
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Yimian Dai,
Nanjing University of Science and
Technology, China

REVIEWED BY

Ying Liang,
Guilin University of Electronic Technology,
China
Chunlei Xia,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Gang Chen

rwb@cug.edu.cn

RECEIVED 03 March 2025

ACCEPTED 30 June 2025
PUBLISHED 12 August 2025

CITATION

Rao W, Chen G, Zhang Y, Cang J,
Chen S and Wang C (2025) Benthos-DETR: a
high-precision efficient network for benthic
organisms detection.
Front. Mar. Sci. 12:1586510.
doi: 10.3389/fmars.2025.1586510

COPYRIGHT

© 2025 Rao, Chen, Zhang, Cang, Chen and
Wang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 12 August 2025

DOI 10.3389/fmars.2025.1586510
Benthos-DETR: a high-precision
efficient network for benthic
organisms detection
Weibo Rao1, Gang Chen1*, Yifei Zhang2, Jue Cang3,
Shusen Chen1 and Chenyang Wang1

1College of Marine Science and Technology, China University of Geosciences, Wuhan, China,
2Institute of Surveying and Mapping, Hubei Institute of Water Resources Survey and Design CO., LTD.,
Wuhan, China, 3Lhasa Water Resources Survey Hydrology Branch, Tibet Autonomous Region Bureau
of Hydrology, Lhasa, China
The intelligent, automated, and high-precision detection of underwater targets

represents a challenging yet pivotal issue in marine science. Enhancing the

localization accuracy of marine organisms holds significant importance for

marine scientific research fields such as ecological conservation and fisheries

management, especially in complex seabed environments where accurately

identifying benthic organisms characterized by small size, large quantities, and

diverse species offers considerable economic benefits and practical value. This

study proposes Benthos-DETR, a benthic organisms detection network based on

the RT-DETR network. In the backbone of Benthos-DETR network, the Efficient

Block with the C2f module reinforces the shallow feature extraction operation in

Benthos-DETR, enhancing the algorithm’s multi-scale perception. To reduce the

computational load and make the algorithm lightweight, a cascaded group

attention module has been added to the Benthos-DETR network, it enhances

the feature interaction within the same scale. In the neck, the original

concatenation module is replaced with the Fusion Focus Module, effectively

aggregating feature layer information from different stages of the backbone to

achieve cross-scale feature fusion. The proposed Benthos-DETR ensures high

target detection accuracy while minimizing hardware requirements for network

deployment. The outcomes of the ablation experiment revealed that the various

modules introduced in this research optimize the baseline network, and their

integration markedly elevates the performance of Benthos-DETR. In tests on an

open-source dataset, Benthos-DETR achieved a detection accuracy of 92.1%

andmAP50 of 91.8% for sea cucumbers, 91.6% accuracy and 92.2%mAP50 for sea

urchins, and 92.4% accuracy and 93.7% mAP50 for scallops. Through a series of

experimental analyses, it was evident that the performance of the Benthos-DETR

network surpasses existing target detection algorithms, achieving an optimal

equilibrium between high recognition precision and a trim network scale.
KEYWORDS
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1 Introduction

The economic cost of Marine investigation is high, and the

traditional methods employed by scientists to track marine

organisms pose certain risks and have a great impact on

biological populations (Li et al., 2022). Enhancing the positioning

precision of marine organisms holds substantial significance within

marine scientific research arenas like ecological conservation and

fisheries administration. The intelligent, automated, and high-

precision detection of underwater targets is a challenging and

critical issue in marine science (Yan et al., 2022; Yu et al., 2022).

Therefore, the realization of high-precision underwater biological

detection provides scientific support for marine biodiversity

conservation and resource management, helping researchers

collect long-term and systematic data, analyze the health status of

ecosystems, and lay the data foundation for sustainable

environmental management decisions (Tamou et al., 2021).

In recent years, research by scientists on underwater biological

detection has primarily focused on the following two aspects: In

light of the intricate nature of the marine environment and the vast

array of marine organism species, certain scholars have tackled the

issue by gathering underwater images and handling the data,

building various datasets for underwater target detection. These

datasets have laid a foundation for underwater biological target

detection tasks. For example, Martin et al. established the squid

dataset (Martin-Abadal et al., 2020), Wageeh et al. created a dataset

of 2000 goldfish images (Wageeh et al., 2021), and Gray et al.

developed a marine biological dataset of 326 whale images and 1059

sea turtle images (Gray et al., 2019). Pedersen et al. put together a

public dataset of marine organisms, which encompasses 14,518

pictures and includes such marine life as big fish, crabs, squid,

shrimp, small fish and starfish, along with 25,613 annotated entries

(Pedersen et al., 2019). Ditria et al. carried out a research on target

detection by relying on the Mask R-CNN model within the self-

constructed Luderick dataset, and the accuracy of intelligent

detection surpassed that of both marine fish experts and ordinary

citizens during manual detection (Ditria et al., 2020).

Conversely, in response to the diverse requirements of different

application scenarios and research objectives, many scholars have

conducted a series of optimization and improvement on the target

detection algorithm. Alfonso et al. improved the model’s

generalization capacity with a fish detection approach based on

R-CNN. The algorithm used attention to extract key features (Labao

and Naval, 2019). Raza and Song improved the YOLO model

through incorporating candidate anchor boxes, applying transfer

learning and modifying the loss function, which elevated the

detection accuracy (Raza and Hong, 2020). Han et al. enhanced

underwater images and used a CNN for underwater recognition,

achieving notable results (Han et al., 2020). Zhang et al. enhanced

the YOLO model’s precision by integrating the Swin-Transformer.

However, this approach has challenges, including slower detection

speeds and a complex model structure (Zhang et al., 2023b).

Presently, under the influence of the marine economic effect,

the density of aquatic organisms, fish, sediments and other

suspended matter in offshore fisheries has been gradually on the
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rise. As a result, it becomes challenging for traditional target

detection and biometric identification approaches to fulfill the

requirements of marine fisheries and ecological management

(Ruan et al., 2024; Wang et al., 2024c). Meanwhile, the

underwater target recognition environment with large range,

multiple types, small targets and complex environment poses a

major challenge for computer vision-based underwater target

detection practices. Achieving high-precision localization of

underwater targets and accurate classification and identification

of multiple categories of underwater targets has become a difficult

problem (Li et al., 2023a; Xu et al., 2023). In order to tackle the

problems of low localization precision and the tendency to have

category confusion in target recognition with multi-view

underwater images, we put forward an enhanced target detection

algorithm named Benthos-DETR, which is particularly devised for

complex underwater environments. The primary contributions

made by this study can be listed as follows:
1. Inspired by the RT-DETR network, the original backbone

of Benthos-DETR network is redesigned, small target

feature layer is introduced, and we approve a new

network structure (Efficient Feature Extractor), which

ensures the fast efficiency of computing and improves the

positioning accuracy and recognition accuracy of the

underwater target detection task;

2. We redesign the neck part the network. Firstly, on the basis of

CGAM module, we modify the original AIFI module of RT-

DETR network, which greatly reduces the amount of

redundant network calculation; Secondly, a cross-feature

fusion module based on attention mechanism (Focus

Fusion Module) is proposed, which enhances the feature

information flow and greatly improves the recognition effect

of Benthos DETR network in benthic organisms detection.

3. On the public dataset EUDD, the coupling efficacy ofmultiple

modules within the Benthos-DETR network was analyzed

meticulously via the ablation experiment, and the comparison

experiment was carried out by combining multi-class target

detection algorithms. The results demonstrate that the

Benthos-DETR network proposed by us attains a favorable

equilibrium regarding recognition accuracy and network size.

Although the network computing cost increases, it yields

more accurate results for the detection tasks involving

small-sized, large-quantity and multiple-types of marine

biological targets.
2 Methodology

Figure 1 depicts the framework of the Benthos-DETR proposed

by us. Our approach is based on RT-DETR, which is one of the

state-of-the-art end-to-end target detectors (Carion et al., 2020).

The RT-DETR network is renowned for balancing speed and

accuracy across a variety of tasks (Dai et al., 2024; Lin et al., 2024;

Zhao et al., 2024b), includes the backbone, hybrid encoders,
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decoders, and predicted the first four major network architectures

(Zong et al., 2023; Zhao et al., 2024a). The core innovation of our

proposed Benthos-DETR algorithm mainly concentrates on

optimizing the backbone and hybrid encoder sections of the

architecture, making the network lighter while preserving

contextual integrity, and enhancing the accuracy and efficiency of

the algorithm for detecting benthic organisms.

Firstly, the backbone network Efficient Feature Extractor

((detailed description in Section 3.1) captures essential

information from the input seabed AUV sensor images and

generates multi-scale feature maps from the last four stages {P2,

P3, P4, P5}. Among them, the P2 stage of the network involves

shallow features in the image and contains tiny target information

for subsea target detection, which is enhanced to ensure a

lightweight design while facilitating richer gradient flows.

Secondly, these four-stage feature maps {P2, P3, P4, P5} are fused

through a hybrid encoder that introduces a cascade group attention

module, improving feature interaction capabilities at the same scale

and reducing the network computational load (detailed description

in Section 3.2). In the neck portion of the encoder network, the

Fusion Focus Module effectively aggregates feature information

from different stages of the backbone to achieve cross-scale

feature fusion (detailed description in Section 3.3).

Finally, the comprehensive prediction outcomes generated by

the Fusion Focus Module are conveyed to the decoder for

prediction. A fixed quantity of image features are selected as the

initial queries for the aforementioned decoder through an IoU-

aware (Intersection over Union) query selection mechanism (Zhu

et al., 2021a; Lv et al., 2024). By utilizing auxiliary headers, the

decoder progressively refines the aforementioned queries, thereby
Frontiers in Marine Science 03
generating bounding boxes and associated confidence scores

(Zhang et al., 2023a; Wang et al., 2024b).
2.1 Efficient feature extractor

The backbone network of Benthos-DETR is analogous to

ResNet (He et al., 2016) and is designated as the Efficient Feature

Extractor (abbreviated as EFF). It consists of four stages for data

feature processing (as shown in Figure 2). To reduce the influence of

downsampling on feature extraction, the initial embedding layer

consists of a ConvNorm module with a convolution kernel of 3×3

and a stride of 1, a ConvNorm module with a convolution kernel of

3×3 and a stride of 2, as well as a max pooling layer. The ConvNorm

module processes feature maps through a convolution layer, a batch

normalization layer and a SiLU activation function (Elfwing et al.,

2018; Wang et al., 2021). In Stage 1, the C2f module and Efficient

Block reinforce the shallow feature extraction process of underwater

image data (Li et al., 2023b), the model’s multi-scale sensing ability

and outputting characteristic information from the P2 detection

layer (Yu and Zhou, 2023). In subsequent Stages 2, 3, and 4, the

Efficient Block module downsamples the input feature maps,

enabling the model to capture global information while retaining

crucial features (feature information for the P3, P4, and P5
detection layers).

As shown in the dashed box of Figure 2, unlike the residual

network design of ResNet, the Efficient Block in the Efficient Feature

Extractor consists of a special downsampling residual block and a

residual block based on Partical Convolution (Chen et al., 2023).

The special downsampling residuals of Efficient Block combine
FIGURE 1

Architecture of the proposed Benthos-DETR.
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maximum pooling layer and average pooling layer to construct a

shortcut connection for spatial downsampling and channel

expansion. Additionally, to optimize the traditional convolutional

feature extraction process, a convolutional layer with a convolution

kernel of 1×1 is employed to decrease the number of channels prior

to the downsampling operation. The residual block based on

Partical Convolution consists of one PConv layer and two

convolution layers with a convolution kernel of 1×1 to construct

a residual structure, which replaces the original residual module in

ResNet. The PConv layer only conducts convolution operations on

a part of the feature map, rather than applying it comprehensively,

significantly reducing redundant computation and memory access

(Fu et al., 2024; Lu et al., 2024).

The design of the Efficient Block aims to increase computational

efficiency while maintaining or even improving model performance,

particularly when handling large-scale and complex datasets. The

Efficient Feature Extractor, based on Efficient Block, contributes to

the construction of more lightweight and efficient deep learning

models by reducing superfluous computations and parameters. Even

when the depth of the network is increased, it remarkably enhances the

feature extraction performance with only a slight increment in the

number of parameters in the deep learningmodel. Themodel captures

complex features of target organisms in underwater images. Stacking

convolutional layers expands the range of the receptive field in the

backbone network. Overlapping receptive fields compress image

information, aiding the acquisition of more comprehensive details

(Dumoulin and Visin, 2018). However, during downsampling, spatial

information is compressed, whichmay result in the loss of small object

details (Zhou et al., 2015; Gao et al., 2023). To tackle this problem, we

have integrated an additional feature information layer, P2, in contrast

to the original RTDETR, as illustrated in Figure 3 below.

The P2 detection layer employs the C2fmodule to facilitate feature

fusion by dividing the input data into two branches (Wang et al.,

2023a). One transmits features directly, the other passes through

bottleneck modules. This branching design improves the

nonlinearity and representation of the network while extracting

abstract features from the data (Yang et al., 2024b, 2024a). The two
Frontiers in Marine Science 04
branches are concatenated along the channel dimension to create a

feature map with integrated features of different scales. Feature fusion

obtains contextual information and high-resolution data (Su et al.,

2024;Wang et al., 2024d). This is important for object detection tasks,

as it enables the model to identify objects accurately, low-contrast

targets, and detailed information. Therefore, adding the C2f module

before the output of the P2 detection layer helps models identify low-

contrast targets and detailed information, improving detection of

objects and benthic organisms.
2.2 Cascaded grouped attention module

Themulti-stage feature layers {P2, P3, P4 and P5} from the backbone

will be fed into the improvedencoder.TheAIFI in theoriginalRT-DETR

is an attention-based multi-head model that increases complexity and

parameters (Vaswani et al., 2017), whichmay affect performance (Zhao

et al., 2024b). We have replaced the AIFI module with the Cascade

Grouped Attention Module (CGAM), applied to feature layer P5.

CGAM is a key to the framework, integrating grouped attention and

cascading to gradually extract key data features. This enhances the

model’s capacity to understand and process the data, while filtering out

irrelevant noise (Liu et al., 2023, 2024). CGAM is especially useful in

underwater AUV images, where marine organisms are frequently

clustered in complex environments. Figure 4 shows howCGAMworks.

CGAM is a flexible and efficient approach that adjusts feature

map weights based on input image relevance. This improves the

model’s understanding of images and detection performance (Liu

et al., 2023). In CGAM, the input image is divided into groups of

pixels with different meanings. This grouping strategy improves the

model’s efficiency and allows it to focus on distinctive features. The

input sequence is mapped to generate queries, keys and values.

CGAM uses grouped attention, with Q, K, and V to calculate

attention weights within each set, generating the attention output.

This stage adapts the weights of feature maps to focus on important

features while suppressing background noise, and improving

feature extraction.
FIGURE 2

Structure of the efficient feature extractor (EFF).
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2.3 Focus fusion module

In this paper, besides the utilization of the CGAM module

mentioned in the previous section, the most crucial improvement of

the encoder in neck networks is the fusion module between multi-

scale feature maps, which is termed the Focus Fusion Module

(FFM). The overall structural diagram is shown in Figure 5 below.

The FFM uses spatial and channel attention to extract features

from the upper and lower channels. The upper channel of the FFM

uses deformable convolutions [DCNv2 (Zhu et al., 2019)] for local

context aggregation and spatial feature extraction. To maintain the

lightness of the algorithm, add local context to the global context within

the attention module. The lower channel of FFM uses convolutions to

extract features from adjacent sections of the feature map. Pooling

layers achieve channel attention across multiple scales. The fused

weighted points are multiplied back into the corresponding feature

maps, providing the input for the decoder. The detailed

implementation process of Fusion Focus Module is as follows:<I>

Processing in the upper channel. The spatial attention formula (Satt) of

global features at the upper part of FFM is shown in Equation 1. The

CBRmodule extracts features through 1 × 1 convolution, and the DBR

module represents the extraction of spatial features of different input

path information through deformable convolution:

CBR(X ⊕ Y) = d (B(Convk=11*1(X ⊕ Y)))

DBR(X ⊕ Y) = d (B(DCNv2(X ⊕ Y)))

Satt = DBR(DBR(CBR(X ⊕ Y)))

8>><
>>:

(1)

where,X andY are featuremaps fromdifferent path. The symbol⊕
denotes the channel dimension concatenation superposition. The

symbol B denotes the BatchNorm layer, while the variable d
represents the ReLU activation function. The convolution layer with a

kernel of 1 × 1 is represented by the symbol Convk=11*1(·), and DCNv2(·)

means deformable convolution layers.
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From Equation 1 and Figure 6, deformable convolution layers

from DCNv2 at the FFM enhance feature representation and

positioning (Wang et al., 2023b). Conventional networks struggle

with geometric transformations due to inflexible convolution and

pooling layers. This hinders their ability to adaptively detect objects

of varying sizes in seabed environments. A deformable convolution

layer has been added to enhance the adaptability of feature

extraction (Dai et al., 2017). The deformable convolutional kernel

allows for an offset at each sampling point, enhancing the model’s

ability to fit the input data.

CBR(X ⊕ Y) = d (B(Convk=11*1(X ⊕ Y)))

G(X ⊕ Y) = Gap(CBR(X ⊕ Y))

Ci(X ⊕ Y) = Convk=i1D (G(X ⊕ Y))

Catt = CBR(Ci=3(X ⊕ Y)⊕ Ci=5(X ⊕ Y)⊕ Ci=7(X ⊕ Y))

8>>>>><
>>>>>:

(2)

The definition of the symbol in Equation 2 is consistent with that

previously provided. The number of channels is reduced to half

through 1 × 1 convolution. The Gap is the global average pooling

layer (Lin et al., 2014a), which inputs the globally averaged feature

maps into 1D convolution with kernels of sizes 3, 5, and 7. The

superimposition is performed based on the channel dimensions and

the channels are restored to their original count through a 1 × 1

convolution.<III>Adding of the upper and lower channels. The

broadcast mechanism employed for the purpose of aggregating the

spatial and channel attention feature maps. The resulting formula,

obtained through the application of a sigmoid activation function, is as

follows:

w = Sigmoid(Satt + Catt) (3)

In Equation 3, Satt + Catt represents that the spatial adjustment

through the broadcast mechanism is compatible with the channel

attention feature map. The two feature maps are added element-

wise (Y Adarbah and Ahmad, 2019). This operation integrates
FIGURE 3

(a) Original structure in the RT-DETR; (b) Structure with extra P2 feature layer in the proposed Benthos-DETR.
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spatial and channel attention to create a feature map that

incorporates both (Ren et al., 2023). The fused map contains both

spatial and channel information, allowing for a more

comprehensive description of image features.<IV> Weighted

output. Applying a sigmoid activation function constrains the

output to the 0 to 1 range. The overall FFM computation is

shown in Equation 4:

Output Z = (X⊗w)⊕ (Y⊗ (1 − w)) (4)

In Equation 4, The symbol ⊗ denotes element-wise

multiplication. The fusion weights w consists of real numbers
Frontiers in Marine Science 06
between 0 and 1, so are the (1 − w), enabling the network to

conduct a soft selection or weighted averaging between the

feature maps of X and Y (Chen and Kassen, 2020). The attention

weights are allocated to the feature maps in a dynamic manner and

the resulting outputs are combined along the channel dimension.
input: Multistage features {P2, P3, P4, P5} obtained by

Efficient Feature Extractor

output: Output of Hybrid Encoder in Benthos-

DETR Network
FIGURE 4

Diagram of the cascaded grouped attention module (CGAM).
FIGURE 5

Diagram of the fusion focus module (FFM).
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Fron
1 Let CGAM denote the Cascaded Grouped Attention Module,

FFM denote the Fusion Focus Module, Up denote the

Upsample module and Down mean the ConvNorm module;

2 for each i ∈ {5, 4, 3, 2} do

3 Xi ← Pi

// For the stage 5 feature (P5) of the backbone

4 if i=5 then

5 X5 ← CGAM (P5)

6 end

7 for each j = 1 to 3 do

8 Yj ← Up(Xj+1)

9 Zj ← FFM (Xi, Yj)

10 end

11 end

12 Out1 = Z3

13 Out2 = FFM (Down (Z3), Z2)

14 Out3= FFM (Down (Out2), Z1)

//Fusion of the Cascaded Grouped Attention Module

15 Out4 = FFM (Down (Out3), X5)

//The output of the whole Encoder

16 Output = Concat (Out1, Out2, Out3, Out4)
Algorithm 1. Implementation steps of hybrid encoder.

The complete flow of the encoder in the Benthos-DETR is

shown in Algorithm 1. As stated in previous papers, detecting very

small objects stands out as the key performance bottleneck of state-

of-the-art networks (Singh et al., 2018). For example, the difficulty

of COCO is largely due to the fact that most object instances are
tiers in Marine Science 07
smaller than 1% of the image area (Lin et al., 2014b; Singh and

Davis, 2018). Therefore, inspired by SENet (Hu et al., 2018), CBAM

(Woo et al., 2018), CA (Hou et al., 2021), and SimAM (Yang et al.,

2021) attention modules, we proposed a focus fusion module

(FFM), which adds local channel contexts to the global channel-

wise statistics. In the encoder of Benthos-DETR network proposed

in this paper, FFM replaces the conventional concatenation module

and effectively aggregates the feature information from different

stage layers of the backbone to achieve cross-scale feature fusion.

While ensuring lightweight, focusing on objects with less

background clutter, and the recognition ability of small objects

has been further improved.
3 Data and parameters

3.1 Underwater object datasets

The submarine small target detection network plays a pivotal role

in the underwater picking system deployed in the AUV. It is

instrumental in facilitating a range of underwater operations,

including rapid positioning, automated monitoring of marine

biological growth, and intelligent fishing. To enhance its

performance, it is essential to train the network with images

captured in actual picking environments. To improve the submarine

object recognition task and simulate the real selection environment of

Underwater object recognition, the Enhanced Underwater Detection

Dataset (EUDD) from the UDD (Liu et al., 2022) based on the real

farm image of the open sea was selected in this paper.
FIGURE 6

Structure of the deformable convolution (DCNv2).<II> Processing in the lower channel. In the following Equation 2, the channel attention formula
(Catt) for global features is demonstrated, wherein correlation is examined between features at disparate scales via a multitude of one-dimensional
convolutions:.
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The EUDD is obtained from video recordings at two

underwater locations approximately 500 meters from Zhangzi

Island. The video recording is done by robots and divers working

together to follow specific loop routes. The video samples and cuts

multiple categories of images according to the uniform number of

frames, depending on the sharpness (720P, 1080P, and 4K video),

the shooting Angle (head-up, top-down), and the terrain scene (for

example, flat, slope, and stone). The finalized underwater open sea

farm object detection dataset comprises 2227 original images,

categorized into three groups: sea cucumber, sea urchin, and

scallop. The original images of the three types of marine

organisms are presented below. In Figure 7a, the sea urchins are

shown in blue frame lines, while sea cucumbers are shown in red

frame lines in Figure 7b, and the scallops are shown in the green

frame lines in Figure 7c.

Due to the different economic benefits of seafood in Marine

fisheries and the different number of varieties (Wang et al., 2024c),

the original UDD has the problem of class imbalance (Chawla et al.,

2002; Liu et al., 2022). Poisson GAN is used to balance categories,

addressing class imbalance in data sets (Zhu et al., 2017; Deng et al.,

2018; Huang et al., 2018). EUDD is introduced as follows: Three

categories of underwater organisms are extracted from the UDD

and synthesized via Poisson GAN. Each image undergo a specified

number of paste operations with probabilities of 0.1, 0.35, 0.30 and

0.25. In each paste operation, Poisson mixing is performed with a

probability of 0. The results are included as supplementary material

to the EUDD, which contain 18,661 images. The images include

15,615 sea cucumbers, 47,893 sea urchins, and 8,798 scallops, the

pie chart of categories is shown in Figure 7d.

Furthermore, the capacity to detect small objects must be

significantly enhanced in accordance with the evaluation criteria

established byMS COCO (Wu et al., 2020). InMS COCO (Lin et al.,

2014b) and PASCAL VOC (Everingham et al., 2010), the number of

instances per image is 7.7 and 3, with about 50% of the objects

occupying no more than 10% of the image itself, and the other

evenly occupying 10% to 100%. Compared to the UDD, EUDD

contains an increased proportion of instances of small objects, with

a percentage of 3.08% and an average of 12.3 for EUDD in terms of

instances per image, as shown in Figure 7e. The resulting EUDD

better reflects reality by having more categories and instances,

which makes the submarine target detection network evaluation

more comprehensive. The detailed comparison is shown in the

following Table 1:
3.2 Implementation details

In this study, JPEG images from EUDD ranged from 720 × 405 to

3840 × 2160 pixels. These images are acquired by marine students to

ensure data authenticity and usability. The data is divided into three

sets: 70% for training, 20% for validation, and 10% for testing. During

training, the hyperparameters are set as follows: input image size 640

× 640, batch size 8, epoch 200. The optimizer is AdamW with an

initial learning rate of 0.0001 and weight decay of 0.0001. Table 2

shows the specific hyperparameter configurations.
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The experimental system environment is shown in Table 3.
3.3 Evaluation metrics

In order to evaluate the effectiveness of the Benthos-DETR in

improving the situation, a number of indicators have been

introduced (Fisher, 1936; Zheng et al., 2015). The efficacy of the

model can be gauged by considering the number of model

parameters (Params) and the number of giga floating-point

operations per second (GFLOPs). A reduction in parameters and

GFLOPs results in the creation of a more straightforward model.

The precision (P), recall (R), and mean average precision (mAP) are

used to assess detectors. Precision is the proportion of correctly

identified positive samples, while recall is the ratio of actual to

predicted positive samples. The following definitions are provided

for clarity:

Precision = TP
TP+FP

Recall = TP
TP+FN

mAP = 1
no

n

i=1
APi

8>>>><
>>>>:

(5)

In Equations 5, “true positive” (TP) denotes samples correctly

identified as positive, and “true negative” (TN) samples correctly

identified as negative. The “false positive” (FP) is a sample

incorrectly classified as positive, while “false negative” (FN) is a

sample incorrectly classified as negative. Figure 8 illustrates a visual

representation of those relationships.

Specifically, mAP50 and mAP50:95 are used to evaluate the

precision of target detection, with higher values denoting greater

accuracy. mAP50 is formed by precision and recall. Area under P-R

curve (Precision-Recall curve) for mAP50:95 is calculated by dividing

it into 10 IoU thresholds (0.5 to 0.05 to 0.95) and averaging the

results. FPS shows the number of images detected per second,

indicating detection speed:

FPS = S=T (6)

In Equations 6, S is the count of samples, and T is the required

processing time.
4 Experiment and results

4.1 Ablation experiment

In this paper, we evaluated the efficacy of each module in the

Benthos-DETR using the EUDD dataset. The baseline model was

RT-DETR-r18. To achieve high-precision recognition of

underwater objects, we made a series of improvements to the

original network: (1) The backbone network had been enhanced

to become an efficient feature extractor, replacing the basic blocks

with efficient blocks and producing an additional feature layer of P2
while maintaining network computing efficiency; (2) In the neck

network that processes features extracted from the backbone, the
frontiersin.org
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Cascaded Grouped Attention Module had been introduced to

replace the AIFI module in the original RT-DETR, providing a

lightweight improvement to the feature layer of P5; (3) In the neck

feature hybrid network of the Benthos-DETR network, the

concatenation module was further optimized by cross-feature

attention mechanism, strengthening the feature perception effect

of Benthos DETR network on multi-scale, complex scenes and tiny

targets during underwater object recognition.

Table 4 presented the results of the ablation experiments

conducted on the three main improved modules of Benthos-

DETR. EFF referred to the Efficient Feature Extractor, which

forms the backbone network. CGAM was the Cascaded Grouped

Attention Module, which was applied to the feature layer of P5. FFM

standed for Focus Fusion Module, which was used in conjunction
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with the neck feature hybrid network. mAP was a metric used in

object detection. It assessed the accuracy of detection across

multiple categories. Parameters indicated the number of network

parameters, and GFLOPs measured network complexity.

By comparing Group 1 (Baseline) with Group 2 (Baseline + EFF),

and Group 3 (Baseline + FFM), we could observe the significant roles

played by the proposed modules in enhancing network performance

and reducing complexity. When EFF replaced the original RT-DETR

backbone, the network recognition accuracy improved, with the mAP

value rising to 91.5%. However, due to the additional computation for

the feature layer of P2, the network parameters increased from the

19.9M to 22.5M, and the GFLOPs also increased from 57.3 to 65.2.

CGAM has a more pronounced impact on lightweight networks. By

replacing the original AIFI module in RT-DETR, the network
FIGURE 7

(a-e) Overview of the enhanced underwater detection dataset (EUDD).
TABLE 1 Comparisons of different object detection datasets.

Dataset Primary Resolution Ins./Image Ins./Percentage Year

PASCAL VOC
(Everingham et al., 2010)

500 * 375 3 12.35% 2012

MS COCO
(Lin et al., 2014b)

640 * 480 7.7 5.67% 2014

URPC 2017
(Ruan et al., 2024)

720 * 405 9.3 0.73% 2017

URPC 2018
(Ruan et al., 2024)

1920 * 1080 8.2 0.58% 2018

UDD
(Liu et al., 2022)

3840 * 2160 10 0.47% 2020

EUDD
(Our dataset)

Variety
12.3 3.08% 2024

from720 * 405 to 3840 * 2160
The bold values indicate the results from our models.
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parameters decreased from 19.9M to 14.6M, and GFLOPS also

dropped from 57.3 to 43.5. However, this change also affects the

network’s recognition accuracy, with the mAP value decreasing from

88.5% to 83.9%. Compared to the first two modules, the introduction

of FFM in the neck network achieved a more balanced result. With

only a slight increase in network parameters, the mAP value

increased from 88.5% to 89.7%, indicating that FFM could

effectively combined network performance improvement with

model lightweight.

It was worth noting that, as shown in Group 5 to Group 8 in

Table 4, combining modules yielded better results than the original

baseline. To visually present the ablation experimental results, we had

plotted a comparative statistical graph of ablation experiments, as

shown in Figure 9. Two types of indicators were selected as

representatives: the left y-axis represented the mAP value, which

measured model accuracy, denoted by a rose-red line; y-axis

represented the GFLOPs value, which indicated model complexity,

denoted by gray rectangles.

It could be observed that the combination of multiple modules

produced a more pronounced effect. The addition of both EFF and

CGAM to the baseline model resulted in an increase in mAP from

88.5% to 91.1%, accompanied by a reduction in network GLOPs

from 57.3 to 54.2. At this juncture, the network demonstrated

enhanced precision in object detection while retaining its

lightweight configuration. Ultimately, the network Benthos-

DETR, which combined all three modules, achieved the highest

object detection result (highlighted in red on the right side of

Figure 9). Compared to Group 7 (Baseline + EFF + FFM), the

GFLOPs decreased from 67.2 to 62.3. Although the complexity of

the Benthos-DETR network, compared with the baseline model
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(highlighted in blue on the left side of Figure 9), increased from 57.3

to 62.3 in terms of GFLOPs, the network performance increased by

4.7%, meeting the requirement of high-precision detection in the

task of benthic organisms detection.
4.2 Analysis of detection

The ablation experiments demonstrated that the Benthos-

DETR network exhibited a notable improvement in underwater

target detection performance compared to the RT-DETR network.

Despite a slight increase in network complexity due to the addition

of P2 feature layer in the Efficient Feature Extractor and the

introduction of Focus Fusion Module in the neck part of

network, the enhanced feature extraction capability and stronger

feature information flow laid a solid foundation for potential future

improvements. In this section, we would showcase the effectiveness

of the proposed Benthos-DETR in the actual seabed benthic

organisms detection, and conduct a detailed analysis of the

network optimization effects through comparison experiments

with the original RT-DETR network.

Following the application of predefined hyperparameters to the

training process, the recognition results of the Benthos-DETR

network on the validation dataset were presented in Figure 10. In

Figure 10a, the red bounding boxes represent sea urchins, and the

numbers on the boxes indicate the confidence scores of the

detections. The blue bounding boxes in Figure 10b represent sea
TABLE 2 Hyperparameter settings of network training.

Epochs Batch Size Image Size Optimizer
Learning

rate
Weight decay

200 8 640 * 640
Adam with Weight
Decay Correction

0.0001 0.0001
TABLE 3 Experimental system environment.

Configuration Parameters

Operating System Ubuntu 16.04

Programming Language Python 3.9

CPU
12th Gen Intel(R) Core(TM) i7-12700K

3.60 GHz

GPU GeForce RTX 3090

GPU Memory 24 G

CUDA 12.0

cuDNN 11.7

RAM 64 G

Algorithm Framework Pytorch-2.0.1+cu117

IDM Spyder 3.3.0
FIGURE 8

Sample relationship chart.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1586510
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Rao et al. 10.3389/fmars.2025.1586510
cucumbers, and the green bounding boxes represent scallops, as

shown in Figure 10c. Due to the complex biological situation on the

seabed, there are large clusters of organisms, as shown in Figure

10d. In cases where recognition results were located at the edges of

the image or are densely overlapping, the bounding box colors

served as the primary means of distinction, and only the recognition

confidence was displayed on the boxes, with the specific label names

being omitted for clarity. As can be seen from Figure 10, the

proposed Benthos-DETR network could obtain relatively accurate

results for seabed benthic organisms detection tasks with complex

conditions, multiple categories and tiny targets. However, a

comprehensive analysis of recognition accuracy should also

consider the results of training and evaluations of test set.

Figure 11 below showed the network training outcomes.

Figure 11a showed the confusion matrix of the Benthos-DETR
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network’s detection results. The matrix showed that the network

often failed to detect sea urchins and scallops due to their light

colors and background mimicry. As shown in Figure 10, sea

urchins, which had a spherical body shape and were mostly black

in color, had the highest recall rate of 89% when detected by the

Benthos-DETR network. However, due to the cluster distribution of

black sea urchins and their similarity to complex backgrounds such

as underwater holes or gaps, the probability of the background

being misclassified as sea urchins was 58% during testing, which

was higher than the probability of the background being incorrectly

identified as one of the other two categories. The accuracy of the

Benthos-DETR network in identifying three types of seabed benthic

organisms was shown in Figure 11b through the P-R curve. The

zoomed-in area was highlighted with an orange box line. During the

object detection process for the EUDD, the Benthos-DETR network
TABLE 4 Ablation experiments.

Groups EFF CGAM FFM mAP/% Parameters/M GFLOPs

1 88.5 19.9 57.3

2 ✓ 91.5 22.5 65.2

3 ✓ 83.9 14.6 43.5

4 ✓ 89.7 20.7 59.1

5 ✓ ✓ 91.1 18.6 54.2

6 ✓ ✓ 84.9 17.3 49.7

7 ✓ ✓ 92.2 23.4 67.2

8 ✓ ✓ ✓ 92.7 21.8 62.3
The symbols "✓" indicates that the components of the current ablation experiment include the checked modules.
FIGURE 9

Comparative chart of ablation experiments.
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achieved the highest mAP50 value of 93.7% for scallops, 92.2% for

sea cucumbers, and 91.8% for sea urchins. From Figure 11c, it can

be found that the Benthos-DETR network not only performs well in

detecting sea cucumbers and scallops under complex background

interference but also excels in detecting sea urchins in large

numbers and clusters. Although the detection accuracy for seabed

benthic organisms could not reach the level of scallops, the overall

mAP50 value for all categories combined still reached an impressive

92.7%. The comprehensive statistical analysis of the network

recognition outcomes and accuracy is presented in Table 5 below.

Table 5 presents the test results of the Benthos-DETR and RT-

DETR networks on an underwater object detection task, with input

data from the test set partitioned by EUDD. The detected number of

sea urchins was greater than the sum of sea cucumbers and scallops,

which aligned well with the actual species distribution. Compared

with the RT-DETR network, Benthos DETR achieved higher

accuracy in the identification of three types of seabed benthic

organisms. However, in the detection of sea cucumbers, RT-

DETR identified more instances and images than Benthos-DETR,

with a higher recall rate. Nevertheless, the recognition accuracy of

RT-DETR significantly lagged behind Benthos-DETR. In the

detection of sea urchins, which were numerous in number and

small in size, Benthos-DETR demonstrated its superior accuracy by

identifying more sea urchin instances from fewer images, with both

precision and recall rates surpassing those of RT-DETR. For the

detection accuracy of the three underwater organism categories,

both networks exhibited the highest mAP50 for scallops, which was

related to the biological attributes of the underwater

shell characteristics.

The Benthos-DETR network, as demonstrated in this paper, not

only achieved network lightweighting but also improved the

accuracy of target recognition compared to the RT-DETR
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network before optimization. This was based on the recognition

performance of the benthic organisms in the EUDD dataset.

Specifically, the Precision had increased from 89.2% to 91.4%, the

Recall had risen from 85.2% to 87.1%, and the mAP50 had improved

from 88.5% to 92.7%. The network recognition accuracy had been

enhanced by 4.7%. The detailed comparison statistics were shown

in Table 6 below.
4.3 Comparison experiment

In this chapter, a comparative analysis of the proposed Benthos-

DETR network is conducted alongside other target detection

algorithms, including both qualitative assessments and

quantitative metrics. The algorithms involved in the comparison

encompassed classic two-stage algorithms such as Faster R-CNN

(Ren et al., 2017), Cascade R-CNN (Cai and Vasconcelos, 2018),

TOOD (Akyon et al., 2022), and Retina Net (Lin et al., 2020).

Additionally, multiple versions of the single-stage target detection

YOLO algorithm were included, such as YOLOv5 (Jocher, 2020),

YOLOv8 (Jocher et al., 2023), and YOLOv10 (Wang et al., 2024a).

The following example in Figure 11 demonstrated the target

detection capabilities of different algorithms on the underwater

target detection dataset EUDD.

Figure 12 was a representative visual example, showing the

visual detection results of our Benthos DETR compared to other

advanced target detection networks. The labels in the bottom right

corner of each subfigure indicated the names of the respective target

detection networks. The “origin” image displayed the ground truth

target detection labels annotated by professional marine science

researchers sea urchin. By comparing the detection results of

various models with the actual distribution of seabed benthic
FIGURE 10

(a-d) The recognition results of Benthos-DETR on EUDD dataset.
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organisms, we could qualitatively assess the practicability and

effectiveness of the target detection algorithm. The comparative

images in Figure 12 highlighted the detection accuracy of the

Benthos-DETR network in challenging underwater scenarios with

multiple types, tiny targets, and a large number of objects. The

proposed Benthos-DETR network was able to accurately identify

the types of targets and precisely locate their positions, avoiding

interference from complex environments. Rigorous quantitative

analysis requires the participation of more network evaluation

metrics, and a detailed summary of accuracy metrics from various

network comparison experiments was provided in Table 7 below.

According to Table 7, the Benthos-DETR network

outperformed the two-stage algorithms in terms of computational

cost and detection speed, achieving an mAP50 of 92.7%. Although it

did not match the real-time detection speed of single-stage YOLO

algorithms, its accuracy had seen a notable improvement. In

particular, the recognition accuracy of the proposed Benthos-

DETR network had increased from 79.7% (YOLOv5), 83.5%

(YOLOv8) and 86.3% (YOLOv10) to 91.4%. When compared to

the DETR and RT-DETR algorithms, RT-DETR showed a 15.5%

improvement in accuracy over DETR, while Benthos-DETR
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demonstrated an 18.4% enhancement. Furthermore, Benthos-

DETR achieved the highest mAP50:95 among the comparative

experiments, reaching 75.2%. Despite the proposed Benthos-

DETR network implementing a series of enhancements to the

backbone and neck components of the RT-DETR network, with

the objective of enhancing the accuracy of target detection, this

inevitably resulted in an increase in the amount of network

computation. However, these changes in network complexity

were deemed to be worthwhile for underwater target detection

tasks. Our GFLOPs reached 60.5, higher than some lightweight

models but much lower than computationally intensive ones, such

as Cascade R-CNN (184.3GFLOPs) and TOOD (232.8GFLOPs).

The moderate performance, computational cost and model size

(20.8M parameters) of the Benthos-DETR network represented an

optimal balance between performance and efficiency, facilitating

effective training and deployment of the algorithm. In summary, the

benthos-DETR network proposed in this paper was capable of

effectively identifying and accurately locating a multitude of

categories, in considerable quantities, and of a diminutive size, of

seabed benthic organisms in complex underwater environments.

The network contributed to advancing underwater target detection
FIGURE 11

The results of the Benthos-DETR network training. (a) Normalized confusion matrix; (b) Precision-Recall curve.
TABLE 5 The detection results of Benthos-DETR and RT-DETR on EUDD dataset.

Class Groups Images Instances Precision/% Recall/% mAP50/% mAP50:95/%

sea cucumber
RT-DETR 953 2360 88.1 86.2 89.3 75.2

Benthos-DETR 937 2293 92.1 85.6 91.8 74.3

sea
urchinsea urchin

RT-DETR 1782 4456 88.9 84.3 87.1 71.2

Benthos-DETR 1773 4631 91.6 89.0 92.2 75.9

scallop
RT-DETR 618 718 91.3 85.3 90.4 77.5

Benthos-DETR 620 731 92.4 84.6 93.7 78.1
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tasks and provided a reliable solution for target detection in actual

complex marine scenes.
5 Discussion

This paper used heatmaps to demonstrate the effectiveness of

feature utilization in the Benthos-DETR network, as shown in

Figure 13 below. The first column of images in Figure 12 shown

the original images fed into the network, showcasing diverse

benthic organisms across environments. The second column

displayed the feature heatmaps of the RT-DETR target detection

network. The original RT-DETR network focused on the

background of recognition images because the P2 feature layer

was ignored. The feature information from the feature layer of P5
had a significant impact on the network’s recognition heatmap,

which inadvertently diminished the focus on small targets such as

sea urchins, sea cucumbers, cave entrances, and underwater

crevices. Consequently, the network’s recognition accuracy for

these underwater small targets was somewhat lacking. The third

column of images in Figure 12 showed the feature heatmaps of the

Benthos-DETR target detection network. The Benthos-DETR

network’s capacity to discern the characteristics of seabed benthic

organisms has been enhanced by the incorporation of a multi-path

attention mechanism and data from the P2 feature layer. The

recognition features captured by the network were more detailed.
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The heat map was also clearer. Therefore, the optimized Benthos-

DETR network could capture more detailed features and was more

discernible in complex underwater environments, achieving

superior results in target detection.
6 Conclusion

This study proposed the Benthos-DETR network as an extension

of the RT-DETR network, with the objective of detecting seabed

benthic organisms. Firstly, in the backbone of Benthos-DETR

network, the C2f module and Efficient Block were used to enhance

the shallow feature extraction process of data, improving the model’s

multi-scale perception capabilities. Secondly, to reduce the

computational load of the network and achieve algorithmic

lightweight, a cascaded group attention module was introduced into

the encoder of the Benthos-DETR network, enhancing feature

interaction at the same scale. Finally, in the neck part of the network

encoder, the original concatenation module was replaced with the

Fusion Focus Module, effectively aggregating feature layer information

from different stages of the backbone to achieve cross-scale feature

fusion. Those improvements of the proposed Benthos-DETR network

ensure high performance in target detection accuracy while minimizing

the hardware requirements for network deployment.

Through a series of experimental analyzed in this paper, the

Benthos-DETR network demonstrated superior performance
TABLE 6 The detection comparison between Benthos-DETR and RT-DETR.

Groups Precision/% Recall/% mAP50/% mAP50:95/% Parameters/M GFLOPs

RT-DETR 89.2 85.2 88.5 74.1 19.9 57.3

Benthos-DETR 91.4 87.1 92.7 75.2 20.8 60.5

Performance ↑ 2.4% ↑ 2.2% ↑ 4.7% ↑ 1.4% ↑ 4.5% ↑ 5.6%
The symbol "↑ " means the improvement of the experimental results.
FIGURE 12

A representative visual example of several target detection networks.
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compared to several existing object detection algorithms. The

results of the ablation experiment demonstrated that the multiple

modules have a beneficial effect on the performance of the baseline

network. Furthermore, the integration of these modules had led to a
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notable enhancement in the network performance of Benthos-

DETR. In tests conducted on the EUDD dataset, the Benthos-

DETR network achieves a detection accuracy of 92.1% and mAP50
of 91.8% for sea cucumbers, 91.6% accuracy and 92.2% mAP50 for
TABLE 7 Comparison with target detection networks on the EUDD dataset.

Methods Reference Precision /% Recall /% mAP50 /% mAP50:95 /% Params /M GFLOPS FPS

Faster R-CNN (Ren et al., 2017) 64.8 59.5 63.6 43.3 41.3 251.4 38

Cascade R-CNN
(Cai and

Vasconcelos, 2018)
62.3 60.7 66.2 47.5 37.6 184.3 13

TOOD (Akyon et al., 2022) 70.3 68.7 73.4 56.6 38.8 232.8 34

Retina Net (Lin et al., 2020) 59.2 54.5 58.9 39.2 34.2 152.3 36

YOLOv5 (Jocher, 2020) 79.7 76.8 80.1 60.3 21.2 49.0 235

YOLOv8 (Jocher et al., 2023) 83.5 79.2 85.7 63.4 25.9 78.9 223

YOLOv10 (Wang et al., 2024a) 86.3 88.3 89.0 68.0 15.4 59.1 220

DETR (Carion et al., 2020) 77.2 73.1 78.4 59.2 14.3 44.3 59

Deformable
DETR

(Zhu et al., 2021b) 82.1 79.2 84.7 69.2 13.2 41.5 41

RT-DETR (Zhao et al., 2024b) 89.2 85.2 88.5 74.1 19.9 57.3 105

Benthos-DETR Our Research 91.4 87.1 92.7 75.2 20.8 60.5 84
frontie
The bold values indicate the results from our models.
FIGURE 13

Comparative experiment for object detection analysis.
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sea urchins, and 92.4% accuracy and 93.7% mAP50 for scallops.

Combining the detection accuracy results for these three types of

underwater biological targets, Benthos-DETR achieved an overall

mAP50 of 92.7%, representing a 4.7% improvement in mAP50
compared to the RT-DETR network. A comprehensive

comparison with alternative object recognition algorithms

demonstrated that the proposed algorithm struck an optimal

balance between recognition accuracy and network size. Despite

the increased computational cost of the network, higher accuracy

metrics were achieved in tasks involving the detection of small,

numerous, and diverse underwater objects. In the future, the variety

of underwater targets for detection will be expanded, with the

incorporation of additional species that are both dynamically

active and widely distributed, as part of the network training

process. Concurrently, a series of lightweight algorithms will be

developed to achieve high-precision and real-time underwater

target detection, while maintaining high-precision target

detection. These algorithms will provide technical support and

algorithmic reference for research fields such as marine fisheries

management, marine ecological protection, and marine biological

surveys, among others.
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