays a critical role in evaluating the

accuracy and quality of the reconstructed eddy. In this study, we

adopt a threshold of –3 m/s to define the boundary of the negative-

SSAE. This corresponds to an h1 value of 29% and an h2 value of

74%, meaning that 29% of the SSA values—including both eddy-

induced anomalies and environmental noise—fall below –3 m/s,

with 74% of those captured within the reconstructed eddy and the

remaining 26% lying outside the eddy boundary. These results

indicate that the chosen threshold yields a reasonably accurate and

well-fitted reconstruction.
4.3 Differences in temperature/salinity
inside and outside the eddy

Although acoustic properties are crucial for identifying different

water masses, they are not the sole indicator. To fully evaluate the

reconstructed structure, we also analyze temperature and salinity,

additional key oceanographic parameters. Their distribution within

and outside the reconstructed eddy is shown in Figure 11.

As demonstrated, the presence of the negative SSEA leads to

significant shifts in the temperature and salinity characteristics

within the eddy, resulting in more pronounced negative

anomalies and a more concentrated distribution. In contrast, the

temperature and salinity outside the eddy exhibit a more

symmetrical distribution with a broader range of values. These

differences between the interior and exterior of the reconstructed
FIGURE 11

(a) Distribution of temperature and salinity anomaly inside and outside the reconstructed eddy. Black solid lines and dots represent in-eddy data,
while blue-green solid lines and dots represent out-of-eddy data. (b) Violin plot showing the distribution of temperature anomalies. (c) Violin plot
showing the distribution of salinity anomalies.
TABLE 3 Statistical values of temperature and salinity anomaly.

Element Location med uq lq Location med uq lq dmed

Temperature
Outside

0.1 0.6 -0.4
Inside

-1.5 -0.8 -1.8 -1.6

Salinity 0 0.2 -0.1 -0.3 -0.3 -0.6 -0.3
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eddy are further illustrated in Figures 11b, c, with the corresponding

statistical values summarized in Table 3.

In Table 3, the parameters med, uq, lq, and dmed represent the

median, upper quartile, lower quartile, and the difference in median

values (outside median minus inside median), respectively. It is

evident that the temperature anomaly quartile range outside the

reconstructed eddy decreases from [–0.4, 0.6] to [–1.8, –0.8] inside

the eddy, with the median temperature anomaly dropping by 1.6°C.

Similarly, the salinity anomaly quartile range narrows from [–0.1,

0.2] to [–0.6, –0.3], accompanied by a median decrease of 0.3. These

changes indicate the presence of two distinct water masses with

markedly different thermohaline properties inside and outside the

reconstructed eddy.

Therefore, the posterior results from the negative-SSAE

reconstruction demonstrate significant differences in both

acoustic and thermohaline properties between the internal and

external water masses, confirming that the reconstructed structure

effectively captures the characteristics of the actual eddy and

distinguishes it from the surrounding water masses with

different properties.
4.4 Fitting surface comparison

Since temperature anomalies at different depths reflect the eddy’s

energy transport, and salinity anomalies indicate its mass transport,

clustering based on only one element—either temperature or salinity

—captures just one aspect of the eddy’s matter-energy dynamics.

Therefore, to achieve a more comprehensive analysis that accounts
Frontiers in Marine Science 12
for both mass and energy transport characteristics of the negative-

SSAE, we combined temperature and salinity data. We then

compared the clustering results from this combined dataset with

those based solely on SSA.

Comparing the clustering results in Figure 12, noticeable

differences are observed in Figures 12a, g, h between the results

based on SSA and those based on temperature-salinity anomalies.

However, in Figures 12b–f, the clustering results are generally

consistent between the two methods, particularly within the 75–200

m depth range, where the sound speed anomaly is most pronounced.

Nevertheless, some discrepancies remain. As highlighted by the yellow

box in Figure 12c, while the SSA-based clustering shares similarities

with the temperature-salinity-based results, it also exhibits a distinct

“peak” structure. The emergence of this unique peak structure can be

attributed to at least two factors. First, in the real ocean, the boundary

of a mesoscale eddy is rarely smooth or regular. Instead, various sub-

mesoscale processes induce irregularities along the eddy edge, creating

fine, strip-like structures—reflected in Figure 12 as the “peak” feature

—due to the complex dynamics of seawater flow near the eddy

boundary. Second, from a data perspective, the distributions of

seawater temperature and salinity at 100 m depth, shown in

Figures 13a, b respectively, further support these observations.

As shown in Figure 13a, the sub-mesoscale “peak” structure

remains visible in the temperature anomaly field, although it is less

pronounced in the salinity anomaly field (Figure 13b).

Consequently, when clustering is performed using both

temperature and salinity, the weaker salinity signal tends to dilute

the sub-mesoscale feature, making the “peak” structure harder to

detect. In contrast, while sound speed is derived from both
FIGURE 12

Clustering results based on temperature-salinity anomalies and SSA. (a–h) Clustering outputs at various depths. Blue dotted curves represent
clustering based on temperature and salinity, while red dotted curves represent clustering based on SSA. Yellow boxes highlight regions with
significant differences between the two clustering methods.
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temperature and salinity, its nonlinear formulation (as defined in

Equation 1) suppresses the influence of the weaker salinity anomaly

and amplifies the more dominant temperature anomaly. As a result,

the SSA field (Figure 13c) preserves and even accentuates the “peak”

structure, allowing SSA-based clustering to capture sub-mesoscale

features more effectively.

Meanwhile, although temperature and salinity respectively

represent the energy and mass transport processes of eddies,

clustering based on their combination often lacks a clear physical

interpretation and remains largely conceptual. Sound speed

anomaly, however, possesses explicit physical significance and can

be directly measured in practical oceanographic observations.

Moreover, as demonstrated in Figure 13, SSA more intuitively

reveals sub-mesoscale structures that may be obscured when

using temperature-salinity clustering. This highlights SSA as a

promising tool for identifying and analyzing sub-mesoscale

processes from a fresh perspective.

Therefore, considering the practical measurability of SSA and

its enhanced potential ability to reveal sub-mesoscale structures, we

recommend using SSA-based clustering rather than temperature-

salinity clustering for mesoscale eddy reconstruction.
5 Application

In our study, the three-dimensional structure of the ice-edged eddy

and its corresponding 3D edge coordinates are employed to construct a

partitioned grid for the eddy-induced three-dimensional sound speed

anomaly field in COMSOL Multiphysics, thereby improving the

efficiency of underwater acoustic environment simulation.

When considering only the effect of eddies on the underwater

acoustic environment, the water outside the eddies tends to remain

relatively stable due to minimal eddy influence. In contrast, the

water within the eddies exhibits greater variability in acoustic

properties due to eddy-induced horizontal trapping and vertical
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Ekman suction or pumping. As a result, significant differences can

arise in the sound speed profile, acoustic propagation direction, and

transmission loss (TL) compared to the surrounding waters outside

the eddy.

Therefore, when using FEM modeling in COMSOL

Multiphysics to compute the underwater acoustic environmental

field, different grid densities should be applied inside and outside

the eddy. Specifically, since the acoustic environment within the

eddy is more unstable, a denser grid is required; conversely, the

acoustic environment outside the eddy is relatively stable, allowing

for a coarser grid in those regions. Based on this concept, a segment

of the ice-edge eddy profile detected by ACOBAR is extracted for

the experiment.

As shown in Figure 14a, the eddy boundary—identified using

hierarchical clustering and B-spline surface fitting—is indicated by

the red line. The sound source and point probe used in the model are

represented by the blue square and red dot, respectively. By

incorporating local sound speed profile data from HYCOM, a

model reflecting the eddy-induced acoustic environment is

constructed, as illustrated in Figures 14b, c. In both figures, the left,

right, and bottom boundaries are set as Perfectly Matched Layers

(PML). The regions inside and outside the eddy are shown in blue

and red, respectively. The meshing outside the eddy differs between

the two figures: in Figure 14b, the outside mesh is significantly denser

with a maximum size of l/5, whereas in Figure 14c, it is relatively

coarser at l/4. Here, l denotes the wavelength of the sound wave.

Subsequently, the transmission loss of the sound wave is defined

as follows:

TL = 10log
I1
Ir
, (12)

where I1 and Ir denote the sound intensity at 1 meter and r

meters from the source respectively. Based on the Equation 10, the

TL at the intercept line along the intercept line between the sound

source and point probe is illustrated in Figure 15.
FIGURE 13

Comparison of clustering results based on different data sources at 100 m depth. The blue dashed line represents clustering based on temperature
and salinity; the red dashed line represents clustering based on sound speed anomaly (SSA); the yellow box highlights the location of the “peak”
structure. The background of each subfigure shows: (a) temperature anomaly, (b) salinity anomaly, and (c) sound speed anomaly.
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It can be seen that the TL curves corresponding to the different

outside grid densities almost completely overlap, indicating that

appropriately reducing the mesh density outside the eddy has little

to no effect on the simulation of the eddy-induced underwater

acoustic environment. Furthermore, the TL errors and accumulated

TL errors for the two different outside grids are presented in

Figures 15b, c. The results show that 90% of TL errors are below

3.2 dB, with a mean TL error of 1.2 dB per 20 km, demonstrating

good agreement between the TL values obtained using the two grid

configurations. To quantitatively illustrate the differences between

the two experimental setups, the computational results are

summarized as follows:
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As shown in Table 4, by maintaining the grid size inside the

eddy and reducing the outside eddy grid size from l/5 to l/4, the
grid construction time decreases by 33.8%. Additionally, the total

number of field units, boundary units, and degrees of freedom

(DOF) required for the solution are reduced by 33.5%, 13.2%, and

33.4%, respectively, resulting in a 31.7% reduction in overall model

computation time. This demonstrates that, in the example

presented, applying different grid densities inside and outside the

eddy can save over 30% in both computational time and resources,

while maintaining a mean TL error of only 1.2 dB per 20 km.

Therefore, it can be concluded that the proposed method

effectively identifies eddy-induced three-dimensional sound speed
FIGURE 15

(a) TL at the intercept line. The blue and red lines represent denser and relative sparse outside grids with maximum grid size of l/5 and l/4
respectively. Blue and red backgrounds are used to distinguish between the inside and outside regions of the eddy. (b) Probability distribution of TL
errors. (c) Accumulated TL error curve.
TABLE 4 Comparison of the experiment results.

Frequency Grid(in) Time Grid(out) time Field unit Boundary unit DOF Computation time

100Hz
l/5 79s l/5 6320s 34775258 111696 70101900 1950s

l/5 79s l/4 4183s 23118095 96904 46681417 1332s

Efficiency gain 33.8% 33.5% 13.2% 33.4% 31.7%
FIGURE 14

Marine acoustic model construction using FEM in COMSOL Multiphysics. (a) Eddy-induced sound speed anomaly profile observed by ACOBAR. (b, c) FEM-
based model construction, where the maximum mesh size outside the eddy is set to (b) l/5 and (c) l/4.
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anomaly fields and facilitates efficient grid construction for marine

underwater acoustic environment simulations.
6 Conclusions

In summary, by using sound speed anomalies as indicators for

detecting mesoscale eddies, we identify a negative sound speed anomaly

associated with an ice-edge eddy on the western side of the Fram Strait,

based on sound speed profile data collected by the ACOBAR project.

Building on the acoustic property anomalies induced by mesoscale

eddies, we propose a novel method that combines sound speed

classification with B-spline surface fitting to reconstruct the three-

dimensional structure of the ice-edge eddy during the Arctic ice

formation period in the Fram Strait. Furthermore, we demonstrate

the effectiveness of this method in improving the computational

efficiency of marine underwater acoustic environment simulations

through finite element modeling using COMSOL Multiphysics.

The implementation of the proposed method consists of the

following three main steps:
Fron
Step 1: Based on the vertical correlation of anomalies between

adjacent water masses, extract layers of sound speed

anomalies that capture the essential characteristics of the

mesoscale eddy.

Step 2: Apply an unsupervised learning algorithm to classify

the horizontal distribution of sound speed anomalies at

different depths into three categories: the non-eddy

influence zone, the transition zone, and the eddy core zone.

Step 3: Using the three-dimensional sound speed anomaly core

region identified in Steps 1 and 2, reconstruct the eddy’s

three-dimensional structure by fitting a quasi-uniform B-

spline surface.
The results of method validation indicate that the reconstructed

eddy structure successfully captures two distinct water masses—inside

and outside the eddy—with significantly different temperature, salinity,

and acoustic properties. Assuming that all sound speed anomalies

below –3 m/s are generated by the ice-edge eddy identified by the

ACOBAR project (defining the eddy boundary), the reconstruction

achieves an accuracy of 74%. When these reconstructed eddy

boundaries are applied to marine underwater acoustic environment

simulations, the proposed method reduces computational time and

resource consumption by over 30%, while maintaining a mean

transmission loss (TL) error of just 1.2 dB per 20 km.

This study demonstrates the effective integration of acoustic

sensing, machine learning, and finite element modeling in

oceanographic research. It not only deepens our understanding of

oceanic eddy structures and their associated acoustic environments but

also offers a practical approach for improving the computational

efficiency of underwater acoustic simulations. Specifically targeting

the challenging polar regions, our research presents a closed-loop

workflow for simulating the underwater acoustic environment

influenced by individual eddies, encompassing the processes of

detection, reconstruction, and simulation. However, as an initial
tiers in Marine Science 15
attempt to reconstruct three-dimensional eddy structures from

acoustic data, this work has several limitations. Notably, the proposed

method relies on field measurements, which are inherently restricted to

specific local sea areas. The applicability of our reconstruction approach

—combining hierarchical clustering with B-spline surface fitting—to

scenarios involving multiple concurrent eddies in the data-scarce polar

regions will be further explored in future studies.
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