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wave model through mixed-
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Introduction: To enhance the simulation performance of wave numerical

models, high-precision ocean models are widely utilized. However, the low

efficiency of high-precision numerical computation remains one of the key

bottlenecks hindering the advancement of wave forecasting.

Methods: To address this issue, this study introduces a mixed-precision

framework based on variable-specific precision allocation, applied to the

MArine Science and Numerical Modeling (MASNUM) ocean wave model,

considering physical sensitivities.

Results: The results demonstrate that by strategically reducing the precision of

non-critical variables to single-precision (float32) or half-precision (float16), the

mixed-precision scheme significantly improves computational efficiency while

maintaining the accuracy of the simulation results. Specifically, compared to the

double-precision baseline, the mixed-precision approach results in minimal

accuracy loss, with SMAPE values for significant wave height ranging between

0.12% and 0.43%, and RMSE ranging from 0.01 m to 0.02 m.

Discussion: In terms of computational performance, combined structural and

precision optimizations yield a 2.97–3.39× speedup over double-precision. The

findings robustly demonstrate the potential of mixed-precision computing for

high-resolution, real-time ocean forecasting applications, providing valuable

insights for balancing computational efficiency and simulation accuracy.
KEYWORDS

ocean wave model, MASNUM model, mixed-precision, simulation accuracy,
computational efficiency
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1 Introduction

Ocean Waves have a wide and profound impact on the marine

environment, involving multiple fields such as marine ecosystems,

climate, maritime transportation, and marine pollution control.

Therefore, the accuracy of wave forecasting has garnered

widespread attention. The core of wave forecasting lies in wave

numerical models, which provide efficient and cost-effective

methods to address these complex issues. Wave numerical models

predict wave dynamics by solving the wave dynamics equations,

incorporating external forcing factors such as wind fields and

atmospheric pressure fields (Liang et al., 2019; Shchepetkin and

McWilliams, 2005; Booij et al., 1999). However, the development of

numerical simulation capabilities is constrained by the progress in

high-performance computing. In recent years, scientists have

focused on achieving more accurate, detailed, and comprehensive

simulation results by continuously improving physical

parameterizations, enhancing spatiotemporal resolution, and

coupling different system models (Zhuang et al., 2018; Palmer,

2012; Matsueda and Palmer, 2011). These efforts aim to enhance the

predictive power of models. Nevertheless, such improvements often

come at the cost of significant computational demands, leading to

challenges such as insufficient computing resources and excessive

energy consumption in traditional simulations.

To address these challenges, mixed-precision computing has

emerged as a cutting-edge technology in numerical simulations

(Düben and Palmer, 2014; Thornes, 2016; Sun et al., 2023; Göddeke

et al., 2007). Mixed-precision involves using different levels of

numerical precision within the same computational task, namely

incorporating double-precision floating-point numbers (double64),

single-precision floating-point numbers (float32), and half-

precision floating-point numbers (float16). The goal is to strike a

balance between computational performance and numerical

precision. In this context, the advantages of each precision level

are leveraged based on the specific needs of the computation.

Double-precision offers high accuracy but incurs higher

computational and memory costs. Single-precision provides a

good compromise between precision and performance, while half-

precision is less precise but offers significant improvements in

computational and memory efficiency (Baboulin et al., 2009). This

approach is particularly crucial for large-scale or real-time

numerical simulations, such as hurricane forecasts, weather

predictions and fluid dynamic simulations.

Previous research results indicate that, in the weather and

climate prediction models, simulations using appropriately

reduced precision in high-resolution models tend to yield better

results at lower computational costs, compared to traditional high-

precision low-resolution numerical simulations (Thornes et al.,

2017; Düben et al., 2015, 2017; Hatfield et al., 2019; Vána et al.,

2017). Additionally, conducting inexact calculations at a small scale,

rather than relying solely on parameterization, is more effective in

reducing computational and energy consumption, without

negatively impacting the quality of simulation results (Düben

et al., 2014; Chantry et al., 2019). Maynard and Walters (2019)

suggested that atmospheric model developers continued exploring
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the reduction of computational precision to enhance simulation

efficiency, particularly in mixed-precision arithmetic in the

ENDGame dynamical core of the Unified Model. In ocean

simulations, Yamagishi and Matsumura (2016) achieved a 4.7-

fold increase in the execution speed of the non-hydrostatic ocean

model “kinaco” on GPU compared to CPU by applying mixed-

precision in the P/H solver and other techniques. Prims et al. (2019)

applied mixed-precision methods to the Nucleus for European

Modelling of the Ocean (NEMO), utilizing the reduced-precision

emulator (RPE) for precision reduction. Their results revealed that

in the NEMO model, 652 variables (69.2%) could be represented

using single-precision. Lai et al. (2021) reduced numerical precision

in both the shallow water wave equation (SWE) and Princeton

Ocean Model (POM) models, and the simulation results validated

the feasibility of the mixed-precision approach. Therefore, mixed-

precision methods in the field of numerical simulations hold

potential advantages for enhancing performance, conserving

computational resources, and advancing scientific research.

The MArine Science and Numerical Modeling (MASNUM)

ocean wave model is the third-generation global ocean wave model

developed by the Laboratory of Marine Environmental Science and

Numerical Modeling at the First Institute of Oceanography,

Ministry of Natural Resources, China (Sun et al., 2021, 2014;

Yang et al., 2005; Sun et al., 2018; Teng et al., 2016). Based on

LAGFD-WAM wave model, the numerical wave model is

established in spherical coordinate system, and the balance

equation of wave energy spectrum and its complex characteristic

line equation are derived. This model possesses the capability to

simulate and predict global, regional, and nearshore wave

environments and is widely applied in marine scientific research

and numerical forecasting (Zhuang et al., 2021). This study focuses

on the MASNUM model, classifying variables within the model

based on their mathematical properties and physical attributes. The

sensitivity of various physical processes in the MASNUM model to

mixed-precision results is analyzed. Precision formats for different

variables are determined, enabling the application of mixed-

precision in the MASNUM model. The structure of this paper is

structured as follows: Section 2 presents the methodology, while

Section 3 provides a detailed analysis and discussion of the

simulation experiments conducted using the mixed-precision

scheme, along with its application on a 20,000-core system.

Finally, Section 4 summarizes the study and explores directions

for future research.
2 Methods

2.1 MASNUM wave model

The MASNUMwave model is a numerical simulation approach

based on the energy balance equation in wavenumber space, where

the wave spectrum is the primary simulation target. The

wavenumber spectrum calculation in the MASNUM wave model

mainly includes the propagation function and source function. The

source function accounts for the following physical mechanisms:
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wind input, nonlinear wave-wave interactions, bottom friction,

wave breaking dissipation, and wave-current interactions. The

governing equations of the model use the conservation equation

of the wave energy spectrum in the spherical coordinate system:

SS = Sin + Sds + Sbo + Snl + Scu (1)

where Sin, Sds, Sbo, Snl , Scu are the wind input source function,

breaking dissipation source function, bottom friction dissipation

source function, nonlinear wave-wave interaction source function,

wave-current interaction source function, respectively.

The MASNUM model is a wave numerical simulation program

developed using the Fortran programming language. This program

primarily consists of modules for inputting model data, performing

numerical computations for waves, solving wave characteristic

vectors, and outputting results. The wave numerical computation

section includes the propagate and implsch functions. The parallel

computing processes of the MASNUMmodel are as follows: First, a

source code image is created and run on each computing node.

Then, the parallel environment is initialized, and the topographic

data is read. Next, the main computation and communication

sections are executed, followed by the output of model files.

Finally, the parallel environment is terminated.
2.2 Experimental configuration

In the initialization section, the MASNUM model offers two

versions for all variables: single-precision and double-precision. The

double precision options yield more accurate simulation results but

come with increased computational cost. Conversely, the single-

precision version significantly reduces computational and

communication overhead, although it may not yield the desired

simulation accuracy. In addition to double-precision and single-

precision, a half-precision option is also available to further

accelerate computation. This study employs a mixed-precision

method using different combinations of double-precision, single-

precision, and half-precision to enhance the computational speed

and efficiency of the MASNUM model while ensuring simulation

accuracy. Therefore, due to the limitations of CPU in half-precision

computation, we have ported the MASNUM program to a GPU,

utilizing the GPU-optimized half-precision operations for mixed-

precision testing.

The server node configuration for the CPUmachine used in this

experiment is a high-performance computing cluster with dual Intel

Gold 6258R processors (56 cores), x86_64 architecture, and 192GB

of memory. The GPU machine uses A100 GPU cards, based on

NVIDIA’s Ampere architecture, featuring 6,912 CUDA cores,

double-precision computing capability of 9.7 TFLOPS, single-

precision computing capability of 19.5 TFLOPS, and support for

half-precision computation. The software environment consists of

the NVIDIA HPC SDK suite (version 22.2) with the NVIDIA

compiler, CUDA version 11.6, and OpenMPI version 3.1.5. The

system runs on CentOS 8.5 with a kernel version of 4.18.0-348.7.1.

In terms of hardware communication bandwidth, the data transfer

rate between the CPU and GPU reaches 32 GB/s, the interconnect
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bandwidth between GPU cards can achieve 600 GB/s. For

performance optimization, the code is compiled with the -O2

optimization level.

The MASNUM software uses the CUDA interface for GPU

porting. The main processes are as follows:
1. Search for GPU device environment: Match the GPU card

with MPI processes.

2. Allocate GPU memory: Request memory for variables and

computational data space in the device’s VRAM.

3. Copy data to the GPU: Transfer the necessary information

from the host memory to the device’s VRAM.

4. Execute GPU kernel functions: Perform parallel

computations on the device.

5. Copy data from the GPU: Transfer results from the device’s

VRAM back to the host.
The ported program executes the main source functions on the

GPU and returns the results to the CPU. The main functions are

developed using the CUDA FORTRAN language interface, while

the half-precision components are written using the CUDA C

language interface. The C interface encapsulates relevant

functions for use by the source FORTRAN program. In steps (3)

and (4) above, when data is copied and transferred between the host

and device, data type conversion is required for half-precision data

types. The specific implementation details are provided in the

Appendix A.

In this study, all experiments are conducted using global-scale

simulations with a spatial resolution of 0.25°and a time step of 1

hour. The forcing wind field is derived from NCEP reanalysis data

(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html,

Kalnay et al., 1996), which has a coarser spatial resolution of 2.5°

and a time step of 6 hours. The simulations cover January 2021.

Significant wave height, a key indicator of wave characteristics,

effectively represents the energy and intensity of ocean waves.

Therefore, significant wave height is chosen as the primary

diagnostic variable for MASNUM model output analysis.
2.3 Hotspot analysis

To identify the module with the highest simulation

computation time in the MASNUM model and improve the

computation speed using mixed-precision, we performed a

hotspot analysis. The hotspot analysis was conducted using the

profiling feature provided by the INTEL compiler, which collects

statistics on the time spent in functions and loops, iteration counts,

and average, minimum, and maximum call frequencies. The results

showed that the majority of the runtime in the MASNUM model is

spent in the readwi function, accounting for 88% of the total

runtime (see Figure 1). We used the MPI_WTIME() function to

measure the time spent in the readwi function, and the results

indicated that its subfunction implsch function in the model’s

computational section accounts for the largest portion of the

runtime, reaching 77.5%. The governing equation of the model
frontiersin.org
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(as shown in Equation 1) is included in the implsch module.

Therefore, this study aims to implement mixed-precision

calculations for the implsch function’s source code to enhance the

computational speed of MASNUM.

In summary, this study defines the precision formats of

variables in different source functions within the implsch module

based on the conservation equation (as shown in Equation (1)) of

the ocean wave energy spectrum to implement mixed-precision.

Then, numerical simulations are conducted according to the mixed-

precision settings, and the accuracy of the simulation results is

evaluated to improve simulation speed and efficiency while ensuring

the accuracy of the results.
3 Results and discussion

3.1 Benchmark experiments

Due to the constraints of half-precision arithmetic in CPU

architectures, five critical source functions from the implschmodule

(governed by Equation 1) are ported to a GPU environment for

mixed-precision evaluation. The specific porting and optimization

methods are detailed in Section 2.2. Baseline experiments utilized

double-precision and single-precision configurations, executed on

both CPU (2 cores) and hybrid CPU-GPU (2 CPU cores + 2

NVIDIA A100 GPUs). Key experimental descriptions are

summarized in Table 1.

As shown in Table 2, the ALLdouble_CPU (Base①) and

ALLsingle_CPU (Base②) required 11004.09 seconds and 9059.51

seconds, respectively, to complete one model month for the implsch

module using 2 CPU cores. In contrast, their GPU-accelerated
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counterparts, ALLdouble_GPU (Base③) and ALLsingle_GPU

(Base④), required 3590.43 seconds and 2992.06 seconds,

corresponding to computational speedups of 67.37% and 66.97%

relative to CPU execution, respectively. This improvement is

attributable to the use of a CUDA-based development approach

during the porting process, which leverages CUDA acceleration.
FIGURE 1

Percentage of runtime for each section in the MASNUM model and for each source function within the implsch function.
TABLE 1 Baseline experimental descriptions.

Serial
Number

Case Description

Base① ALLdouble_CPU
CPU computation, with all variables in

double-precision.

Base② ALLsingle_CPU
CPU computation, with all variables in

single-precision.

Base③ ALLdouble_GPU
GPU computation, with all variables in

double-precision.

Base④ ALLsingle_GPU
GPU computation, with all variables in

single-precision.
TABLE 2 Time required to run one model month of the implsch module
using 2 CPU cores.

Serial
Number

Case
Running
time

Speed-up
ratio

Base① ALLdouble_CPU 11004.09s /

Base② ALLsingle_CPU 9059.51s /

Base③ ALLdouble_GPU 3590.43s 67.37%

Base④ ALLsingle_GPU 2992.06s 66.97%
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3.2 Sensitivity experiments in CPU
environments

A systematic sensitivity analysis was conducted to assess the

trade-offs between computational efficiency and numerical accuracy

when transitioning from double-precision to single-precision

arithmetic. Starting with the double-precision MASNUM

configuration, variables within five source terms (Equation 1)

were selectively reduced to single-precision. Notably, the

nonlinear wave-wave interaction source function, which

dominates computational cost due to its complexity (Komen

et al., 1994), exhibited significant error amplification when fully

converted to single-precision. Therefore, to balance increased

computational efficiency with the accuracy of simulation results,

only a subset of variables in the nonlinear wave-wave interaction

source function were precision-reduced. The settings for the

sensitivity experiments are shown in Table 3.

The computational performance of the implsch module was

rigorously evaluated using the MPI_WTIME function, with
Frontiers in Marine Science 05
simulations conducted on a dual-core CPU configuration. Table 4

shows the total runtime for simulating January 2021 using 2 CPU

cores. As summarized in Table 4, aside from the highest speed-up of

17.67% achieved by converting all variables to single-precision, the

most significant improvements in speed were observed for the wind

input source function (Case①, Sin_single_CPU) and the nonlinear

wave-wave interaction source function (Case②, Snl_single_CPU),

with speedups of 11.57% and 8.68%, respectively. These were

followed by the wave-current interaction source function (Case⑤,

Scu_single_CPU) and the breaking dissipation source function

(Case③, Sds_single_CPU), with speed-ups of 7.92% and 6.45%,

respectively. The smallest improvement was seen for the bottom

friction dissipation source function (Case④, Sbo_single_CPU), with

a speed-up of 5.43%. The relative speedup ratios for all sensitivity

experiments, normalized to the ALLdouble_CPU baseline, are

visually contrasted in Figure 2.

While computational gains are evident, the impact of precision

reduction on simulation fidelity was quantified through error

analysis of significant wave height. Figure 3 shows the spatial

distribution of error analysis for significant wave height across

experimental cases. As shown in the figure, converting the wind

input source function (Case①, Sin_single_CPU) and the nonlinear

wave-wave interaction source function (Case②, Snl_single_CPU) to

single-precision results in the largest errors, followed by the

breaking dissipation source function (Case③, Sds_single_CPU).

The error for the bottom friction dissipation source function

(Case④, Sbo_single_CPU) is almost zero. The wave-current

interaction source function (Case⑤, Scu_single_CPU) is not

discussed further in this experiment since the circulation was set

to zero, resulting in no impact on the outcome.
3.3 Sensitivity experiments in GPU
environments

Building on the CPU-based sensitivity experiments, this study

extends the analysis to a GPU-accelerated framework, focusing on

the wind input and nonlinear wave-wave interaction source

functions due to their dominant computational cost. The GPU

implementation, leveraging CUDA-based optimization, revealed

that CPU-GPU communication and data precision conversion

introduce significant overhead, rendering precision adjustments

for smaller computational components inefficient. Consequently,

precision reduction was selectively applied to wind input and

nonlinear wave-wave interaction source functions, with

ALLdouble_GPU serving as the baseline. The simulations were

conducted on a hybrid CPU-GPU system (2 CPU cores + 2

NVIDIA A100 GPUs), as detailed in Table 5.

Table 6 summarizes the runtime for the implsch module across

precision configurations. Figure 4 provides an analysis of the error

in wave height with ALLdouble_GPU (Base③) as the baseline,

where Figure 4a shows the spatial distribution of the wave height

for ALLdouble_GPU. It can be seen that the North Atlantic (NA),

Northwestern Pacific (NWP), and Antarctic Circumpolar Current

(ACC) regions are high-wave areas of wave height. Additional
TABLE 3 Sensitivity experiments in a CPU computing environment.

Serial
Number

Case Description

Base① ALLdouble_CPU
CPU computation, with all variables in
double-precision.

Base② ALLsingle_CPU
CPU computation, with all variables in
single-precision.

Case① Sin_single_CPU
All variables in Sin are single-precision, and
all other variables are double-precision.

Case② Snl_single_CPU
Part of the variables in Snl are single-
precision, and all other variables are
double-precision.

Case③ Sds_single_CPU
All variables in Sds are single-precision, and
all other variables are double-precision.

Case④ Sbo_single_CPU
All variables in Sbo are single-precision, and
all other variables are double-precision.

Case⑤
Scu_single_CPU

All variables in Scu are single-precision, and
all other variables are double-precision.
TABLE 4 Runtime of the “implsch” module for one model month using
2 CPU cores.

Serial
Number

Case
Running
time

Speed-up
ratio

Base① ALLdoube_CPU 11004.09s /

Base② ALLsingle_CPU 9059.51s 17.67%

Case① Sin_single_CPU 9730.76s 11.57%

Case② Snl_single_CPU 10048.51s 8.68%%

Case③ Sds_single_CPU 10294.35s 6.45%

Case④ Sbo_single_CPU 10406.30s 5.43%

Case⑤ Scu_single_CPU 10132.45s 7.92%
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spatial distributions of relative errors for all cases are provided in

Appendix B; Supplementary Figure S1, which offers a more intuitive

visualization of the primary areas where error hotspots are

concentrated. As shown in the figures, the distribution pattern of

the relative error maps is generally consistent with that of the error

maps, with higher errors primarily concentrated in regions of

strong current velocities, such as the western boundary currents

and the Antarctic Circumpolar Current, where flow velocities are

larger. These areas also exhibit larger significant wave heights, as

seen in Figure 4a for Northwestern Pacific (NWP), North Atlantic

(NA), and Antarctic Circumpolar Current (ACC). The potential

reasons for higher errors in these regions may be related to strong
Frontiers in Marine Science 06
currents and larger wave heights. Strong current areas typically have

more complex dynamic characteristics, which may lead to greater

variations and inaccuracies in model predictions. Combining

Table 6; Figure 4, it can be seen that using half-precision for all

variables in the nonlinear wave-wave interaction source function

and s ing le -prec i s ion for a l l o thers (Case⑦ , Sn lA l l -

half_Osingle_GPU, Figure 4c; Supplementary Figure S1c)

achieves the best speed-up effect, reaching 28.89%. However, this

configuration also results in the largest error in significant wave

height. Next, configurations where variables in the wind input

source function are all in half-precision and some variables in the

nonlinear wave-wave interaction source function are in half-
FIGURE 2

Run time (blue) and speed-up ratios (red) of each sensitivity experiment relative to ALLdouble_CPU.
FIGURE 3

Spatial distribution of significant wave height for Base ① (a) on January 31, 2021, and the Spatial distribution of error in significant wave height for
Base ② (b) and Case ① to ④ (c–f) relative to Base ①.
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precision while others are in single-precision (Case⑨ ,

Sinhalf_SnlPart-half_Osingle_GPU, Figure 4e; Supplementary

Figure S1c) and where variables in the wind input source

function are all in half-precision and all others are in single-

prec i s ion (Case⑧ , S i nha l f_Os ing le_GPU, F igure 4d ;

Supplementary Figure S1d) achieve speed-ups of 27.43% and

25.96%, respectively, with relatively smaller errors in significant
Frontiers in Marine Science 07
wave height. When the variables in the wind input source function

are all in double-precision, and some variables in the nonlinear

wave-wave interaction source function are in half-precision while

others are in single-precision (Case⑩, Sindouble_SnlPart-

half_Osingle_GPU, Figure 4f; Supplementary Figure S1f), or

when some variables in the nonlinear wave-wave interaction

source function are in half-precision while others are in single-

precision (Case⑥, SnlPart-half_Osingle_GPU, Figure 4b;

Supplementary Figure S1b), the speed-up effects are the smallest,

achieving 24.62% and 23.50%, respectively, while the errors are also

the smallest.

In addition, this study uses scatter plots and evaluation metrics

such as Symmetric Mean Absolute Percentage Error (SMAPE), Root
TABLE 5 Sensitivity experiments in a GPU computing environment.

Serial
Number

Case Description

Base③ ALLdouble_GPU
GPU computation, with all variables in
double-precision.

Case⑥
SnlPart-

half_Osingle_GPU

Part of the variables in Snl are half-
precision, and others are
single-precision.

Case⑦
SnlAll-

half_Osingle_GPU
All variables in Snl are half-precision,
and all others are single-precision.

Case⑧ Sinhalf_Osingle_GPU
All variables in Sin are half-precision,
and all others are single-precision.

Case⑨
Sinhalf_SnlPart-

half_Osingle_GPU

All variables in Sin are half-precision,
while part of the variables in Snl are in
half-precision and the others are in
single-precision.

Case⑩
Sindouble_SnlPart-
half_Osingle_GPU

All variables in Sin are double-precision,
while part of the variables in Snl are half-
precision and the others are in
single-precision.
TABLE 6 Time required for the implsch module to run one model
month using 2 GPU cores.

Serial
Number

Case
Running
time

Speed-up
ratio

Base③ ALLdouble_GPU 3590.43ss /

Case⑥ SnlPart-half_Osingle_GPU 2746.67s 23.50%

Case⑦ SnlAll-half_Osingle_GPU 2553.33s 28.89%

Case⑧ Sinhalf_Osingle_GPU 2658.19s 25.96%

Case⑨
Sinhalf_SnlPart-

half_Osingle_GPU
2605.41s 27.43%

Case⑩
Sindouble_SnlPart-
half_Osingle_GPU

2706.35s 24.62%
FIGURE 4

(a) Spatial distribution of significant wave height for Base ③ on January 31, 2021, and (b-f) the spatial distribution of error for Case ⑥ to ⑩ relative to
Base ③ (The red boxed area in (a) represents the selected evaluation region: North Atlantic (NA); Northwestern Pacific (NWP); Antarctic Circumpolar
Current (ACC)).
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Mean Squared Error (RMSE), and Correlation Coefficient (R) to

assess the performance of the mixed-precision model (see Appendix

C for formula). We selected the high-value area of wave height (NA,

NWP and ACC, the red boxed area in Figure 4a) to evaluate the

simulation results of significant wave height, as shown in Figure 5. In

these three regions, the SMAPE values for Case ⑥, ⑧, ⑨ and⑩ range

from 0.12% to 0.43%, indicating small errors, and the simulation

results are more accurate compared to Case ⑦ (with SMAPE values

ranging from 1.38% to 1.69%). This is mainly because half-precision

is stored in 16 bits, with only 3–4 significant digits. During

calculation, half-precision may result in rounding errors due to the

small number of significant digits, and as the number of calculation

steps increases, errors accumulate. In MASNUM mode, the non-

linear source function (Case⑦) has a large amount of code and more

complex calculations, leading to larger errors. The R shows that the

simulation results of Case ⑥ to⑩ are highly consistent with Base ③,

demonstrating a strong correlation. RMSE is very sensitive to larger

errors (outliers), and higher RMSE values typically indicate larger

prediction biases for certain extreme values. For Case ⑦, the RMSE

values in the NWP, ACC and NA regions are 0.06m, 0.04m, and

0.06m, respectively, which are larger compared to Case ⑥, ⑧, ⑨ and

⑩ (with RMSE ranging from 0.01m to 0.02m), indicating that the

simulation results for Case ⑦ have larger errors at high-value points,

as can also be seen in the scatter plots. The similarity between

subplots in Figures 5a, B is mainly due to the fact that Case⑥ applies

half-precision to the variables in the innermost loop variables of Snl,

while Case⑦ applies half-precision to the entire Snl. Since both Case⑥
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and Case⑦ involve changes only in the precision of the Snl, with all

other source term settings remaining the same, the resulting outputs

are expected to exhibit a high degree of similarity.
3.4 Scalability analysis on a 20,000-core
system

To evaluate the scalability of mixed-precision optimizations, the

simulations were conducted on a 20,000-core hybrid CPU-GPU (4

CPU cores + 4 NVIDIAA100 GPUs). Relative to the ALLdouble_GPU

baseline, mixed-precision configurations achieved speedups of 1.27–
FIGURE 5

Scatter plot of Case ⑥ to ⑩ (a–e) relative to Base ③ on January 31, 2021 (Blue: Northwestern Pacific (NWP); Yellow: Antarctic Circumpolar Current
(ACC); Green: North Atlantic (NA)). The linear regression line (black solid line) is provided. Also shown are the statistical parameters: SMAPE, RMSE and R.
TABLE 7 Time required for the MASNUM model to run one model
month using 4 CPU cores.

Serial
Number

Case Total
run time

Base① ALLdouble_CPU 6043.50s

Base③ ALLdouble_GPU 2597.18s

Case⑥ SnlPart-half_Osingle_GPU 1781.24s

Case⑧ Sinhalf_Osingle_GPU 1924.05s

Case⑨ Sinhalf_SnlPart-half_Osingle_GPU 1899.48s

Case⑩
Sindouble_SnlPart-
half_Osingle_GPU

2038.13s
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1.46 times, while comparisons to ALLdouble_CPU demonstrated

combined structural and precision optimization gains of 2.97–3.39

times (Table 7; Figure 6). These results underscore the potential of

mixed-precision to enhance computational efficiency in large-scale

ocean modeling applications.
4 Conclusions

High-precision numerical simulations are traditionally

employed to minimize numerical errors and enhance the

credibility of model outputs. However, as demonstrated by prior

studies, such approaches are not universally optimal, often resulting

in excessive computational costs and resource inefficiencies. This

study addresses this challenge by introducing a mixed-precision

framework for the MASNUM wave model, strategically balancing

numerical accuracy with computational efficiency.

By applying tailored combinations of double, single, and half-

precision to the model’s source terms, we achieved significant

computational gains without compromising simulation fidelity. The

results showed that the evaluation metrics of the mixed-precision

schemes had SMAPE (Symmetric Mean Absolute Percentage Error)

values of 0.12% - 0.43% and RMSE (RootMean Square Error) values of

0.01m - 0.02m, ensuring robust accuracy in the MASNUM model’s

simulation results. On a 20,000-core system, these optimizations

delivered speedups of 1.27–1.46× relative to the double-precision

baseline. Furthermore, during the process of porting the MASNUM

model to GPU systems, structural optimizations were performed,

resulting in speedups of 2.97 to 3.39 times for the mixed-precision

versions compared to the double-precision version.

This study demonstrates the feasibility and advantages of

applying mixed-precision methods in high-resolution wave

modeling. By selectively reducing the precision for less sensitive

variables, significant improvements in simulation efficiency and

reductions in computational costs can be achieved. The value of

mixed-precision methods is not limited to the MASNUM model

but can be effectively extended to other mainstream ocean wave

models, such as WaveWatch III (WW3) (Tolman et al., 2016).
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WW3 features a modular architecture in which physical source

terms are implemented as independent components, facilitating

targeted precision control. From a physical process perspective,

different source terms exhibit varying sensitivity to numerical

precision. For instance, nonlinear wave–wave interactions (S_nl)

are particularly precision-sensitive, and computations involving

DIA or GMD approximations should be maintained at FP32 or

even FP64 precision (Tolman, 2013; van Vledder, 2006). In terms of

performance optimization, WW3 natively supports CUDA Fortran,

making it suitable for deploying FP16 matrix operations accelerated

by tensor cores on GPU platforms.

The benefits of this approach are particularly evident in large-

scale, high-resolution numerical simulations, offering a new

technological pathway for efficient and accurate ocean wave

forecasting. However, the current implementation is limited by the

overhead associated with data transfer between the CPU and GPU,

which accounts for a significant portion of the GPU runtime. Future

work will focus on minimizing these bottlenecks through unified

memory architectures and expanding the mixed-precision

framework to other ocean models, further validating its potential

for large-scale, real-time simulations.
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Appendix A: half-precision
computation pipeline
Half-Precision Computation Pipeline.

// Device-side types:
// Floating-point arrays: X _ device,  Y _ device,  Z _ device
// Half-precision arrays: X _ device _ half ,  Y _ device _ half ,  Z _ device _ half
Input: Floating-point arrays on the host side

X _ host ∈ RN ,  Y _ host ∈ RN

Output: Computed result

Z _ host ∈ RN

// Step1: Device-side Data Transfer
X _ device  ←  CopyToDevice(X _ host)
Y _ device  ←  CopyToDevice(Y _ host)

// Step2: Type Conversion
for i = 1 to N in parallel:

X _ device _ half ½i�  ← Float2Half (X _ device½i�)
Y _ device _ half ½i�  ← Float2Half (Y _ device½i�)

// Step3: Kernel Execution
Function GPUKernel(X, Y, Z, N):

tid ← threadIdx.x + blockIdx.x × blockDim.x
if tid < N:

Z _ device _ half ½tid�  ←   implsch(idx) // Call solver function
// Step4: Result Transfer and Conversion
for i = 1 to N in parallel:

Z _ device½i�  ←  Half 2Float(Z _ device _ half ½i�)
Z_host    ←  CopyToHost(Z _ device)
Appendix B: supplementary data
SUPPLEMENTARY FIGURE 1

(a) Spatial distribution of significant wave height for Base ③ on January 31,

2021, and (b-f) the spatial distribution of relative errors for Case ⑥ to ⑩

relative to Base ③ on January 31, 2021. (The red boxed area in panel (a)
represents the selected evaluation region: North Atlantic (NA); Northwestern
Pacific (NWP); Antarctic Circumpolar Current (ACC)).
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Appendix C: statistical metrics for
evaluating model performance

The model performance evaluation criteria used in this study

are Symmetric Mean Absolute Percentage Error (SMAPE), Root

Mean Squared Error (RMSE), and Correlation Coefficient (R), and

the formulas are shown below.
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1
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