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In marine ecology research, it is crucial to accurately identify the marinemammal

species active in the target area during the current season, which helps

researchers understand the behavioral patterns of different species and their

ecological environment. However, the difficulty and high cost of collecting

marine mammal calls, coupled with limited publicly available datasets, result in

insufficient data for support, making it difficult to obtain accurate and reliable

identification results. To address this problem, we propose MarGEN, a deep

learning-based augmentation method for marine mammal call signal data. This

method processed the call data into Mel spectrograms, then designed a self-

attention conditional generative adversarial network to generate new samples of

Mel spectrograms that were highly similar to the real data, and finally

reconstructed them into call signals using WaveGlow. The classification

experiments on the calls of four Marine mammals show that MarGEN

significantly enriches the diversity and volume of the data, increasing the

classification accuracy of the model by an average of 4.7%. The method

proposed in this paper greatly promotes marine ecological protection and

sustainable development, while effectively advancing research progress in

bionic covert underwater acoustic communication technology.
KEYWORDS

marine ecology, marine mammal call signals, MarGEN, deep learning, data
augmentation, self-attention conditional generative adversarial network
1 Introduction

Marine mammal calls serve as important ecological signals, carrying a wealth of

behavioral and environmental information. Accurately recognizing marine mammal calls

not only contributes to species monitoring and conservation but also facilitates the

assessment of the health of the marine environment. At the same time, accurate

recognition of marine mammal calls also has important military application value, bionic

covert underwater acoustic communication technology embeds secret information into

marine mammal calls to improve the security of underwater communication Qiao et al.
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(2018); Ma et al. (2024), the working principle diagram of this

technology is shown in Figure 1. The prerequisite for realizing this

technique is to accurately identify the active marine mammals in the

target sea area in the current season, so as to select the appropriate

calls for bionic communication. Currently, deep learning-based

recognition classification offers the most effective results Shi et al.

(2023); Dong et al. (2020), but its training demands a large number of

data samples as support Li et al. (2021). However, the current limited

availability of marine mammal call data significantly reduces the

performance of deep learning-based recognition and classification

models. Buda et al. (2018). Therefore, increasing the number and

diversity of Marine mammal call data has become the key to

improving the recognition accuracy.

Data augmentation is a method to expand the size of datasets

Khan et al. (2024), which not only enhances the predictive ability of

classification models but also provides diversity-rich call signals for

bionic communication. Currently, data augmentation methods

have performed well in the field of computer vision, which has

attracted researchers to focus on its application in the field of audio

Sun et al. (2024); Xu et al. (2024).

The cropping method Garcea et al. (2023) obtains multiple

cropped sub-data by sliding the audio sequence over a sliding

window. Scaling methods Lie and Chang (2006) are implemented

by adjusting the audio amplitude or frequency, amplitude scaling is

achieved by multiplying all the elements of the time series by some

constant, and frequency scaling is achieved by changing the

sampling rate of the audio signal. Adding some random noise to

the original data can also increase data diversity Kishk and Dhillon

(2017), but inappropriate noise may mask important signal features

and lead to degradation of model performance. The random

oversampling technique Wei et al. (2022) achieves data

augmentation by randomly selecting samples for replication. The

Synthetic Minority Oversampling Technique (SMOTE) Azhar et al.

(2023) generates new samples by interpolating the minority class

sample, which improves the problem of unbalanced data

distribution. SpecAugment Kim et al. (2024) is a data

augmentation method that operates on the audio spectrum. By

distorting or masking the spectrogram of the speech signal, the data

diversity during model training is increased. Experiments have

demonstrated that this method can significantly reduce the word

error rate and improve the robustness of the model in speech

recognition tasks. This method performs data augmentation on

individual sequences, utilizing only the nature of the sequence itself

and not taking the overall distribution of the dataset into account.

In the wake of rapid advancements in artificial intelligence,

researchers have started to apply deep learning techniques to data

augmentation. Yan employed a convolutional neural network

model for data augmentation of music in a rhythm game. He

took the first 30 seconds of 16 piano arrangements as input,

generated additional material that mimicked the original styles

through Jukebox and extended them to 60 seconds for data

enhancement. However, this method is time-consuming because

it generates only one sample at a time Yan (2024). The adversarial

training model of Generative Adversarial Networks (GANs)
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Goodfellow et al. (2020); Wu et al. (2020) gives them excellent

generative results. Significant advancements and outcomes have

been achieved in the generation of high-resolution and realistic

images, which has a wide range of potentials in the field of computer

vision and image generation, which also encourages researchers to

apply GANs In the field of audio generation. Some researchers have

applied GANs to environmental sounds and footstep signal

generation with better results Bahmei et al. (2022); Chakraborty

and Kar (2023). At present, among the published methods, no

researcher has applied the data augmentation method based on

GANs to marine mammal call signals.

We proposed MarGEN, a data augmentation method for

marine mammal call signals based on audio transformation and a

Self-Attention Conditional Generative Adversarial Network

(SACGAN). It can effectively enrich the number and diversity of

marine mammal call signals and greatly improve the recognition

accuracy of the model. The main contributions of this paper are

as follows.
1. We proposed a novel method for generating marine

mammal call signals, marking the first application of

generative adversarial networks in the field of marine

mammal call signal data augmentation.

2. We designed a self-attention conditional generation

adversarial network for generating new samples that are

highly similar to the Mel spectrograms Hong and Suh

(2023); Ustubioglu et al. (2023) of real marine mammal

calls. The network innovatively added conditional variables

representing marine mammal species and self-attention

modules and replaced some of the convolutional layers

with improved Inception blocks, which significantly

improved the model performance and the quality of the

generated samples.

3. In order to analyze the performance of our generated call

signals, we performed classification experiments and

compared them with baseline datasets, which demonstrated

the superiority of our method in terms of prediction accuracy.

4. The proposed method can effectively extend the existing

marine mammal sound database. It greatly advances the

research progress in marine mammal conservation and

bionic covert underwater acoustic communication

technology. It also provides a reference method for the

generation of other types of sound.
2 Data preprocessing

The dataset used in this study comes from the Watkins Marine

Mammal Sound Database Sayigh et al. (2016), which provides a

variety of call clips of marine mammals recorded in real marine

environments. In this study, four marine mammal calls, which are

widely distributed in China’s sea area and have a relatively large
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amount of data, were selected for downloading. After clipping,

denoising, resampling, and other operations, 4190 samples with a

duration of 1 second are finally obtained and labeled. The

distribution and characteristics of the samples are shown in Table 1.
3 MarGEN method

The overall flowchart of the MarGEN method is illustrated in

Figure 2, consisting of three main steps. In the first step, due to the

large number of audio sampling points of marine mammal calls,

resulting in many network parameters and training difficulties, and

given that generative adversarial networks are more mature in the

image generation domain, we converted the marine mammal call

audio files into the form of spectrograms that are more suitable for

machine learning to understand the characterization. In the second

step, we innovatively designed the SACGAN, whose generator and

discriminator engaged in continuous adversarial training until Nash

equilibrium Lv et al. (2024) was reached, thereby generating new

samples that closely resembled the original images. In the final step,

the generated spectrogram was converted into audio signals using

WaveGlow Prenger et al. (2019).
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3.1 Feature extraction

The features of different call samples behave similarly in the

time domain but differ significantly in the frequency domain.

Therefore, the feature representations chosen in this study were

mainly frequency domain features. First, the original signal is

analyzed in time-frequency by Short-Time Fourier Transform

(STFT) to extract its local frequency domain information. The

STFT can effectively capture the spectral changes of the signal in the

time dimension. On this basis, Mel frequency cepstrum coefficient

(MFCC) based analysis can be further frequency transformed

according to the auditory perception of the human ear, thus

preserving the key features of the signal. Its accuracy and

computational efficiency are better than other representations in

the speech recognition task. Therefore, the Mel spectrogram was

chosen as the feature representation in this study. The expression

for the MEL frequency is shown in Equation 1:

M = 2595log10(1 +
f
700

) (1)

Where M is the frequency in Mel and f is the frequency in Hz,

128 Meier filters are used in this study.
3.2 Self-attention conditional generative
adversarial network

GANs consist of a generator and a discriminator. The generator

receives random noise and outputs newly generated data samples,

while the discriminator is responsible for determining whether the

received data is real or generated by the generator. The generator

and discriminator engage in adversarial training, which ultimately

generates new data that closely resembles real data.
TABLE 1 Distribution and characteristics of samples.

Species
Name

Abbreviation Sample
Size

Sampling
Rate

Killer Whale KW 1394 48000Hz

Humpback Whale HW 908 48000Hz

Pilot Whale PW 1165 48000Hz

Bottlenose
Dolphin

BND 723 48000Hz
FIGURE 1

Working principle diagram of bionic covert underwater acoustic communication technology.
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We innovatively designed SACGAN, which introduced

conditional variables representing marine mammal species and

self-attention modules based on generative adversarial networks.

Additionally, traditional convolutional neural networks consist of

multiple layers of convolutional layers stacked on top of each other,

which tends to lead to overfitting as well as difficulty in updating the

gradient. The network we designed utilized improved Inception

blocks, a structure that combines convolutional kernels of various

sizes within the same layer to capture multi-scale information,

thereby enhancing the capability of feature extraction.

The specific network structure of SACGAN is shown in

Figure 3A. In the generator network structure, the discrete labeled

variables were converted to continuous vectors through the

Embedding layer, which were spliced with random noise to help

the model better understand the input data. The network structure

of the Inception block is shown in Figure 3B. We improved its

second branch by decomposing a 3x3 convolution into a 1x3

convolution and a 3x1 convolution, further reducing the number

of parameters and computational complexity. The residual block

consisted of the deconvolution layer, the batch normalization layer,

and the activation layer. In the residual block, the gradient

information was propagated by means of skip connections to help

the generator better recover the image details. A self-attention

module was added between two residual blocks to enhance the

generator’s ability to produce specific content under given

conditions, thereby improving generation precision. In the

discriminator network structure, the residual block consisted of

the convolution layer, the batch normalization layer, and the

activation layer. The pooling layer was responsible for reducing

the feature dimensions and extracting the main information of the

features. We added a self-attention module after the pooling
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operation to help the model compensate for information loss,

ensuring that the model retained some detailed information while

capturing the main features. The formula expression of the self-

attention mechanism is shown as Equation 2:

Attention(Q,K ,V) = softmax (
QKT

ffiffiffiffiffi
dk

p )V (2)

Where Q denotes the query matrix, K denotes the key matrix, V

denotes the value matrix, KT is the transpose matrix of K, and dk
denotes the dimension length.

In addition, the model used the loss function of WGAN-GP Pu

et al. (2022); Zhu et al. (2023) to prevent the pattern collapse

problem during training. A gradient penalty term was added to the

discriminator loss function to ensure that the discriminator

function satisfied the Lipschitz continuity constraint, avoiding the

problem of gradient explosion or gradient disappearance during the

training process and enhancing the convergence speed of the model.

The generator loss function is shown as Equation 3:

L(G) = −Ez∼Pz½D(G(z y))�j (3)

Where Pz denotes the data distribution of samples generated by

the generator, z is the randomly sampled noise vector in Pz, and y is

the condition variable.

The discriminator loss function is shown as Equation 4:

L(D) = Ex∼pr½D(x y)� − Ez∼Pz½D(G(zj jy))�
+lEx̂∼Px̂ ½( ∥∇x̂ D(x̂ ) ∥2 −1)2�

(4)

Where pr denotes the data distribution of the real sample, x is the

sample in pr, l is the gradient penalty term weight, lEx̂∼Px̂ ½( ∥∇x̂

D(x̂ ) ∥2 −1)2� is the gradient penalty term, x̂ is the stochastic
FIGURE 2

Flowchart of MarGEN Method.
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interpolation between the real sample and the generated sample, Px̂

denotes the sampling distribution of the gradient penalty term, and

∥∇x̂ D(x̂ ) ∥2 denotes the gradient parameter of x̂ , which ensures

that the gradient paradigm of the discriminator function is close to

1 and satisfies the Lipschitz constraint.
3.3 Audio signal reconstruction

We used WaveGlow to reconstruct the Mel spectrogram

samples generated by SACGAN into audio signals. The model

can accurately learn the probability distribution of the audio data

and acquire longrange information, resulting in better generation

quality and generalization ability. In addition, WaveGlow supports

GPU parallel operation, significantly accelerating the audio

synthesis speed.
Frontiers in Marine Science 05
4 Experiment

We designed generation experiments and classification

experiments. The generation experiments were used to increase

the number and diversity of existing datasets. The classification

experiments were used to validate the effectiveness of the

MarGEN method.
4.1 Generation experiment

The experimental programming language was Python 3.9, and

the network construction was built using Pytorch 1.10 deep learning

framework. We trained SACGAN with 4,190 Mel spectrograms of

marine mammal calls, setting the labels for killer whale calls to 0,

humpback whale calls to 1, pilot whale calls to 2, and bottlenose
FIGURE 3

(A) Network structure of the self-attention conditional generative adversarial network; (B) structure of the inception block.
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dolphin calls to 3. The experimental dataset was divided into a

training set and a test set in an 8:2 ratio, with a learning rate set at

1e-4; the batch size was 64; the number of training epochs was 2000.

An alternating training strategy was adopted, in which the

discriminator was trained six times corresponding to the training

of the generator once.

Figure 4 shows an example of Mel spectrograms generated

using the SACGAN. As shown, SACGAN can generate high-quality

Mel spectrograms. In this experiment, a total of 1755 samples of

Mel spectrograms of marine mammal calls were generated using

the SACGAN.
4.2 Classification experiment

To verify the effectiveness and superiority of the MarGEN

method, this experiment trained the same ResNet classification

model on two datasets separately for performance evaluation.

Table 2 presents the number of samples in the two datasets and

their specific distribution. Among them, OD is a dataset consisting

of the original marine mammal call signals. MD is a mixed dataset

consisting of the original marine mammal call signals and the call

signals obtained using the MarGEN method. The ‘Factor’ column

indicates the ratio between the total number of samples after data

enhancement (original samples plus generated samples) and the

number of original samples. For example, for bottlenose dolphin, a

factor of 2.0 indicates that after augmentation, the dataset contains

twice as many samples as the original dataset (original: 723 samples,

augmented: 1,446 samples). The dataset was divided using 5-fold

cross-validation, in which the entire sample was randomly divided

into five non-overlapping subsets, each of which accounted for
Frontiers in Marine Science 06
approximately 20% of the entire dataset. In each round of cross-

validation, four of them were selected as the training set. The

remaining one as the validation set, and a total of five rounds

were executed, with a different validation subset being used in each

round. The final results are aggregated by the average of the metrics

obtained from the 5 rounds of experiments to ensure the stability

and generalization ability of the model. At the same time, it is

necessary to make sure that the ratio of original data and generated

data in the training and validation sets is consistent. The learning

rate for the experiments was set to 1e-4; the batch size was 32; and

the training epochs were 150.

Figure 5A illustrates the confusion matrix of the classification

model trained using OD, while Figure 5B illustrates the confusion

matrix of the classification model trained using MD. In these

matrices, the diagonal elements represent the correct classification

rate for each category, while the off-diagonal elements reflect the

misclassifications between species. Through comparison, it can be

found that killer whales showed high classification accuracy in both

confusion matrices, probably due to the even spacing between

fundamental and harmonic frequencies in their calls, regular

frequency bands, often accompanied by high-energy dominant

frequency components, and clear transverse stripe structure on Mel

spectrograms, which had good discriminability, and thus were easy to

be accurately recognized by the model. The classification effect of the

bottlenose dolphin was significantly improved after the data

enhancement. However, the classification accuracy was still at the

lowest level, which may be attributed to the following reasons: on the

one hand, broad-snouted dolphin calls are complex and diverse, with

a large frequency span, which increases the difficulty of identification;

On the other hand, broad-snouted dolphins have the smallest

number of original samples among the four categories, and the
FIGURE 4

Mel spectrograms generated using SACGAN.
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model does not learn enough of its features at the early stage of

training. Although data augmentation greatly mitigates the training

bias caused by the uneven samples, there are still some

recognition challenges.

In general, the model trained using the MD dataset achieves a

higher recognition accuracy for marine mammal calls and exhibits a

significantly reduced gap in classification performance between

species. These results demonstrate that the proposed MarGEN

data augmentation method effectively enhances the model’s

generalization ability and mitigates the problem of class imbalance.

We selected four classical deep learning models for classification

experiments to demonstrate that the MarGENmethod can optimize

the performance of multiple models. In the experiments, we
Frontiers in Marine Science 07
calculated the Accuracy, Precision, Recall, and F1 Score of the

models to comprehensively evaluate their classification

performance. We calculated the accuracy, precision, recall, and F1

score of these models in the experiments. The corresponding

formulas are as shown in Equations 5–8:

Accuracy =
True   Positives + True  Negatives

True   Positives + False   Positives + True  Negatives + False  Negatives

(5)

Precision =
True   Positives

True   Positives + False   Positives
(6)

Recall =
True   Positives

True   Positives + FalseNegatives
(7)

F1   Score = 2� Precision� Recall
Precision + Recall

(8)

Where the F1 score is the reconciled average of precision and recall,

which can comprehensively evaluate the classification performance.

Table 3 shows that the accuracy of the classification models

trained using MD increased by an average of 4.7%, in which the

accuracy of the ResNetSE model increased by 5.7% from 90.93% to

96.63%; the F1 score increased by an average of 5.75%, proving that
FIGURE 5

(A) Confusion matrix of the classification model trained with OD; (B) Confusion matrix of the classification model trained with MD.
TABLE 2 The number of samples and their specific distribution for the
two datasets.

Species Name Abbreviation OD Factor MD

Killer Whale KW 1394 1.1 1533

Humpback Whale HW 908 1.6 1452

Pilot Whale PW 1165 1.3 1514

Bottlenose Dolphin BND 723 2.0 1446
TABLE 3 Comparison of performance evaluation indexes for two datasets applied to different classification models.

Model Accuracy (OD/MD) (%) Precision (OD/MD) (%) Recall (OD/MD) (%) F1 Score (OD/MD) (%)

CNN 89.98/94.37 88.11/95.20 90.06/94.85 89.07/95.02

Res2Net 91.77/95.37 94.42/96.39 91.37/96.08 92.87/96.23

ResNetSE 90.93/96.63 88.03/96.65 86.81/94.29 87.42/95.46

RNN 88.90/94.03 87.08/92.68 89.70/95.34 88.37/93.99
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the MarGEN method can significantly improve the performance of

multiple deep learning models on the marine mammal call signal

recognition task.
5 Conclusion

We have innovatively presented MarGEN, which can effectively

realize the high similarity generation of marine mammal call signals

and improve their recognition accuracy. First, we designed

SACGAN, which can generate Mel spectrograms that are highly

similar to the original data, and then we converted the Mel

spectrograms into call signals using WaveGlow. The experimental

results demonstrated that after using the MarGEN method, the

recognition accuracy of different classification models is improved

by 4.7% on average, and the F1 score is improved by 5.75% on

average. The proposed method in this paper greatly promotes

marine ecological protection and sustainable development, and at

the same time, it also greatly promotes the research progress of

bionic covert hydroacoustic communication technology, which is of

great strategic significance. In the future, we will further extend the

applicability of the study. On the one hand, we will extend the

MarGEN method to more marine species to verify its

generalizability in multi-species identification tasks; on the other

hand, we will also explore the migration ability of the model under

fewer samples to enable the identification and study of data-

scarce species.
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