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target detection
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and Zhen Luo3

1College of Physics and Telecommunication Engineering, Zhoukou Normal University,
Zhoukou, China, 2Department of Electrical Engineering, University of Isfahan, Isfahan, Iran, 3School of
Artificial Intelligence, Zhoukou Normal University, Zhoukou, China
Infrared (IR) small dim target detection under complex background is crucial in

many fields, such as maritime search and rescue. However, due to the

interference of high brightness background, complex edges/corners and

random noises, it is always a difficult task. Especially, when a target approaches

a high brightness background area, the target will be easily submerged. In this

paper, a new contrast method framework named hybrid contrast measure (HCM)

is proposed, it consists of twomainmodules: the relative global contrast measure

(RGCM) calculation, and the small patch local contrast weighting function. In the

first module, instead of using some neighboring pixels as benchmark directly

during contrast calculation, the sparse and low rank decomposition method is

adopted to get the global background of a raw image as benchmark, and a local

max dilation (LMD) operation is applied on the global background to recover

edge/corner information. A Gaussian matched filtering operation is applied on

the raw image to suppress noises, and the RGCM will be calculated between the

filtered image and the benchmark to enhance true small dim target and eliminate

flat background area simultaneously. In the second module, the Difference of

Gaussians (DoG) filtering is adopted and improved as the weighting function.

Since the benchmark in the first module is obtained globally rather than locally,

and the patch size in the second module is very small, the proposed algorithm

can avoid the problem of the targets approaching high brightness backgrounds

and being submerged by them. Experiments on 14 real IR sequences and one

single frame dataset show the effectiveness of the proposed algorithm, it can

usually achieve better detection performance compared to the baseline

algorithms from both target enhancement and background suppression point

of views.
KEYWORDS

remote sensing, infrared small dim target detection, relative global contrast measure,
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1 Introduction

In the field of guidance, early warning, airborne or spaceborne

monitoring/surveillance, maritime search and rescue, etc., infrared

detection system has become an effective supplement or alternative

for traditional visible light and radar detection systems (Kou et al.,

2023). However, in some practical applications, targets are far from

the detector and occupy only a few pixels (usually less than 9×9) in

the output image with low intensity value (Pang et al., 2022a), which

are usually called IR small targets or IR small dim targets. The

detection of IR small dim targets is highly challenging (Luo et al.,

2024; Ma et al., 2022), as shown in Figure 1: Firstly, the small size of

the target results in a lack of significant shape or texture

information; Secondly, the low intensity value makes it difficult to

obtain the target directly in the raw image; Thirdly, there are usually

various complex backgrounds such as buildings, clouds and sea

waves in real applications, they may have high brightness and

complex edges, resulting many false alarms; Finally, some bad

detector pixels and random electrical noise may cause some pixel-

size noise with high brightness (PNHB), they may also bring

false alarms.

So far, a lot of methods have been proposed to address the

problem of IR small dim target detection under complex

backgrounds, which can be mainly divided into two categories:

data-driven methods and model-driven methods (Kou et al., 2023).

The data-driven methods typically use prepared image data to train

a deep convolution network, enabling the network to classify the

input data as targets or backgrounds, they can be further divided

into the two-stage methods such as RCNN (Girshick et al., 2014;

Ren et al., 2017), the single stage methods such as YOLO (Redmon

et al., 2016; Liu et al., 2024; Xu et al., 2024), and the deep unfolding

methods such as RPCANet (Wu et al., 2024). However, data-driven

methods only work well when the input data and the training data

have the same distribution function, but it may not be always true in

practical applications. In addition, a deep convolution network

usually contains a large number of parameters, which is difficult

to train and deploy on a single-chip system.
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The model-driven methods typically design a handy-crafted

feature model according to the feature difference between the true

small dim target and the complex background firstly, then search

for targets in the feature saliency map. Compared to the data-driven

methods, the model-driven methods are easier to understand and

implement for real applications. Therefore, the model-driven

methods still attract a lot of attention nowadays.

The feature model is a key module in model-driven methods,

which can be designed between consecutive frames or within a

single frame. These methods are usually called as sequence-based

methods and frame-based methods, respectively (Luo et al., 2022).

The sequence-based methods (Zhang et al., 2021; Du and

Hamdulla, 2020a; Dang et al., 2023; Pang et al., 2022b) utilize

information from multiple frames simultaneously for target

detection, therefore they usually have better performance.

However, such algorithms typically have higher computational

costs and require more processing resources as they need to

consider a large amount of information. On the contrary, the

frame-based algorithms perform target detection within a single

frame, so they usually require less computation and storage space,

making them easier to implement. Moreover, a frame-based

algorithm is usually adopted as a basic module in some sequence-

based algorithms. Therefore, in this paper we focus on the frame-

based IR small target detection.

According to the different information used during feature

extraction, existing frame-based model-driven algorithms can be

further divided into background estimation methods, morphological

methods, directional derivative/gradient methods, local contrast

methods, frequency filter methods, sparse representation methods,

and sparse and low rank decomposition methods.
1.1 Background estimation methods

Background estimation methods estimate the background value

of each pixel using its neighboring benchmark, then subtract the

background image from the raw image to get the foreground image.
(a) (b)

FIGURE 1

Distributions of real IR small target (labeled with rectangle) and common interference (labeled with ellipses). (a) A raw IR image; (b) Distributions of
different components, TT represents true small target, HB represents high-brightness background, EB represents background edge, CB represents
background corner, and PNHB represents pixel-size noise with high brightness.
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Since the gray value of each pixel in an IR image consists of the

background value, the target value and the random noise, we will be

able to obtain the target easily in the foreground. Current

background estimation methods include median filtering (Yang

and Shen, 1998), max mean/max medium filtering (Deshpande

et al., 1999), and some adaptive background estimation methods

such as Two Dimensional Least Mean Square (TDLMS) (Ding and

Zhao, 2015), etc.
1.2 Morphological methods

Morphological methods firstly design a specific shaped

structural window according to the characteristics of the IR small

dim targets, then use this window to do some morphological

operations such as erosion and dilation at each position of the

raw image to highlight the target and suppress background and

noise. The ring-like new Top Hat structure window (Bai and Zhou,

2010) is an excellent representative of morphological methods for

IR small dim target detection, which was further developed by Deng

et al. (2021) and Zhu et al. (2020a); Zhang et al. (2024) designed two

dilate structures to enhance true target and suppress clutters,

respectively; Peng et al. (2024) designed a dual structure template

with eight directions to distinguish between background edges and

real targets; etc.
1.3 Directional derivative/gradient methods

Directional derivative/gradient methods take the gray value of a

pixel as a scalar. If we calculate the directional derivative/gradient of a

pixel, we can get directional information. Therefore, the number of

features used to distinguish between the target and background will

increase during this process, and the detection performance will be

better. For example, Lu et al. (2022a) used a small kernel model to

calculate directional derivatives; Bi et al. (2020) proposed the high-

order directional derivatives; Yang et al. (2022) adopted

the multidirectional difference measure as a weighting function of

the multidirectional gradient; Hao et al. (2024) designed a gradient

method that can adaptively handle multiscale targets; etc.
1.4 Local contrast methods

Local contrast methods are bionic methods inspired by the

contrast mechanism of the human visual system. A human can

quickly and accurately capture a target which is locally salient in the

image, while large-area high brightness backgrounds will be

ignored, because the human eyes are more sensitive to local

contrast information rather than the brightness information (Itti

et al., 1998). Therefore, using local contrast instead of brightness as

the basis for IR small dim target detection, better performance can

be achieved.

The core of the local contrast is the dissimilarity between a

current pixel and its neighboring benchmark. According to the size
Frontiers in Marine Science 03
of the benchmark, existing local contrast methods can be divided

into large patch methods and small patch methods.

1.4.1 Large patch local contrast methods
Large patch methods first design a double-layer or tri-layer

window in which the inner layer is used to capture target and the

outer layer is used to capture neighboring benchmark, then slide the

window on the whole image and calculate the local contrast

information at each pixel. For example, Chen et al. (2014)

proposed a Local Contrast Measure (LCM) algorithm based on a

double-layer nested window, it takes the ratio of the central cell and

the surrounding cell as local contrast; Han et al. (2014) proposed an

improved LCM (ILCM) algorithm that introduces the average of

the central cell to suppress noise; Qin and Li (2016) proposed a

novel LCM (NLCM) algorithm that only averages some largest

pixels of each cell to protect true targets; Han et al. (2018) proposed

the relative LCM (RLCM) in which both ratio and difference

operations are used to enhance target and suppress clutter

simultaneously; Wei et al. (2016) proposed a multiscale patch-

based contrast measure (MPCM) to deal with targets of unknown

size; Han et al. (2020) and Han et al. (2021) designed two tri-layer

windows to deal with targets of unknown size only using single scale

calculation, which was further developed by Liu et al. (2023); Han

et al. (2022) extended the gray contrast to feature contrast; etc. In

these methods, a large contrast value can usually be extracted when

the target is locally salient, because its benchmark is the

surrounding background of the target. However, it also has

disadvantages: if the background in the field of view is complex

and the target is not locally salient, that is, when the target

approaches a high brightness background, the high brightness

background may be probably included in the patch window and

selected as the benchmark, and the true target will be submerged.

1.4.2 Small patch local contrast methods
The reason for the drawback of the large patch methods is that

the patch size in them is too large, for example, in ILCM, the patch

size can reach up to 24×24; in NLCM, it reaches up to 30×30. A

natural idea to address this drawback is to reduce the size of the

patch window. Researchers find that a true IR small dim target

usually attenuated uniformly in all directions, which means the gray

value of its center is usually larger than its surroundings. Therefore,

we can still obtain the local contrast information of a true target

even if the patch size is smaller than the size of the target. For

example, Shao et al. (2012) used the Laplacian of Gaussian (LoG)

filter template with positive center coefficients and negative

surrounding coefficients for contrast calculation; Wang et al.

(2012) proposed a similar but simpler filter template named

Difference of Gaussian (DoG) filter; Han et al. (2016) used

elliptical Gabor functions instead of the circular Gaussian

functions as kernel functions to distinguish true targets and

complex background edges; Chen et al. (2023a) and Guan et al.

(2020a) used LoG and Gaussian filter as preprocessing stage; etc. In

these small patch algorithms, the template size is usually set to only

5×5, so that the risk of the target being submerged will be reduced as

much as possible. However, if the target is large enough, the
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extracted contrast value will be small, because its benchmark still

belongs to target pixels.

Due to their advantages such as theoretical simplicity, ease of

implementation, and ability to enhance true targets and suppress

complex backgrounds simultaneously, local contrast methods still

attract a lot of attention currently. However, the large patch

methods cannot work well when the target approaches a high

brightness background, and the small patch methods cannot work

well when the target is relatively large. To improve the detection

performance further, some researchers also combine the local

contrast with other methods. For example, Cui et al. (2016)

combined local contrast with the support vector machines; Deng

et al. (2016); Deng et al. (2017) and Yao et al. (2023) introduced

local entropy to weight local contrast; Du and Hamdulla (2020b)

used local smoothness as weighting function; Xiong et al. (2021)

and Zhou andWang (2023) combined with local gradient; Kou et al.

(2022) combined with density peak; Wang et al. (2024) used the

variance as weighting function; Wei et al. (2022) used facet filtering

as preprocessing stage; Han et al. (2019) used TDLMS to get the

background benchmark; Tang et al. (2023) used a dilation operator

with a ring structure to get background benchmark; Han et al.

(2021) selected the surrounding gray value closest to the center in

eight directions as the benchmark;etc. However, these methods can

only alleviate rather than solve these problems.
1.5 Frequency filter methods

Frequency filter methods assume that different components in

the raw image occupy different bands in frequency domain: the

background occupies the low-frequency band since background is

usually flat and continuously distributed in large area; the target

occupies the high-frequency band since it has a significant

discontinuity with its neighborhood; the noise occupies the

highest frequency band since noise is usually random. If we first

transform the original image into the frequency domain and use a

frequency filter, the target will be detected. For example, Yang et al.

(2004) used Butterworth high-pass filters to obtain true targets; Qi

et al. (2014) proposed a detection method based on quaternion

Fourier transform; Gregoris et al. (1994) used the wavelet transform

to get the frequency information of the raw image; Kong et al.

(2016) used Haar wavelet to detect the sea-sky line first, and then

detected targets in the next steps; Chen et al. (2019) combined local

contrast with some frequency domain algorithms; etc. However, if

the backgrounds are very complex, some edges and corners also

contain a lot of high-frequency information, making it difficult to

distinguish them from true targets.
1.6 Sparse representation methods

The main idea of sparse representation is to use an

overcomplete dictionary containing many atoms to linearly

represent the original data. If some atoms have a high correlation

with the original data, their corresponding coefficients will be
Frontiers in Marine Science 04
relatively large, so the coefficient vector will present with obvious

sparsity. Based on this, Zhao et al. (2011) used many simulated IR

small targets as atoms to construct an overcomplete dictionary; He

et al. (2015) discussed the feature of background and found that the

background is usually low rank, so they proposed a representation

method with low rank constraints; Zhang et al. (2017) first used a

particle filter to construct a saliency map, and then represented the

saliency map instead of the raw image; Qin et al. (2016) and Liu

et al. (2017) constructed two dictionaries, one is used to represent

targets and the other is used to represent backgrounds; Chen et al.

(2023b) utilized an adaptive group sparse representation method to

denoise the raw IR image; etc. However, the shapes of the target and

the background are ever changing between different practical

applications, so it is extremely difficult to construct a dictionary

that covers all situations.
1.7 Sparse and low rank decomposition
methods

Sparse and low rank decomposition methods consider that a

raw image consists of two parts: the background image, and the

foreground image. The background in nature usually has a certain

degree of non-local self-similarity, so the rank of the background

image is relatively low; The foreground image mainly contains small

targets and random noises, so it is usually very sparse. If we

decompose the raw image into a matrix with low rank and a

matrix with sparsity, we will be able to identify the targets easily

in the sparse matrix. According to the type of the original data used

for decomposition, the sparse and low rank decomposition methods

can be further divided into two main categories: the image patch

type, and the tensor type.

1.7.1 Image patch type sparse and low rank
decomposition methods

Image patch type sparse and low rank decomposition methods

first construct an image patch matrix, then decompose it by

iteration. For example, Gao et al. (2013) firstly divide the original

image into many image patches, then stretch them into column

vectors and form all vectors as a new matrix, named infrared patch

image (IPI), then used Robust Principal Component Analysis

(RPCA) algorithm to decompose it; Dai et al. (2017) only focus

on some small singular values during RPCA decomposition to

maintain complex background edges; Wang et al. (2017); Fang et al.

(2020) and Zhu et al. (2020b) embedded some regularization factors

in the objective function of RPCA decomposition to constrain the

results; Hao et al. (2023) proposed a novel continuation strategy

based on the proximal gradient algorithm to suppress strong

edges; etc.

1.7.2 Tensor type sparse and low rank
decomposition methods

Tensor type sparse and low rank decomposition methods first

stack image blocks into a three-dimensional tensor, then

decompose it by iteration. For example, Dai and Wu (2017)
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constructed the infrared patch tensor model, besides, some local

priors in the image are used as weighting function, too; Zhang et al.

(2019) simplified Dai’s model and abandoned the weighting

function; Fan et al. (2022) proposed a new anisotropic

background feature as the weighting function for the infrared

patch tensor model; Guan et al. (2020b) used global sparsity

information as a weighting function for local contrast; Lu et al.

(2022b) utilized some gradient information as weighting function

during sparse and low rank decomposition; Zhang et al. (2023)

utilized the local entropy as weighting function; etc.

Generally speaking, the sparse and low rank decomposition

methods directly extract global target features from the whole IR

image, so they can achieve good detection performance, especially

when the target is not locally salient, for example, if a target

approaches high brightness background. However, current

algorithms only focus on the sparse foreground and attempt to

directly find targets within it, but when the background in the field

of view is very complex, a few background edges/corners and noise

components also have sparse features and will be easily decomposed

into the foreground, seriously interfering with the detection of

real targets.
1.8 The main work of this paper

As mentioned earlier, when the target is locally salient, the large

patch local contrast methods, such as LCM, ILCM, etc., can extract

contrast information to the maximum extent, but they will fail when

the target is not locally salient. This is because they directly utilize

some neighboring pixels as the benchmark for a current pixel when

calculating its contrast information. Therefore, we studied how to

improve the benchmark selection principle to address this issue. We

found that the sparse and low rank decomposition methods can

decompose a raw image into a low rank background matrix and a

sparse foreground matrix, and, since this decomposition is

performed at the global level, the background at a true target’s

position will be more accurate and not affected by neighboring high

brightness area. Thus, we propose that the decomposed low rank

background matrix will be more suitable as the benchmark for

calculating contrast information, and a new detection framework

named hybrid contrast measure (HCM) for detecting IR small dim

target in complex background is proposed in this paper.

The main work and contributions of this paper can be

described as:
Fron
1. A new detection framework named HCM is proposed, it

consists of two main modules: the relative global contrast

calculation, and the small patch local contrast weighting

function. Both global and local information are utilized in

this new framework to achieve better detection

performance even when the background is very complex

and the target is not locally salient.

2. In the relative global contrast calculation module, the IPI

model and the sparse and low rank decomposition are
tiers in Marine Science 05
adopted to get the global background as the benchmark for

contrast calculation. However, due to the sparsity of edge

and corner information, it is difficult to maintain them in a

low rank global background. In this paper, we analyzed the

essence of matrix low rank conversion and stated that some

local operations can also be introduced on the global

background to recover edge and corner information.

Therefore, a simple but effective local max dilation

(LMD) method is proposed and used on the estimated

background image.

3. Inspired by our former work in the field of local contrast,

we propose the relative global contrast measure (RGCM)

between a raw image and its global benchmark to enhance

true small dim target and eliminate flat background area

simultaneously. Especially, before global contrast

calculation, a Gaussian filter is applied on the raw image

to suppress PNHB better.

4. In the small patch local contrast weighting function

module, the DoG filter is utilized to obtain local contrast

information, which is then used as a weighting function

after a simple non-negative operation to get the final

saliency map. The advantage of choosing DoG is that its

template is small enough, so we don’t have to worry about

the problem of the targets approaching high brightness

backgrounds and being submerged by them.
2 Methodology

The framework of proposed HCMmethod is shown in Figure 2,

there are two main modules in it: the RGCM calculation, and the

small patch local contrast weighting function.
2.1 RGCM calculation

2.1.1 Global background separation
A raw IR image is usually modeled as the summation of three

components, the background image, the target image, and the noise

image, as shown in Equation 1:

I(x, y) = IB(x, y) + IT (x, y) + IN (x, y) (1)

where (x, y) is the coordinate of each pixel in the image, I is the

raw image, IB is the background image, IT is the target image, and IN
is the noise image.

In practical applications, the background is usually self-similar, so

IB is usually a low rank image. The size of small target is usually very

small, so IT is usually a sparse image. If we use a sparse and low rank

decomposition algorithm such as RPCA to divide a raw IR image into

a sparse image and a low rank image, the target will become salient in

the sparse part. This can be modeled as Equation 2:

min
B;T

rank(B) + ljjTjj0, s : t :D = B + T (2)
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where D is the raw image I, B is the low rank background image

IB, and T is the sparse foreground image IT.

However, it is NP-hard to solve this problem since the rank

function and l0-norm are both non-convex and discontinuous.

Many researchers have used another relaxed form, as shown in

Equation 3:

min
B;T

jjBjj*+ljjTjj1, s : t :D = B + T (3)

Here, the nuclear norm is a relaxation of the rank function, and

the l1-norm is a relaxation of the l0-norm.

When we consider the effect of noises, the augmented Lagrange

multipliers of this problem can be written as Equation 4:

L(B;T) = jjBjj*+ljjTjj1+
m
2
jjD − B − Tjj2F (4)

Then we can solve it via some optimization algorithms such as

the Accelerated Proximal Gradient (APG) (Lin et al., 2009).

Especially, to deal with complex backgrounds better, researchers

usually don’t directly separate the raw image, but firstly construct

the IPI or the tensor data, then decompose it. Taking IPI for an

example, the flowchart of the algorithm is shown in Figure 3.

Firstly, put a window on the raw image and slid it at a given step

to obtain a series of image patches. Then, these patches are flattened

into vectors and formed as a new matrixD, and decomposition will

be applied onD according to Equation 5 to get the low rank matrix

B and the sparse matrix T.

L(B, T ) = Bk k∗+l Tk k1+
m
2

D −B − Tk k2F (5)

Finally, a median function will be used between some

overlapped patches to recover the low rank background matrix B

and sparse target matrix T.

Researchers usually tend to directly find small dim targets in the

sparse matrix, however, when the background is very complex, due

to the sparsity of edge and corner information, they will more likely

be separated into the sparse matrix, overwhelming the target. In our

work, we will turn to the low rank matrix and take it as the

benchmark for global contrast information calculation. The
Frontiers in Marine Science 06
problem has become how to maintain as much edge/corner

information as possible in the low rank matrix.

Let’s analyze the reason for the data changes at complex edge and

corner positions during the low rank conversion. Considering two

simple cases and ignore the IPI operation, as shown in Figure 4: in (a),

the raw image contains an edge and its rank is 5, if we forcefully reduce

its rank to 3, two pixels will be changed and their gray value will be

partially separated into the sparse image, see Figure 4b or Figure 4c.

Due to the self-similarity of pixel values in flat background areas,

it can be reasonably inferred that these data changes should only

occur at edges and corners, and within a small local area, as there are

usually some constraints in the objective function during iterations.

Therefore, we state that some local operations can be introduced on

the global low rank background tomaintain as much edge and corner

information as possible, and apply a simple but effective local max

dilation (LMD) operation on the separated low rank image.

The procedure for the global background separation in this

paper is shown in Algorithm 1. The IPI model is adopted here.
Input: The input raw IR image I with resolution M × N,

patch size p × q, the parameter l using in APG, and the

dilation radius r in LMD.

Output: The global background image BLMD after local

max dilation.

1: Slide the patch window on the raw image to obtain a

series of image patches, then stretch them into vectors

and form them as a new matrix D.

2: Decompose D into a low rank part B and a sparse part T

using APG algorithm:

3: B0=B-1 = 0; T 0=T -1 = 0; a0=a-1 = 1; m0>0; ma>0; h<1.

4: while not converged do

5: YB
k = Bk +

ak−1−1
ak

(Bk − Bk−1)

6: YT
k = Tk +

ak−1−1
ak

(Tk − Tk−1)

7: GB
k = YB

k − 12(YB
k + YT

k − D)

8: (U,S,V) = svd(GB
k),Bk+1 = USmk

2
½S�Vt, where svd means the

singular value decomposition, S means a soft-

thresholding operation, and Vt is the transpose of the

matrix V.
FIGURE 2

The framework of the proposed method.
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Fron
9: GT
k = YT

k − 12(YB
k + YT

k − D)

10: Tk+1 = Slmk
2

½GT
k �

11: ak+1 =
1+

ffiffiffiffiffiffiffiffiffi
4a2

k+1
p

2 ,mk+1 = max (hmk ,ma)

12: k=k+1

13: end while

14: Recover low rank global background image B from B:

Bðx,yÞ ¼ medianðPBi x,yÞÞ;  PBi ∈ Bð where PBi is the ith patch

containing position (x, y), see Figure 3.

15: LMD operation for B:

6: for x=1:M

17: for y=1:N

18: BLMD(x, y)=max(B(x-r:x+r, y-r:y+r))

19: end

20: end

21: Output BLMD.
Algorithm 1. The global background separation.

In LMD, the dilation radius r is a key parameter. The larger the r

is, the more the edge/corner information will be maintained.

However, when a target approaches to high brightness
tiers in Marine Science 07
background and r is too large, the dilated high background will

cover the target location, thus submerging the target during next

step of contrast calculation. After a lot of experiments, we decided

to set r to 1 in this paper to avoid this situation as much as possible.

2.1.2 Matched filtering
Random noises, especially PNHB, may also easily be separated

into sparse foreground, and it is very hard to maintain them in the

low rank background image by LMD operation since they usually

emerge as single pixels. In this paper, before calculating the contrast

information between raw image I and the benchmark BLMD, a

matched filtering operation will be applied on the raw image to

suppress random noises first.

The theory of matched filter tells us that when the filter template

is similar to the signal shape, the SNR of an image can be maximally

improved (Moradi et al., 2016). Since true IR small dim targets

usually has a Gaussian shape, a typical normalized Gaussian

filtering template (Figure 5) will be utilized on the raw image to

suppress random noises, as described in Equation 6:

IGS(x, y) = o
1

l=−1
o
1

k=−1

GS(l, k)I(x + l, y + k) (6)
FIGURE 3

The flowchart of IPI algorithm. The figure is taken from Gao et al. (2013).
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where I is the raw image, (x, y) is the coordinate of each position

in the raw image, GS is the Gaussian template in Figure 5, and IGS is

the filtering result.

We can also explain Equation 6 as a weighted gray sum in a

small local area. A true target usually has an area larger than one

pixel due to the point spread function of the optical system, so if

there is a true target at the current location, the filtering result will

be large. If there is a random noise with gray value equal to or

slightly larger than the true target, the filtering result will be small,

because a noise usually emerges as a single pixel.

2.1.3 Definition of RGCM
Inspired by our former work RLCM in the field of local contrast

methods, the RGCM in this paper is defined as Equation 7:

RGCM(x, y) = max 0,
IGS(x, y)

max½t , BLMD(x, y)�
IGS(x, y) − IGS(x, y)

� �

(7)

The small value t here is used to avoid division by zero, in this

paper it is set to 5 for an 8-bit digital image. Meanwhile, there is a

non-negative constraint to suppress clutters.

It also can be written as Equation 8:

RGCM(x, y) = max½0, f (x, y)IGS(x, y) − IGS(x, y)� (8)

Where f is defined as Equation 9:

f (x, y) =
IGS(x, y)

max½t , BLMD(x, y)�
(9)

It can be taken as an enhancement factor of the current pixel.
2.2 Small patch local contrast weighting
function

In this paper, the DoG filter is selected as a weighting function

for RGCM. DoG is a small patch local contrast method and can

extract the local contrast information within a small area, thereby

avoiding the problem of the targets being submerged by high
Frontiers in Marine Science
 08
brightness backgrounds when approaching them. Similar to the

original DoG method, we use two 5×5 templates (as shown in

Figure 6) as the approximation of the Gaussian kernels, and define

the weighting operation as Equation 10:

W = max½I*(T1 − T2), 0� (10)

Note that considering a desired target is usually hotter than the

environment, a simple non-negative operation is utilized in the

weighting function in this paper to suppress clutters better.
2.3 HCM calculation and discussions

Finally, the HCM is defined as Equation 11:

HCM(x, y) = RGCM(x, y)W(x, y) (11)

It is obvious that both local and global contrast information are

utilized in the proposed HCM method, that is why it is called as

“hybrid” contrast method.

Algorithm 2 gives the main steps for HCM calculation.
Input: A raw input image I with resolution M × N.

Output: The HCM matrix.

1: Decompose I according to Algorithm 1.

1: for x=1:M

2: for y=1:N

4: Calculate IGS(x, y) according to Equation 6.

5: Calculate RGCM(x, y) according to Equation 7.

6: Weight RGCM(x, y) according to Equation 10 and

Equation 11 to get the HCM(x, y).

8: end

9: end

10: Normalize HCM matrix to 0 ~ 1 and output it.
Algorithm 2. HCM calculation.

It is necessary to discuss the different cases where (x, y) is

different types of pixels:
(a) (b) (c)

FIGURE 4

The low rank conversion at edges or corners. (a) A 5 × 5 image with rank of 5 containing a diagonal edge. (b) The image after conversion with rank
of 3. (c) Another case with rank of 3.
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a) If (x, y) is a true target, since a true target’s size is usually very

small and most of its information will be separated into the spare

foreground, it can be easily deduced that

IGS(x, y) > BLMD(x, y) (12)

So, there will be

f (x, y) > 1 (13)

RGCM(x, y) > 0 (14)

Besides, it can be easily deduced that

W(x, y) > 0 (15)

So

HCM(x, y) > 0 (16)

Here, Equation 13 means that the true target can be enhanced

by HCM.
Frontiers in Marine Science 09
Please note that when the target approaches high brightness

background, Equations 12–16 will be still true as long as the dilation

radius r in Algorithm 1 is smaller than the distance between target

and high brightness background.

b) If (x, y) is pure background, since background is usually flat,

most of its information will be separated into the low rank

background, it can be easily deduced that

IGS(x, y) ≈ BLMD(x, y) (17)

So, there will be

f (x, y) ≈ 1 (18)

RGCM(x, y) ≈ 0 (19)

Besides, it can be easily deduced that

W(x, y) ≈ 0 (20)

So

HCM(x, y) ≈ 0 (21)

Equations 17–21 mean that the flat background can be

eliminated by HCM.

Note that Equations 17–21 are independent of the actual value

of the current pixel, which means that the proposed method can

eliminate high brightness background properly.

c) If (x, y) is near a background edge or corner, although some

of its information will be separated into the sparse foreground, the

LMD operation on the low rank background image can recover as

much edge/corner information as possible, i.e.,

BLMD(x, y) ≥ I(x, y) (22)

Considering

IGS(x, y) ≈ I(x, y) (23)
FIGURE 5

The Gaussian filtering template used in this paper.
(a) (b)

FIGURE 6

The two templates used for DoG filtering. (a) T1, (b) T2.
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There will be

BLMD(x, y) ≥ IGS(x, y) (24)

So, we can get that

f (x, y) ≤ 1 (25)

RGCM(x, y) ≈ 0 (26)

And

HCM(x, y) ≈ 0 (27)

Equations 22–27 means that the proposed method can

effectively suppress complex background edges and corners.

d) If (x, y) is a random noise, the case will be similar to the true

target. However, since the Gaussian filtering operation can suppress

single pixel random noise to some extension, it can be easily

deduced that the HCM of a noise pixel will be smaller than a true

target’s, even if its gray value is equal to or slightly larger than the

target. Therefore, the HCM method can suppress random

noise effectively.
2.4 Threshold operation

For each pixel of the raw IR image, calculate its HCM and form

them as a new matrix. It is obvious that the true target will be the

most salient in the HCM result, while other interferences such as

edges, corners and noises are all inhibited. Therefore, in this paper

the HCM result will be treated as the Saliency Map (SM), and an

adaptive threshold operation will be used to extract the true target

from it. The threshold value Th is defined as Equation 28

Th = x ·maxSM + (1 − x)meanSM (28)

where maxSM and meanSM are the maximum and mean value of

SM, respectively. x is a factor range 0 ~ 1, according to our

experiments, a x range from 0.7 to 0.95 is proper for most cases

of single-target detection, but note that it’s better to set x to a

smaller value for multi-target detection cases, since different targets

may have different saliency.

By applying the threshold Th on SM, the pixels larger than Th

will be labeled as 1, otherwise labeled as 0. In the final binary image,

output each connected area as a detected target (to eliminate

clutters better, a dilation operation may be needed first).

Algor i thm 3 summarizes the main s teps for the

threshold operation.
Fron
Input: The saliency map SM with resolution M × N, and the

parameter x.

Output: The target positions.

1: Calculate the threshold Th according to Equation 28.

2: for x=1:M

3: for y=1:N

4: if SM(x, y)<Th

5: SM(x, y)=0
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6: else

7: SM(x, y)=1

8: end

9: end

10: end

1 1 : A p p l y a d i l a t i o n o p e r a t i o n o n S M t o

suppress clutters.

1 2 : O u t p u t t h e c o n n e c t e d a r e a s i n S M a s

target positions.
Algorithm 3. Threshold operation.
3 Details of the IR image data used in
this paper

In this paper, 14 real IR sequences which contain different types

of targets and backgrounds are used to verify the performance of the

proposed algorithm. Figure 7 shows some samples of them, and

Table 1 reports the details.

Besides, a single frame dataset is also used to test the detection

performance of the proposed method, some samples are shown

in Figure 8.

From Figures 7, 8 it can be seen that in the raw IR images, the

targets are usually very small and dim, while the backgrounds are

usually very complex. Besides, some images contain heavy noises.
4 Experiments and results

In this section, we will firstly give each processing step of the

proposed method, and compare the performance of the proposed

algori thm with some basel ine algori thms. Then, the

computational complexity and time consuming of the proposed

method will be analyzed, and the robustness to noises of the

proposed algorithm will be tested. Finally, some ablation

experiments will be conducted to verify the effectiveness of

some important modules of the proposed method. All the

experiments are conducted on a PC with 8-GB random access

memory and 3.1-GHz Intel i5 processor.
4.1 Processing results of the proposed
algorithm

Firstly, the detection ability of the proposed algorithm are tested

and the processing results of the proposed algorithm are given step by

step in Figures 9, 10. The same samples with Figures 7, 8 are given here.

It can be seen from Figures 9, 10 that:

In the original IR image I, the targets are usually small and dim,

while backgrounds are usually complex, they may have high brightness

and complex edges and corners. Meanwhile, there are many random

noises (including PNHB) in some sequences, too.
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The Gaussian fi lter in the first step can effectively

suppress random noises and improve image qua l i ty

to a certain extent.

After sparse and low rank decomposition, the global

background image B separated from the original image mainly

contains background information. However, it lost some important

information of complex edges/corners, which makes it not suitable

to be directly considered as the benchmark for global contrast

calculation in next steps.

After LMD, the dilated global background image BLMD can

recover as much edges/corners information as possible, so it is more

suitable to be used as the benchmark than B.

After RGCM calculation, real targets become very salient.

However, there are still a few clutters in some images with

complex backgrounds.

After the weighting operations by the DoG filtering result,

residual clutters are suppressed further and real targets become

the most salient in the SM.

Finally, after the threshold operation, all the real targets are

output successfully, and only one false alarm emerges in Sequence 7

(it is a broken cloud which has a similar pattern to the real target, in

our future work, we will utilize some time domain methods to

eliminate it). Therefore, the effectiveness of the proposed method

is proved.
Frontiers in Marine Science 11
4.2 Comparisons with other algorithms

Nine existing algorithms are chosen as baselines for comparisons

to verify the advantages of the proposed method, including:

Seven local contrast algorithms, such as DoG (Wang et al.,

2012), ILCM (Han et al., 2014), MPCM (Wei et al., 2016), RLCM

(Han et al., 2018), Weighted Local Difference Measure (WLDM)

(Deng et al., 2016), Multi-Directional Two-Dimensional Least

Mean Square (MDTDLMS) (Han et al., 2019), and Enhanced

Closest Mean Background Estimation (ECMBE) (Han et al., 2021).

One global decomposition algorithm, i.e., IPI (Gao et al., 2013).

One deep learning algorithm, i.e., RPCANet (Wu et al., 2024).

Here is a summary of each baseline method:
a. DoG is a traditional small patch local contrast method.

b. ILCM is a large patch local contrast method, it takes the ratio

value between a current pixel and its surrounding

benchmark as contrast information.

c. MPCM is a large patch local contrast method, but it

performs multiscale calculation to extract the target better.

d. RLCM is a multiscale local contrast method too, and both

ratio and difference operations are utilized in it to enhance

true target and suppress background simultaneously.
(a) (b) (d) (e)

(f) (g) (i)(h) (j)

(k) (l) (m) (n)

(c)

FIGURE 7

Samples of the 14 real IR sequences. (a–n): Sequence 1 ~ Sequence 14.
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TABLE 1 Features of the 14 real IR sequences.

Sequence Frames
Image

Resolution
Target
ID

Target Size Target Details Background Details

1 330 320×256 Only 1 About 4×5

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Some bad pixels.
• Almost unchanged.

2 400 320×256 Only 1
Varies from 2×2

to 3×5

• Car target.
• A long imaging distance.
• Located on road.
• Keeping motion.

• Building-Tree background.
• Heavy clutters including
bright areas.
• Some bad pixels.
• Almost unchanged.

3 330 320×256 Only 1 About 3×5

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.
• Very small and dim.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Complex textures.
• Many bad pixels.
• Almost unchanged.

4 300 320×256 Only 1 About 3×5

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.
• Very small and dim.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Complex textures.
• Some bad pixels.
• Almost unchanged.

5 200 320×256 Only 1 About 3×3

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.
• Very small and dim.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Complex textures.
• Some bad pixels.
• Almost unchanged.

6 267 250×250 Only 1
Varies from 2×3

to 3×5

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping motion.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Complex textures.
• Almost unchanged.

7 280 320×256 Only 1 About 3×4

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.
• Very small and dim.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Many broken clouds.
• Some bad pixels.
• Almost unchanged.

8 260 320×256 Only 1 About 3×3

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.
• Very small and dim.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Complex textures.
• Many bad pixels.
• Change slowly.

9 250 320×256 Only 1
Varies from 2×2

to 3×3

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.
• Very small and dim.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Complex textures.
• Some bad pixels.
• Change slowly.

10 370 320×256 Only 1
Varies from 2×2

to 3×3

• Plane target.
• A long imaging distance.
• Located in cloudy sky.
• Keeping little motion.
• Very small and dim.

• Sky-Cloud background.
• Heavy clouds including
bright areas.
• Complex textures.
• Some bad pixels.
• Change slowly.

(Continued)
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Fron
e. WLDM introduces the local entropy as a weighting function

for the local contrast information.

f. MDTDLMS utilizes a background estimation method to get

the benchmark for contrast information calculation,

however, its benchmark is still obtained by some

local operations.

g. ECMBE combines local contrast method with background

estimation too, and it proposes a new background

estimation principle named closest mean, therefore the

problem of target submergence caused by the

ne ighbor ing h igh br igh tnes s background can

be alleviated.

h. IPI is a sparse and low rank decomposition algorithm, but it

focuses on the sparse foreground image and tries to directly

search target in it.

i. RPCANet is a newly proposed deep learning algorithm, it

unfolds the traditional iterations in RPCA algorithm with

deep networks to achieve sparse and low rank decomposition.
The key parameters of each algorithm are listed in Table 2.
tiers in Marine Science 13
Firstly, two objective indicators named SCR Gain (SCRG) and

Background Suppression Factor (BSF) are used to describe different

performances of different algorithms. SCRG, which is defined as

Equation 29, can effectively describe the target enhancement ability

of an algorithm. BSF, which is defined as Equation 30, can describe

the background suppression ability of an algorithm.

SCRG =
SCRout

SCRin
(29)

BSF =
sin

sout
(30)

where SCRin and SCRout are the SCR (defined as Equation 31) of

the raw image and SM respectively, sin and sout are the stand

deviation of the raw image and SM respectively.

SCR =
It − Inbj j

s
(31)

where It is the maximal gray of the target center. Inb is the

average gray of the neighboring background around the target
TABLE 1 Continued

Sequence Frames
Image

Resolution
Target
ID

Target Size Target Details Background Details

11 330 256×256 Only 1
Varies from 2×3

to 3×3

• Unmanned aerial vehicle target.
• Located in sky.
• Moving fast.
• Near to high brightness background in
some frames.

• Ground background.
• Heavy clutters including
bright areas.
• Complex edges and corners.
• Changed fast.

12 470 256×256 Only 1
Varies from 3×3

to 3×4

• Unmanned aerial vehicle target.
• Located in sky.
• Moving fast.

• Ground-Tree background.
• Heavy clutters including
bright areas.
• Complex edges and corners.
• Changed fast.

13 230 256×256 Only 1
Varies from 3×3

to 3×5

• Unmanned aerial vehicle target.
• Located in sky.
• Moving fast.

• Ground-Tree background.
• Heavy clutters including
bright areas.
• Complex edges and corners.
• Changed fast.

14 300 280×228

Target 1 About 5×6 • Ship target.
• A long imaging distance.
• Located in homogeneous sea.
• Two targets, one is moving and the other
is stationary.

• Sea-Sky background.
• Heavy wave clutters.
• Heavy noises.
• Almost unchanged.

Target 2 About 5×5
(a) (b) (d) (e) (f)(c)

FIGURE 8

Six samples of the single frame dataset. (a-f): sample 1 ~sample 6.
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center, in this paper it is set to the area between 15 × 15 and 9 × 9

around the target center. s is the stand deviation of the image.

The results of SCRG and BSF are shown in Tables 3, 4,

respectively. Please note that as a deep learning method, the

output of RPCANet is the target probability of each pixel, so we

are unable to calculate its SCRG and BSF.
Frontiers in Marine Science 14
It can be seen from Tables 3, 4 that compared to the baselines,

the proposed algorithm can achieve the highest SCRG and BSF in

most cases.

Then, to intuitively show the detection performance of different

algorithms, Figures 11, 12 give the salience map and the detection

results of each algorithm for the samples of the 14 sequences.
(a) (b) (d) (e) (f) (g) (h)(c)

FIGURE 9

The processing results of the proposed algorithm for the samples of the 14 sequences, from top to bottom: Sequence 1~ Sequence 14. (a) Raw IR
images. (b) Images after Gaussian filtering. (c) The separated global background B. (d) The global background BLMD after LMD. (e) The RGCM results.
(f) The DoG weighting function. (g) The HCM results after weighting. (h) The final detection results after threshold operation.
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Besides, the Receiver Operating Characteristic (ROC) curves for

each whole sequence are utilized to compare the detection

performance of different algorithms, and the results are shown in

Figure 13. Here, the False Positive Rate (FPR) and the True Positive

Rate (TPR) are defined as Equation 32 and Equation 33.

FPR =
number of detected false targets

total number of pixels in the whole image
(32)

TPR =
number of detected true targets
total number of real targets

(33)

It can be seen from Figures 11-13 that:
Fron
a. DoG can only extract true targets in Sequence 1, Sequence 3

and Sequence 14 in Figure 12, and its ROC performance is

usually the worst in Figure 13, too.

b. ILCM can extract true targets in Sequence 1, Sequence 7,

Sequence 10, Sequence 12 and Sequence 14, its performance

is slightly better than DoG. However, it is not satisfied in

many other sequences.

c. MPCM can output true targets in Sequence 1, Sequence 2,

Sequence 12 and Sequence 14. However, when the

background is complex, many interference are enhanced

and output too, for example, in Sequence 4, Sequence 6,
tiers in Marine Science 15
Sequence 7 and Sequence 9, etc. Especially, in Figure 13, its

performance is worse than many other algorithms.

d. RLCM can achieve a better detection performance in some

sequences, for example, in Sequence 4, Sequence 8 and

Sequence 9, etc. However, when the background is very

complex and the target is very dim, it will fail, for example,

in Sequence 5, Sequence 6, Sequence 11 and Sequence

13, etc.

e. WLDM utilizes the local entropy as the weighting function

for local contrast information, however, when the target is

dim and the background is very complex, the target will be

submerged by clutters, for example, in Sequence 3 ~

Sequence 10, etc.

f. MDTDLMS utilizes the TDLMS background estimation

method to get the benchmark for contrast information

calculation, so it can achieve good performance in some

cases, such as in Sequence 3, Sequence 5, Sequence 12 and

Sequence 13, etc. However, its benchmark is obtained

locally, so its performance is still not good in some cases,

especially when the target approaching some high

brightness background, for example, in Sequence 11.

g. ECMBE improved the principle of benchmark selection, so it

can achieve good detection performance even if the target is

not local salient, for example, in Sequence 11. However,
(a) (b) (d) (e) (f) (g) (h)(c)

FIGURE 10

The processing results of the proposed algorithm for the samples of the single frame dataset. (a) Raw IR images. (b) Images after Gaussian filtering.
(c) The separated global background B. (d) The global background BLMD after LMD. (e) The RGCM results. (f) The DoG weighting function. (g) The
HCM results after weighting. (h) The final detection results after threshold operation.
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since its benchmark is still obtained locally, its performance

is not very good in some cases, for example, in Sequence 5 ~

Sequence 7, and Sequence 9 ~ Sequence 11, etc.

h. As a global decomposition method, IPI can achieve good

performance even when the target is not local salient, for

example, in Sequence 11. However, it focus on sparse part

and is sensitive to complex edge/corner information. If the

target is weak and the background is complex, it will fail, for

example, in Sequence 2 ~ Sequence 7, Sequence 10 ~

Sequence 13, etc.

i. RPCANet, as a deep learning method, can achieve good

performance when the data distribution is the same with

the training samples, for example, in Sequence 1. However,
tiers in Marine Science 16
when the data distribution is different, its performance will

decrease significantly.

Compared to the existing methods, the performance of the

proposed HCM algorithm is always in the forefront in all of the 14

sequences. Especially, when the clutter is heavy the target is not

local salient, it can still achieve a good detection performance.
4.3 Comparisons of computational
complexity and time consuming

In this section, the computational complexity and time

consuming for different algorithms is analyzed. For simplicity,

suppose the raw image has a resolution of X × Y, and the scale of
TABLE 3 The SCRG of different algorithms in the 14 sequences.

Sequence Target DoG ILCM MPCM RLCM WLDM MDTDLMS ECMBE IPI RPCANet Proposed

1 1 6.316 28.763 4.878 12.686 90.853 45.971 70.676 76.028 – 97.014

2 1 0.548 1.133 2.087 1.290 12.639 4.869 10.119 11.465 – 22.213

3 1 8.935 17.292 3.690 16.557 40.904 45.075 128.828 82.053 – 300.988

4 1 5.676 22.872 1.084 8.076 46.389 32.411 127.327 87.506 – 351.813

5 1 10.645 10.011 2.303 9.952 98.753 74.875 121.774 147.741 – 333.891

6 1 4.890 6.007 1.260 5.120 7.000 0.422 75.084 161.634 – 591.153

7 1 23.462 57.587 7.123 8.088 45.541 34.230 98.213 240.984 – 1.016E3

8 1 4.722 1.779 0.628 9.397 6.324 49.381 142.654 25.871 – 355.369

9 1 4.120 13.185 1.085 7.167 42.672 23.193 59.347 79.010 – 202.156

10 1 5.644 36.641 0.353 6.294 58.622 40.036 92.332 107.412 – 244.940

11 1 0.643 0.638 1.486 0.494 3.820 1.563 2.208 3.843 – 11.220

12 1 0.960 3.099 5.310 4.391 4.671 11.277 17.274 14.610 – 42.769

13 1 0.574 0.426 0.518 0.526 3.852 3.435 4.040 9.390 – 19.922

14
1 10.799 14.609 11.128 6.127 34.068 35.088 48.003 60.438 – 41.034

2 6.627 11.963 9.203 7.439 23.238 31.017 47.937 66.447 – 92.900
The bold values are the largest values.
TABLE 2 The parameter values used in the baseline algorithms.

Parameter values

DoG A 5×5 binomial kernel as author recommended. CTh=0.15 for single-target situation and 0.01 for multi-target situation.

ILCM A same 5×5 binomial kernel with DoG, and the cell size is 8×8.

MPCM Three scales with cell size 3×3, 5×5 and 7×7 are used.

RLCM The cell size is 9×9. Three scales are used, and (K1, K2) is set to (2, 4), (5, 9) and (9, 16), respectively.

WLDM Entropy window size is 5×5. Four scales are used for LDM calculation, and the cell size is 3×3, 5×5, 7×7 and 9×9, respectively.

MDTDLMS The inner window is 7×7, the outer window is 11×11, and m is set to 10–7 for 8-bit images.

ECMBE The central layer is 3×3, the isolating layer is 7×7, and the surrounding layer is 7×7.

IPI The patch size is 50×50, the step is 10, l is 1/sqrt(max(m,n)).

RPCANet The trained parameters of the network are downloaded from the authors’ github.
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the patch window or cell is (2L+1)2. For multi-scale local

algorithms, such as MPCM, RLCM and WLDM, etc., denote S as

the scale number, Li (i=1, 2, …, S) is the L of the ith scale.

For DoG, there will be (2L+1)2 multiplications and (2L+1)2

additions for each pixel during the convolution operation, so the

computational complexity will be O(L2XY).

For ILCM, since it uses a DoG filter as preprocessing, and the

latter subblock-stage processing consumes less calculations, its

computational complexity will be O(L2XY).

For MPCM, for each scale, the average operation will cost (2Li
+1)2 additions for each pixel, so for total S scales its computational

complexity will be O(SLS
2XY).

For RLCM, for each scale, the sort operation within a cell will

cost (2Li+1)
2log(2Li+1)

2 calculations, so for total S scales its

computational complexity will be O[SLS
2log(LS

2)XY].

For WLDM, for each scale, the average operation will cost (2Li
+1)2 additions for each pixel, and the entropy calculation will need a

sort operation within a cell first, which will cost (2Li+1)
2log(2Li+1)

2

calculations, so for total S scales its computational complexity will

be O[SLS
2log(LS

2)XY].

For MDTDLMS, its computational complexity is reported as O

(L2XY) in the original paper.

For ECMBE, its computational complexity is reported as O

(LXY) in the original paper.

For IPI, the computational complexity is reported as O(Nkmn

log(mn) + rc(p + 1)) in the original paper. Here, m is the number of

pixels of the patch window, i.e., (2L+1)2 in this paper. n is the

number of patches, k is the number of nonzero singular value (rank)

of Gk
T, N is the iteration number, p is the overlapping pixel number

during the transformation from the target/background patch image

to the reconstruction image. r and c are the row and column

numbers of the original image, i.e., X and Y in this paper,
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respectively. Therefore, its computational complexity can be

rewritten as O(NkL2n log(L2n) + XY(p + 1)) here.

For RPCANet, since it is a deep learning method, its

computational complexity is not given here.

The proposed algorithm has four main steps: global background

separation, Gaussian matched filtering, RGCM calculation and

DoG weighting operation. For global background separation, it

has the same computational complexity as IPI algorithm; for the

Gaussian matched filtering, it has 9 multiplications, 1 addition at

each pixel, totally 10XY operations for the whole image; for RGCM

calculation, there will be 8 comparisons for LMD of the background

benchmark, 1 division, 1 subtraction, and 1 multiplication for

relative GCM calculation, totally 11XY operations for the whole

image; for the DoG weighting operation, there will be 25

multiplications and 1 addition for each pixel, totally 26XY

operations for the whole image. Therefore, its computational

complexity will be O(NkL2n log(L2n) + XY(p + 47)).

Table 5 summaries the comparisons of computational complexity

for different algorithms. The average time consuming (in seconds) of

different algorithms for one frame is listed in Table 6. Please note that

although some existing algorithms can achieve less computational

complexity and average time consuming, their performances are too

bad. The proposed algorithm, although didn’t show advantages in

computational complexity and time consuming, can achieve better

detection performance.
4.4 The robustness to noises

To test the robustness to noises of the proposed algorithm, we

select one sequence (Sequence 11) and add different levels of noises

into it, then draw the ROC curves, see Figure 14. It can be seen that
TABLE 4 The BSF of different algorithms in the 14 sequences.

Sequence DoG ILCM MPCM RLCM WLDM MDTDLMS ECMBE IPI RPCANet Proposed

1 3.617 27.820 0.011 7.181 11.040 3.785E5 5.808E5 1.037E6 – 2.093E7

2 0.430 6.092 0.145 1.752 18.794 3.346E3 6.926E3 1.585E4 – 2.776E5

3 5.731 55.319 0.019 15.708 24.602 1.349E5 3.815E5 7.604E5 – 5.435E7

4 3.301 54.694 0.020 11.892 15.932 8.391E4 2.966E5 6.207E5 – 3.102E8

5 7.045 95.262 0.030 15.683 41.273 1.370E5 2.314E5 5.652E5 – 2.073E8

6 4.834 116.547 0.190 6.246 656.763 1.131E3 2.628E3 7.414E3 – 1.680E4

7 4.232 89.609 0.012 12.175 22.301 1.287E5 2.755E5 7.490E5 – 9.332E8

8 3.428 3.975 0.019 11.142 1.898 1.485E5 3.620E5 4.621E5 – 5.540E8

9 2.473 46.555 0.011 6.601 8.589 1.913E5 2.673E5 4.731E5 – 7.440E7

10 4.179 69.465 0.011 8.364 21.241 1.311E5 3.246E5 6.378E5 – 1.298E8

11 0.175 3.490 0.215 0.850 24.653 345.695 483.090 625.085 – 6.940E3

12 0.351 8.474 0.155 2.816 32.035 1.856E3 2.827E3 3.667E3 – 2.877E5

13 0.229 4.593 0.159 1.087 23.780 387.889 539.851 1.528E3 – 4.043E4

14 3.734 63.267 1.464 6.264 1.792E3 924.493 1.415E3 2.179E3 – 8.282E3
The bold values are the largest values.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1584345
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2025.1584345
after the add of noise, the detection performance of the proposed

algorithm doesn’t change obviously.
4.5 The ablation experiments

To verify the effectiveness of some important modules, the

ablation experiments are conducted at last. In the proposed

algorithm, three modules are important: the Gaussian matched

filter, the LMD for the low rank background, and the DoG
Frontiers in Marine Science 18
weighting function. All of them are tested and the results are

given in Table 7.

From Table 7 we can see that the proposed algorithm with all of

the three modules can achieve the best or the second best SCRG and

BSF inmost cases, which proves the effectiveness of these modules for

improving detection performance. It is worth noting that in some

sequences, the algorithm that do not perform Gaussian filtering

operation can achieve a larger SCRG. This is because in these

sequences the target is extremely small and the Gaussian filtering

may smooth it to some extent. However, we still think the Gaussian
(a) (b) (d) (e) (f) (g) (i)(h)(c)

FIGURE 11

The saliency maps of the 14 sequences using different algorithms. (a) DoG. (b) ILCM. (c) MPCM. (d) RLCM. (e) WLDM. (f) MDTDLMS. (g) ECMBE. (h)
IPI. (i) RPCANet.
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filter is necessary since it can smooth backgrounds and noises too,

that’s why the algorithm without Gaussian filter has a smaller BSF.
5 Conclusions

In this paper, a new contrast method framework named hybrid

contrast measure (HCM) is proposed for IR small target detection.
Frontiers in Marine Science 19
It consists of two types of contrast information: the global contrast,

and the local contrast. In the global contrast calculation, it firstly

obtains benchmark via a global sparse and low rank decomposition,

so that it can handle the situation when target approaches to a high

brightness background and becomes not local salient. Especially, a

simple LMD operation is applied on the global low rank

background benchmark to recover as much edge/corner

information as possible. Then, the relative global contrast
(a) (b) (d) (e) (f) (g) (i)(h)(c)

FIGURE 12

The detection results of the 14 sequences using different algorithms. (a) DoG. (b) ILCM. (c) MPCM. (d) RLCM. (e) WLDM. (f) MDTDLMS. (g) ECMBE.
(h) IPI. (i) RPCANet.
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(a) (b) (d) (e)

(f) (g) (i)(h) (j)

(k) (l) (m) (n)

(c)

FIGURE 13

The ROC curves of different algorithms in different sequences. (a–n): Sequence 1 ~ Sequence 14.
FIGURE 14

The detection performance of the proposed algorithm in Sequence 11 after different levels of noises are added.
TABLE 5 Computational complexity of different algorithms.

Algorithm DoG ILCM MPCM RLCM WLDM

Computational Complexity O(L2XY) O(L2XY) O(SLS
2XY) O[SLS

2log(LS
2)XY] O[SLS

2log(LS
2)XY]

Algorithm MDTDLMS ECMBE IPI RPCANet Proposed

Computational Complexity O(SLS
2log(LS

2)XY) O(LXY) O(NkL2nlog(L2n)+XY(p+1)) - O(NkL2nlog(L2n)+XY(p+23))
F
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TABLE 6 Average time consuming of different algorithms for 14 sequences (seconds per frame).

Sequence DoG ILCM MPCM RLCM WLDM MDTDLMS ECMBE IPI RPCANet Proposed

1 0.113 0.035 0.918 1.202 1.450 3.420 0.203 8.544 0.536 8.695

2 0.074 0.023 0.737 1.355 2.108 10.555 0.507 15.651 0.531 13.750

3 0.190 0.023 0.612 1.254 1.322 3.602 0.177 12.108 0.563 5.380

4 0.081 0.031 1.115 1.198 2.012 3.027 0.336 4.905 0.571 5.158

5 0.064 0.028 0.934 1.331 1.766 3.030 0.276 6.288 0.521 6.213

6 0.057 0.025 0.896 1.467 1.438 2.683 0.253 4.566 0.386 4.680

7 0.080 0.033 0.882 1.054 1.058 3.037 0.189 6.983 0.540 7.255

8 0.110 0.032 0.956 0.967 1.115 2.788 0.301 7.082 0.570 7.196

9 0.102 0.019 1.774 0.884 1.082 3.023 0.244 5.778 0.520 5.891

10 0.055 0.022 0.669 1.348 1.153 3.019 0.179 7.150 0.571 7.249

11 0.062 0.021 0.892 1.043 1.133 5.829 0.185 3.314 0.389 3.446

12 0.054 0.024 1.003 1.103 1.158 3.648 0.165 3.143 0.460 3.378

13 0.066 0.032 0.925 1.130 1.093 4.595 0.203 3.165 0.369 3.301

14 0.053 0.018 0.476 0.628 1.056 2.734 0.136 2.703 0.545 2.273
F
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TABLE 7 Ablation experiments.

Gaussian filter ✓ ✓ ✓

LMD ✓ ✓ ✓

Weighting operation ✓ ✓ ✓

Sequence Target SCRG BSF SCRG BSF SCRG BSF SCRG BSF

1 1 133.928 9.864E6 97.444 1.884E7 76.409 1.649E7 97.014 2.093E7

2 1 29.340 8.559E4 22.002 2.488E5 15.609 1.951E5 22.213 2.776E5

3 1 306.460 3.028E7 298.755 4.695E7 236.877 4.277E7 300.988 5.435E7

4 1 323.895 6.322E7 162.517 1.436E8 326.720 2.236E8 351.813 3.102E8

5 1 275.106 6.647E7 288.026 1.350E8 262.833 1.580E8 333.891 2.073E8

6 1 450.003 1.538E4 144.636 1.598E4 591.153 1.680E4 591.153 1.680E4

7 1 1.031E3 2.428E8 714.261 3.018E8 1.031E3 7.125E8 1.016E3 9.332E8

8 1 366.159 1.325E8 300.761 4.057E8 277.094 1.548E8 355.369 5.540E8

9 1 232.863 2.583E7 140.887 5.026E7 119.682 4.407E7 202.156 7.440E7

10 1 268.457 3.977E7 215.553 1.092E8 190.242 1.008E8 244.940 1.298E8

11 1 7.912 4.052E3 10.604 4.886E3 6.599 4.091E3 11.220 6.940E3

12 1 21.766 1.369E5 37.281 2.137E5 35.896 2.407E5 42.769 2.877E5

13 1 21.040 1.097E4 15.731 2.729E4 16.862 3.323E4 19.922 4.043E4

14
1 48.215

7.807E3
44.773

7.552E3
50.569

6.807E3
41.034

8.282E3
2 92.223 93.312 76.353 92.900
fro
The bold values are the largest values.
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measure is proposed between the benchmark and the image after

Gaussian filtering (to suppress random noises), to enhance true

target and suppress background simultaneously. In the local

contrast calculation, the DoG filter is adopted and improved with

a non-negative constraint to get the weighting function to suppress

clutters further. Experiments on 14 real sequences and a single

frame dataset show the effectiveness of the proposed algorithm

under different types of targets and backgrounds, and, compared to

some baseline methods, the proposed algorithm can usually achieve

better performance in SCRG, BSF and ROC curves. Besides,

ablation experiments are conducted to verify the effectiveness of

some important modules.
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