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In recent years, the Northwest Pacific has seen a decline in Pacific saury

(Cololabis saira) catch and an eastward shift of fishing grounds, both of which

have posed increasing challenges for effective resourcemanagement. To identify

environmental drivers underlying the formation of Pacific saury fishing grounds,

we developed machine learning-based prediction models using spatial

environmental variables. Our models combined fishing site and pseudo-

absence data with high-resolution oceanographic data from the Japan

Fisheries Research and Education Agency Regional Ocean Modeling System

(FRA-ROMS). We employed three machine learning methods to evaluate three

types of explanatory variable representations: averaged, vectorized, and spatially

structured. The results demonstrated that preserving spatial structure using a

two-dimensional grid layout improved model performance. Our prediction

results reflected the recent eastward shifting fishing grounds, suggesting a

strong influence of environmental factors, particularly water temperature

derived from the ocean circulation model. The convolutional neural network

model, which best replicated the eastward shift of fishing sites, achieved a recall

of 45.0% and a precision of 95.4%, although its performance declined under

higher environmental novelty, which was associated with low-catch years

(2020-2022). By evaluating how different spatial representations of

environmental variables affect model performance, this study demonstrates

that incorporating spatial structure improves predictive ability and enables

models to capture recent eastward shifts in fishing activity under changing

ocean conditions.
KEYWORDS

Pacific saury, fishing sites prediction, machine learning, environmental variables,
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1 Introduction

Pacific saury (Cololabis saira) is one of the most commercially

significant pelagic fish species in the North Pacific Ocean. It is

primarily caught in Japan, Russia, South Korea, China, Taiwan, and

Vanuatu (Hubbs, 1980; Suyama et al., 2006; Fuji et al., 2021). This

fishery is crucial for these countries’ economies, especially in Japan

where saury is a culturally important seasonal food. Therefore, any

considerable changes in its abundance or spatial distribution may

impact the economy. Pacific saury landings in Japan exceeded

200,000 tons in 2013 but dropped below 20,000 tons in 2022,

indicating a sharp decline in stock availability and economic value.

Detailed fluctuations in catch are reported in the annual stock

assessment reports by the North Pacific Fisheries Commission

(NPFC, 2024). Pacific saury, with a lifespan of 2 years, migrate

long distances across the North Pacific Ocean, and their distribution

is heavily influenced by ocean currents and conditions (Suyama

et al., 2006). Several studies have reported that the distribution and

recruitment of Pacific saury are strongly influenced by

oceanographic features such as temperature fronts and surface

currents, and that catch-per-unit-effort (CPUE) has declined in

association with these environmental changes (Tseng et al., 2013,

2014; Ichii et al., 2018; Huang et al., 2019; Yatsu et al., 2021).

The oceanographic factors, such as sea surface temperature and

height, is closely related to the movement patterns and habitat

selection of Pacific saury (Pittman and Brown, 2011; Yasuda et al.,

2014; Kakehi et al., 2020). The Oyashio–Kuroshio frontal zone is an

area with increased eddy activity and where water masses of

different origins converge, creating an environment that is rich in

food for Pacific saury (Prants et al., 2020). Moreover, the larvae’s

location and the plankton that Pacific saury feed on are also affected

by ocean currents (Tian et al., 2003; Ito et al., 2004; Baitaliuk et al.,

2013). Recent observations also highlight the influence of variations

in the Kuroshio’s pathway, particularly the persistent “large

meander” state that has continued since 2017. These changes

have altered regional ocean conditions, including sea surface

temperatures, eddy fields, and fishery distributions (Hirata

et al., 2025).

The location of Pacific saury fishing grounds has significantly

shifted eastward in recent years (Miyamoto et al., 2019; Suyama et al.,

2019; Kakehi et al., 2020). Biomass estimates suggest an eastward shift

in the center of distribution since 2010 (Hashimoto et al., 2020). This

shift in fishing sites will escalate travel time for vessels, thereby

increasing the fuel consumption and operating costs of fishing

vessels. Hence, predicting fishing sites and gaining insight into the

stock fluctuations for this species based on ocean conditions will

meaningfully contribute from economic and resource management

perspectives. While many previous studies have employed habitat

models to estimate fishing site suitability, few have investigated this

long-term directional shift using high-resolution spatial data (Kakehi

et al., 2020; Xing et al., 2022). Recent models have begun to

incorporate mesoscale oceanographic features, yet high-resolution

approaches remain rarely applied to Pacific saury. Consequently,

conventional methods may struggle to predict saury distributions

under changing conditions (Xing et al., 2022). In addition, while
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numerous studies have developed models using point-based data at

individual fishing locations (Liu et al., 2022; Xing et al., 2022), limited

research has examined how different input designs and spatial

configurations influence prediction performance.

Here, we combined fishing site and pseudo-absence data with a

high-resolution regional ocean model (FRA ROMS) to incorporate

spatially continuous environmental information and examine the

distribution of Pacific saury under changing oceanographic

conditions. The methods used to predict fishing sites were

random forest (RF) and convolutional neural network (CNN),

both of which are widely used machine learning algorithms.

These methods were selected for their ability to effectively capture

nonlinear relationships and complex spatial patterns in

environmental data, which are commonly observed in fisheries

studies (Glaser et al., 2014; Han et al., 2023). Moreover,

compared to conventional species distribution models (SDMs),

such as generalized linear models (GLMs), machine learning

provides greater flexibility and enhanced predictive performance,

making it a powerful tool for modeling complex ecological systems

(Gobeyn et al., 2019; Liu et al., 2024). Modeling forage species like

Pacific saury is particularly difficult because they are highly mobile

and respond to short-term environmental changes across broad

spatial scales. This study addresses these challenges by applying

machine learning models that incorporate spatially structured

environmental data. The overall modeling framework is

il lustrated in a conceptual diagram (Figure 1), where

environmental variables were extracted as a spatial range centered

around each fishing location. Furthermore, to our knowledge, no

existing models have successfully replicated the long-term eastward

shift of Pacific saury using historical data, despite its critical

importance for understanding stock availability and climate-

driven distributional changes. This study provides a novel

approach to tackle this challenge by combining ocean reanalysis

products with spatially aware machine learning, offering new

insights for ecosystem-based fisheries management.
2 Materials and methods

2.1 Pacific saury data

The Pacific saury fishing position in latitude and longitude for

the period from 2013 to 2022, sourced from the Fisheries Agency,

corresponded to the date and location of the catch (Figure 2). We

used fishing records from Japanese commercial stick-held dip net

fisheries targeting Pacific saury. A “fishing site” was defined as the

precise location where fishing activity occurred, based on recorded

latitude and longitude.

These records covered the main fishing season, which extends

from August to December each year. The data included the

geographic locations of fishing operations across a broad region

of the northwestern Pacific, ranging from 35°N to 50°N in latitude

and from 140°E to 170°E in longitude. The response variable was

the fishing or nonfishing status of Pacific saury catches. Locations

where catches occurred were assigned a value of “1.0”. However,
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there was very little data available for locations where no catch

occurred. To address this, pseudo-absence data were generated by

randomly sampling dates, latitudes, and longitudes from the fishing

grounds, and assigning a value of “0.0” to these sampled points. The

number of these pseudo-absence entries was matched to the

number of “1.0” entries. Finally, the date and location

information for both “1.0” and “0.0” points were combined to

create a dataset indicating the presence or pseudo-absence of

catches at specific times and places.
2.2 Environmental data

The environmental information used as explanatory variables

for learning and prediction included temperature, SSH, and ocean

current velocity reanalyzed by FRA-ROMS II. This ocean data

assimilation system estimates reanalyzed products by combining

observation and simulation data for the waters around Japan (Fujii

and Kamachi, 2003; Kuroda et al., 2017). The data resolution

provided by FRA-ROMS is 0.1° × 0.1° per grid cell. In line with

the Pacific saury fishing range and season, the target season was

Aug. 1st to Dec. 31st in 140°E–180°E and 30°N–50°N. Daily water

temperature (depths: 0, 30, 50 m, unit: °C), sea surface height

(depth: 0 m, unit: m), and ocean current velocity (depth: 0 m, unit:

m/s, including both east–west (u) and north–south (v)

components) were obtained for 2013 to 2022. Each data was

obtained in a numerical data structure corresponding to latitude

and longitude, with six variables per grid cell. Environmental

variables were extracted from square grid regions of variable size

centered on each fishing site or pseudo-absence location, using data
Frontiers in Marine Science 03
from FRA-ROMS. This design allowed the models to learn localized

oceanographic conditions associated with fishing activity.

The temporal resolution of the environmental data was daily,

and the values used for each sample corresponded to the same date

as the fishing sites or pseudo-absences entry. Some nearshore

fishing sites included land areas within the extracted

environmental range, resulting in missing values. To ensure

compatibility with machine learning algorithms that cannot

process missing data, these were replaced with randomly selected

values within the valid range for each variable.
2.3 Models

In this study, we constructed three learning models based on

two machine learning approaches: RF and CNN (Figure 1A and

Table 1). Among the three models, two were constructed using the

RF algorithm, while the other one was based on CNN architecture.

RF, an ensemble classifier, generates and combines multiple

decision trees using randomly selected samples and variables

(Breiman, 2001). Its high accuracy and noise robustness make it

suitable for predicting trends in marine fishing (Belgiu and Drăgut,̧

2016; Stock et al., 2020; Behivoke et al., 2021). CNN, the most

frequently used deep learning technique for spatial pattern analysis,

learns spatial features by convolving data. Its grid cell-based data

arrangement makes it an ideal tool for processing remote sensing

and ocean model data (LeCun et al., 1989, 2015; Han et al., 2023).

Unlike traditional statistical models such as generalized linear

models (GLMs), RF and CNN are non-parametric methods that

do not require predefined link functions or distribution families,
FIGURE 1

Overview of variable acquisition and validation settings. (A) Method for obtaining explanatory variables in a predictive model and the models used.
(B) The years designated for model training and the year designated for validation.
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making them more flexible for modeling complex ecological

patterns. We selected these two approaches to compare

differences in input data structures while keeping the model

comparison conceptually simple. RF was also chosen because it

requires fewer hyperparameters than other tree-based methods,

facilitating a more straightforward comparison.

The first model was a random forest model (RF-averaged) in

which environmental variables from all grid cells within the square

region centered on each fishing or nonfishing site were averaged

into a single value. Each square had a size of NC × NC grid cells,

where NC is the number of grid cells on one side of the square. To

determine the optimal value of NC, we tested four spatial ranges

(NC = 16, 24, 32, 40, 48, 56 and 64) and evaluated model

performance for each setting. Based on validation results, the

most accurate configuration was selected and consistently applied

across models. The number of decision trees was set to 100, which is

generally sufficient to stabilize prediction performance in cases with

a limited number of input features. The max_features parameter,

which controls the number of features considered at each split, was

set to 6 because this corresponds to the total number of input

variables, and with few explanatory variables, random feature

selection would not improve performance.

The second model was a random forest (RF-vector) that used

environmental variables extracted from a square area around each

site, which were flattened into a one-dimensional vector for input.

The total number of explanatory variables was NC × NC × 6. The

key input variables, such as temperature and SSH, exhibit temporal

and spatial autocorrelation because of their geophysical nature, with

particularly strong correlation observed among adjacent cells.

While RF models are relatively robust to high-dimensional input

owing to their ensemble nature, there remains a potential risk of

overfitting, particularly due to redundant variables. In this study, to

ensure fair comparison across models, we deliberately accepted this

risk and did not apply explicit variable selection. The number of

features to use in the decision tree was set to the square root of the

total number of variables, and the number of decision trees was set

to 1,000. Although the value was not rigorously optimized, the

number of decision trees in the RF models was set to a sufficiently

large value to ensure that all variables contribute to the analysis.

The third model employs a CNN. Similar to RF-vector,

explanatory variables were obtained in a square centered on the

“fishing sites or pseudo-absences; however, unlike RF-vector, the

CNN model retained the spatial structure of the input grid. The

model was constructed with a sequential architecture with the

following configuration: 1. The input layer used a (3, 3)

convolutional layer with 128 filters, applied the ReLU activation

function and batch normalization, and inserted a (2, 2) pooling

layer. 2. Four additional convolutional layers were similarly built

with 112, 64, 64, and 128 filters. 3. After the last convolutional layer,

a (2, 2) pooling layer and a dropout layer (dropout rate 0.2) were

inserted (Supplementary Figure S1).

The analysis was performed using Python (3.9.7), with Sci-kit Learn

(1.3.2) for random forests and Keras and TensorFlow (2.6.0) libraries for
Frontiers in Marine Science 04
CNNs. Please refer to the Supplementary Script Files

(Supplementary_Scripts.docx) for more details on the models. The

script files used in the analysis are provided as SupplementaryMaterials.
2.4 Validation

The machine learning models were trained using data for 19,326

fishing sites collected from Japanese fishing vessels between 2016 and

2019. To evaluate the temporal generalization ability of the models, their

accuracy was assessed using fishing data from independent years

preceding and following the training period: 2013, 2014, 2015, 2020,

2021, and 2022 (Figure 1B and Supplementary Figure S2). Since 2013,

the catches of Pacific saury have shown a clear declining trend, with the

2022 catch being the lowest ever recorded (Supplementary Figure S2). In

parallel with this trend, the number of fishing sites has also consistently

decreased, accompanied by a gradual eastward shift in their locations

(Figure 2). Therefore, when setting the training and validation data,

common validation methods that switch the training and validation

data, such as the leave-one-out and k-fold methods, could change the

quality and quantity of the training data for each validation. To validate

the recent changes in Pacific saury, such as the eastward shift, using a

model trained on consistent learning data, the training period was fixed

from 2016 to 2019, and predictions and validation were performed 3

years before and after. In this study, such years were referred to as “high-

catch years” (2013–2015) and “low-catch years” (2020–2022) based on

the total catch volume, because of the remarkable fluctuations in catch

volumes between the three preceding and following years (Figure 2).

Although the COVID-19 pandemic may have influenced

fisheries operations to some extent, its impact on total catch

volume, which serves as the basis for classifying years into “high-

catch” and “low-catch” categories, is considered minor. This is

supported by the fact that the decline in Pacific saury catch had

already begun well before 2020, indicating a longer-term downward

trend independent of the pandemic (Supplementary Figure S2). The

models were evaluated by comparing prediction results against

these catch locations. In comparing recall and precision metrics

across various conditions and models, true fishing sites were defined

as the specific locations where fishing activity occurred on a given

day, based on recorded latitude and longitude data. Due to the

spatial resolution of the FRA-ROMS dataset (0.1° × 0.1°), these

points were matched to the corresponding grid cell. Sites with

predicted values of 0.5 or higher were considered true positive (TP),

otherwise false negative (FN). The recall rate (TP/(TP + FN)) was

calculated as the proportion of fishing sites correctly predicted each

year. Additionally, a predicted value of 0.5 or higher for a randomly

generated point was considered a false-positive (FP), and precision

was calculated as (TP/(TP + FP)). Precision was used instead of

specificity because it better reflects the reliability of predicted fishing

sites, which is more relevant for evaluating the usefulness of the

model in identifying productive fishing grounds. To assess the

relative importance of each environmental variable, we conducted

a jackknife analysis by systematically removing one variable at a
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time from the model inputs and evaluating the resulting change in

prediction performance. Variables whose exclusion led to a

substantial decrease in model accuracy were considered more

influential in the model. For water temperature, which was

available at three depths (0, 10, and 30 m), we tested both

individual layer exclusion and the removal of all layers together.

For ocean current velocity, the east–west (u) and north–south (v)

components were excluded as a pair.
Frontiers in Marine Science 05
2.5 Environmental novelty calculation

Environmental Novelty Calculation To assess environmental

novelty, we calculated the Mahalanobis distance between

environmental conditions in the validation years and those in the

training period (2016–2019). For each fishing site, environmental

variables were averaged within a square range centered on the point.

Mahalanobis distance was computed between years for each month,
FIGURE 2

Pacific saury fishing locations (2013–2022) with points color-coded by month. The figure illustrates seasonal patterns and interannual changes, such
as an eastward shift in fishing grounds. (A) represents a high-catch year, (B) corresponds to the model training period, and (C) represents a low-
catch year.
TABLE 1 Summary of explanatory variable configurations for each model.

Model Input Structure Number of Variables Type of Variables

CNN Image-like spatial grid
NC × NC × 6

Temperature 0 m,
Temperature 10 m,
Temperature 30 m,
SSH 0 m,
Velocity 0 m (u: east–west),
Velocity 0 m (v: north–south)

RF-vector Flattened spatial grid

RF-averaged Averaged spatial grid 6
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using the mean vector and covariance matrix of the environmental

variables from the training period as the reference. Mahalanobis

distance provides a measure of how distinct a given environmental

condition is from the training baseline, with higher values

indicating greater environmental novelty.
3 Results

Overall, the CNN and RF-vector models showed the best overall

performance, accurately reproducing both the seasonal westward

movements and the interannual eastward shift of fishing grounds.
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Notably, the CNN model best captured the eastward shift observed

since 2020. In contrast, the RF-averaged model performed less well,

especially in spatial prediction accuracy. Interannual differences in

model performance were also evident, with generally lower

accuracy during low-catch years.

Among the three models, RF-vector showed the highest recall

and CNN showed the highest precision across the six validation

years (Figure 3). Recall and precision were comparable between

CNN and RF-vector models, while RF-averaged showed noticeably

lower precision. For detailed validation results across models and

years, see Supplementary Table S1. For both models, although the

recall rate improved as the range increased, the precision reached its
FIGURE 3

Validation of prediction accuracy by condition for each model. Bars represent the average of three Validations. (A) Accuracy of models by the
number of grid cells (NC). The numbers below the bars indicate NC, the number of grid cells on one side of the square area (1 grid cell = 0.1 latitude
and longitude degree). The type of model is specified below the numbers. (B) Validation of accuracy by year (2013 to 2022, excluding the training
year) for models using range variables. Validation was performed using an NC of 40.
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peak at 40-grid cells. The annual recall and precision calculations

for 40-grid cells are displayed in Figure 3B. Recall and precision

demonstrated a decrease in low-catch years.

Jackknife analysis revealed that recall and precision were

generally similar between the full models and those with

individual variables excluded. However, excluding all water

temperature variables led to a noticeable decline in performance

across all models, highlighting its critical role in prediction

(Figure 4, Supplementary Table S2). Excluding all water

temperature variables led to deterioration in both recall and

precision in CNN and RF-vector models, and caused a substantial

drop in precision in the RF-averaged model. When water

temperature was excluded by depth, only the RF-vector model

showed a slight decrease in recall and precision for 30 m water

temperature. No changes were observed when SSH and velocity

were excluded.

For all three models, predictions are expressed as the probability

of fishing presence, ranging from 1.0 (high probability of saury

catch) to 0.0 (low probability of saury catch). Figure 5 and

Supplementary Figure S3 present prediction maps for September

18 and November 18, revealing seasonal and interannual trends.

This seasonal movement trend, mirrored in the prediction map’s

color intensity, is consistent across years (Supplementary Figure

S4). Figure 6A shows a consistent monthly westward movement in
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the centroids of the actual and predicted fishing sites. It also

illustrates an overall eastward shift when comparing the same

month across different years. Comparing the first half of the

fishing season (September 18) with the middle half (November

18), a similar eastward shift in the actual and predicted fishing sites

is found (Figures 5, 6B, C). On September 18, the actual fishing sites

consistently appeared west of 150°E until 2015 but shifted further

offshore in 2020 (Figure 5). Based on the predictions by the CNN

model, fishing sites with predicted probabilities exceeding 0.5 were

located to the west of 150°E until 2015. Although the predicted

probabilities in the east were lower compared to the western fishing

sites, the predicted fishing sites have expanded to the east of 150°E

since 2020. Similarly, in the RF-vector model, the predicted fishing

sites expanded to the east post-2020. During the midterm fishing

season on November 18, the actual fishing season gradually shifted

to the east as the year progressed, and the prediction results showed

a similar trend toward eastward movement. The predicted fishing

sites identified by the RF-averaged are widely dispersed throughout

the oceanic region, with minimal variation between years. The

water temperature (0 m), SSH, and velocity on September 18 and

November 18 are shown in Supplementary Figure S5 based on the

data used for learning.

The feature importance in the random forest algorithm

quantifies the extent to which each feature contributes to the
FIGURE 4

Impact of variable removal on prediction accuracy. Conducted with three models displaying accuracy for all variables and accuracy when each
variable is removed. Validation was performed using an NC of 40.
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reduction of impurities in the decision trees of the ensemble.

Features that lead to a decrease in impurity when utilized in the

trees are considered significant in the model. The RF-vector and

RF-averaged importance index, obtained from impurity-based

feature importances, is shown in Supplementary Figure S6 as a

variable evaluation. Supplementary Figure S6, which presents the

RF-vector and RF-averaged importance index, shows that the 10 m

water temperatures represented by a distinct red color, were crucial

for prediction. The RF-vector importance was divided by the

variable type and displayed horizontally in the latitude direction

and vertically in the longitude direction. The resolution and extent

of the red area in the feature importance map were based directly on

the spatial resolution of the environmental data (0.1° grid) used in

the models. The red area extended from the center into an elliptical

shape with a 5-grid cell radius (0.5° of longitude), corresponding to

approximately 55.7 km (latitude) and 42.6 km (longitude) at 40°N.
Frontiers in Marine Science 08
4 Discussion

Models with multi-cell inputs, including RF-vector and CNN,

more accurately tracked fishing site trends than spatial averaging

models. RF-averaged, which used only spatially averaged values,

showed lower accuracy compared to the RF-vector and CNN

models using all the values from the square grid (Figure 3).

Consequently, the RF-averaged model produced more scattered

predictions across the study area (Figure 5 and Supplementary

Figure S3). The superior performance of models that incorporate

high-resolution grid data (RF-vector and CNN) suggests that

gradient indicators, such as ocean currents, significantly impact

predictions. Previous Pacific saury research emphasized the

importance of large geographical scale changes (Tian et al., 2004;

Miyamoto et al., 2019; Xing et al., 2022). The spatial scale of

oceanographic factors (such as temperature, currents, and prey
FIGURE 5

Prediction maps generated by models on September 18 for each year (2013–2015 and 2020–2022). Each grid cell’s color corresponds to the color
bar and represents the predicted probability (range: 0–1). The overlaid magenta circles indicate locations where actual catches occurred. Prediction
was performed using an NC of 40.
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distribution) and the fish’s movement patterns and habitat selection

are closely related. This suggests that setting variable ranges is

particularly important for migratory Pacific saury (Pittman and

Brown, 2011; Yasuda et al., 2014; Kakehi et al., 2020). As seen in

Figure 3A, the RF-vector and CNN models showed increased

precision when variables are set in a wide range, plateauing when

number of grid cells is 40 or more. The spatial extent of important

features shown in Supplementary Figure S6 aligns well with the

daily swimming range of Pacific saury (64.8 km day−1), enabling

biological interpretation of spatial prediction patterns (Kakehi et al.,

2020). The importance of water temperature within the Pacific

saury’s daily activity range aligns with previous findings.

Temperature and SSH showed high importance on the periphery

and not only on the center. This suggests that including such

peripheral areas, where key environmental features lie, may

enhance predictive accuracy. These findings underscore the

importance of using a sufficiently wide spatial range and

maintaining the spatial resolution of environmental variables,

instead of averaging them, when predicting catches.

Excluding the water temperature variable led to a decrease in recall

and precision, which is a reasonable outcome given its known

importance in Pacific saury distribution (Figure 4). Numerous
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reports suggest that Pacific saury’s habitat is affected by water

temperature (Tian et al., 2004; Miyamoto et al., 2019; Yatsu et al.,

2021). It is also been proposed that sea surface temperatures influence

plankton density and juvenile fish growth (Ito et al., 2013; Miyamoto

et al., 2020). However, when removing temperature at only one depth

(e.g., 0, 10, or 30 m), the model performance remained largely

unchanged. This suggests that water temperatures at different depths

are highly correlated, and that the remaining layers can compensate for

the excluded one. Thus, temperature as a whole remains a key variable

in prediction, even though individual layers may be interchangeable.

However, using all layers may still offer robustness under varying

oceanographic conditions, such as changes in the vertical structure of

the water column across years. Report suggest that the impact of SSH

on Pacific saury distribution is less than that of temperature (Liu et al.,

2022). However, despite numerous reports indicating ocean currents’

influence on distribution, it was unexpected that velocity had no

significant effect on predictions (Oozeki et al., 2015; Liu et al., 2022).

This implies that either temperature trends sufficiently explain the

predictions or vertical and horizontal current velocities do not directly

impact distribution.

It was particularly interesting to observe predictions reflecting

the eastward shift of Pacific saury fishing points, a recent issue
FIGURE 6

Monthly centroids of the actual and predicted fishing sites with regard to longitude. The actual fishing site centroids were determined using the
fishing site location data, while the predictions were determined using the three models prediction probabilities. The centroids were calculated to
validate the periods, excluding the learning period. The horizontal axis represents the month or year, while the vertical axis represents the longitude.
Plots of consecutive months or years related to lines. (A) Monthly centroids of longitude during the validation period. (B) Centroids of longitude for
September. (C) Centroids of longitude for November.
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(Figures 5, 6). Environmental changes are believed to cause this

eastward shift in Pacific saury fishing (Miyamoto et al., 2019;

Hashimoto et al., 2020; Kakehi et al., 2020; Fuji et al., 2021). The

observation of this eastward shift in predictions using marine

factors suggests these factors contribute to the shift’s cause. To

explore which conditions might have contributed to the model

outputs, we compared the predicted fishing sites with the actual

environmental fields (Supplementary Figure S5). On September 18

and November 18, the predicted sites were consistently located in

areas with 0 m water temperatures ranging from 15°C–20°C. A

large difference in SSH was observed around 2014–2015 and 2020–

2022. In the later period, the predicted fishing sites were located in

areas with low SSH (Supplementary Figure S5). The velocity also

differed between the early and later period. The predicted fishing

sites were located along the quasi-stationary jets (Isoguchi jets) in

the latter period (Matsuta and Mitsudera, 2023). This pattern may

indicate that environmental shifts in SSH and current structure,

such as the position of the Isoguchi jets or the Oyashio flow,

contributed to the eastward expansion of fishing grounds. Plants

et al. described the second and third branches of the Oyashio flow

into the Isoguchi stream, forming Lagrangian fronts where

subtropical and subarctic waters converge, creating favorable

fishing sites (Prants et al., 2020). The temperature distribution

suitable for Pacific saury and the influence of the Kuroshio

Current are consistent with known information (Ito et al., 2013;

Liu et al., 2022). Therefore, the model may be capturing key

environmental features associated with Pacific saury ’s

distributional shift. While the exact mechanisms remain

speculative, such alignment suggests that this modeling approach

could potentially aid in identifying drivers of spatiotemporal

changes in fishery resources.

Near Japan’s coast at 143°E, both CNN and RF-vector predicted

relatively high probabilities offishing sites within the predicted spatial

range across years (Figure 5 and Supplementary Figure S3). However,

there have been nonfishing sites in this area post-2020, rendering

these predictions incorrect. As shown in Figure 2, the training data

were primarily concentrated along coastal regions, resulting in

limited representation of offshore areas. This spatial imbalance

likely caused the models to consistently predict high probabilities

near the coast, possibly reflecting overfitting to coastal conditions.

Additionally, while the significant difference was observed only in

August and December, Mahalanobis distance was higher in low-catch

years, suggesting notable oceanographic changes (Supplementary

Figure S7). Environmental novelty may underlie the poorer

performance in these years, particularly for RF-vector and CNN,

which may have overfit to training conditions. The recall and

precision rate deterioration in low-catch years, shown in Figure 3B,

could be due to these effects. Previous studies have shown that

environmental novelty can compromise SDM performance by

limiting model generalizability (Allyn et al., 2025; Velazco et al.,

2024). Furthermore, biased spatial sampling schemes such as those

commonly present in fishery-dependent data may have reduced the

representativeness of environmental conditions and increased

uncertainty in projections (Karp et al., 2023).
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can clarify not only the type of crucial environmental factors but

also their range and depth. Among the models using spatial grids,

the RF-vector model showed higher recall than the CNN, while the

CNN had higher precision than the RF-vector model. The recall

difference is larger than the precision difference, making RF-vector

seem highly accurate. However, the CNN model reproduced the

actual eastward shift more accurately. Therefore, the convolutional

and pooling layers of the CNN model successfully extracted the

characteristics of the ocean conditions.
5 Conclusion

The prediction model, utilizing two-dimensional spatial

variables based on the ocean circulation model, demonstrated

higher prediction accuracy compared to models without such

spatial variables and visually replicated Pacific saury distribution

behavior due to environmental factors. The significance and

behavior of these models are anticipated to be beneficial for

future Pacific saury resource assessment and management. In this

study, a shift in Pacific saury fishing sites was identified based on

data collected by the Japanese fishing fleet. However, it should be

noted that fleets from other countries, such as Taiwan and China,

have also increased their operations in the high seas in recent years.

Therefore, to obtain a more comprehensive understanding of the

spatial distribution and shifts in Pacific saury habitats, subsequent

studies should incorporate fishing data from multiple nations. Such

integrated data would enable more accurate modeling of how

marine species respond to environmental variability across

regions. The responsiveness of marine resources to environmental

changes is crucial for environmental protection and resource

management, and this study demonstrated that the machine

learning prediction framework successfully captured spatial

distribution shifts associated with these changes. In particular,

accurate prediction models that capture offshore shifts and

habitat changes are essential for developing climate-resilient

fisheries management under future ocean warming scenarios. In

the future, we aim to validate more precise models, assess how

various fish species respond to environmental changes, and verify

the practical application of a prediction tool for fishers using FRA-

ROMS II prediction data.
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