AUTHOR=Magel Caitlin L. , Nugraha Adi , Sutherland David A. , Helms Alicia R. , Niessner Janet , Khangaonkar Tarang TITLE=Biophysical model of eelgrass and water quality in Coos Bay, OR shows greater mitigation potential for ocean acidification than hypoxia JOURNAL=Frontiers in Marine Science VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2025.1585621 DOI=10.3389/fmars.2025.1585621 ISSN=2296-7745 ABSTRACT=Seagrass beds provide important ecosystem services and are valued, in part, for their potential to mediate stressors such as ocean acidification and hypoxia (OAH) for sensitive species. However, the susceptibility of seagrasses to anthropogenic impacts and recent declines motivate the need to better understand the drivers of seagrass and the water quality consequences that occur with variation in seagrass abundance. To meet this need, we leveraged existing monitoring data (water quality and seagrass), hydrodynamic circulation model, and biogeochemical model framework with seagrass submodel, to produce a biophysical model of Coos Bay estuary, Oregon, U.S. The model includes biogeochemical processes involving water quality, plankton, seagrass, and sediment-water interactions. Ecosystem models like this are useful for evaluating complex estuarine systems because they allow us to extend our understanding of system dynamics beyond existing observations and perform experiments to identify the processes driving observed patterns. We used the biophysical model of Coos Bay to evaluate the dynamics of water quality and native eelgrass (Zostera marina) under three eelgrass abundance scenarios (zero eelgrass, current extent, and maximum observed extent) to elucidate the relationship between eelgrass and OAH. Including eelgrass in the Coos Bay model produced results that more closely resembled water quality observations - dissolved oxygen (DO) and pH were more dynamic in simulations with eelgrass, often having both higher highs and lower lows. While there were some areas of the estuary where DO improved with the addition of eelgrass to the model there was overall a small net increase in harmful DO conditions (based on a salmon physiological threshold). In contrast, ocean acidification conditions, pH and calcium carbonate saturation state for aragonite (Ω), were improved (based on oyster requirements) with the addition of eelgrass - although the magnitude of improvement differed seasonally and spatially. Our new model represents a useful tool - one which accounts for and controls the relevant physical and biogeochemical processes - to evaluate conditions that confer resilience or enhance vulnerability to OAH in an important Pacific Northwest coastal estuary and results can inform the OAH-related dynamics occurring in other eastern boundary current estuaries.