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Machine learning for improved
size estimation of complex
marine particles from noisy
holographic images
Zonghua Liu1,2*, Marika Takeuchi2, Yéssica Contreras3,
Thangavel Thevar4, Alex Nimmo-Smith5, John Watson4

and Sarah L. C. Giering2*

1School of Computing, Engineering and Technology, Robert Gordon University, Aberdeen, United
Kingdom, 2National Oceanography Centre, Southampton, United Kingdom, 3Division of
Oceanography, Center for Scientific Research and Higher Education of Ensenada, Ensenada, Mexico,
4School of Engineering, University of Aberdeen, Aberdeen, United Kingdom, 5School of Biological and
Marine Sciences, University of Plymouth, Plymouth, United Kingdom
Size estimation of particles and plankton is key to understanding energy flows in

the marine ecosystem. A useful tool to determine particle and plankton size -

besides abundance and taxonomy - is in situ imaging, with digital holography

being particularly useful for micro-scale (e.g., 25 – 2,500 µm) marine particles.

However, most standard algorithms fail to accurately size objects in

reconstructed holograms owing to the high background noise. Here we

develop a machine-learning-based method for determining the size of natural

objects recorded in digital holograms. A structured-forests-based edge detector

is trained and refined for detecting the particle (soft) edges. A set of pixel-wise

morphology operators are then used to extract particle regions (masks) from

their edge images. Lastly, the size information of particles is calculated based on

these extract masks. Our results show that the proposed strategy of training the

model on synthetic and real holographic data improves themodel’s performance

on edge detection in holographic images. Compared with another ten methods,

our method has the best performance and is capable of rapidly and accurately

extracting particles’ regions on a group of synthetic and real holograms (natural

oceanic particles), respectively (mean IoU: 0.81 and 0.76; standard-deviation IoU:

0.18 and 0.15).
KEYWORDS

subsea digital holography, hologram processing, machine learning, size estimation,
particle size distributions
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1 https://www.comm-tec.com/Docs/Manuali/Sequoia/LISST-HOLO-

manual-v3.0.pdf.
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1 Introduction

Size is a critical parameter for the analysis of plankton and

particles in aquatic systems, as it influences their role in the

ecosystem, such the role of organisms in the marine food web

(Serra-Pompei et al., 2022) and the role of particles in ocean carbon

storage (Laurenceau-Cornec et al., 2020; Serra-Pompei et al., 2022;

Omand et al., 2020). Recent advances in imaging technologies and

underwater camera systems enable broad-scale in situ monitoring

of plankton and particles, such as their abundances and sizes

(Lombard et al., 2019; Giering et al., 2020a, 2022). However,

while the technical ability to image particles and plankton has

advanced rapidly, the analysis of these images is still relatively slow,

leading to often long delays (up to years) between image collection

and interpretation. In addition, correctly determining the size of a

particle in an image remains a challenge (Giering et al., 2020b).

An imaging technique that helps to estimate size effectively,

compared to conventional photography, is lensless digital in-line

holography (DIH) (Schnars et al., 2015), as it provides the true sizes

of the particles irrespective of their position in the imaging volume.

Inlineholography records the interference pattern between lightwaves

scattered by a microscopic object and a reference wave along the same

axis. This recorded pattern can then be digitally reconstructed to create

an image of the object at a known distance from the sensor. Inline

holography has been used widely to image microscale (typically

micrometer to millimeter scale) marine particles (Aditya et al., 2021;

Liu et al., 2023a) owing to its high resolution [typically several

micrometers (Liu et al., 2023a)], large depth-of-field [tens of

centimeters in DIH (Schnars et al., 2015; Sun et al., 2008)], and large

sampling volume [typically in the scale ofmilliliters (Liu et al., 2023a)].

The latter provides a significant advantage over other imaging

techniques, such as photography, which relies on high-magnification

lenses that reduce the depth-of-field and, consequently, the sampling

volume. Furthermore, when recording particles using an imaging

system with a short depth-of-field (e.g., conventional photography),

particle size bias can be introduced from blurred particles that are out

of the depth-of-field along the optical axis (z-axis) (i.e., ‘out of focus’).

Because of its large depth-of-field, lensless DIH has the capability of

resolving this issue, as particles at different z-positions can

(theoretically) be recorded on one hologram and later clearly

reconstructed (Schnars et al., 2015;GrahamandNimmo-Smith, 2010).

A key challenge to estimating the size of natural particles captured

by holographic camera systems is accurate particle region extraction

from the reconstructed holograms. InDIH, the edge of an object is one

of themost important features because it defines the boundaries where

light waves are scattered (especially for opaque particles), creating a

strong contrast in the interference pattern (Liu et al., 2023a; Schnars

et al., 2015). The edges of a particle’s silhouette hence provide critical

information for accurately reconstructing the shape of the object,

whereas its “inner” (e.g., texture) information in the image is less

reliable (Burns and Watson, 2014). The edges in reconstructed

holograms are therefore typically more distinct compared to those in

conventional photography images. As a consequence, segmentation of

the reconstructed holograms should bemore reliable when using edge

detection algorithms than region-based approaches. Yet, due to high
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backgroundnoise and often complex particle shapes, traditional image

processing methods (including edge detection algorithms) typically

struggle to distinguish particles from the background in

reconstructed holograms.

Recent works show that an efficient approach for image

segmentation in images with a noisy background is machine

learning (Hassen Mohammed et al., 2023; Mahdaviara et al.,

2023; Yu et al., 2020). However, machine learning normally

requires many human pixel-wise annotations for training, which

is time consuming. To generate accurate training data, humans

typically have to carefully trace objects of interest to ensure that all

target pixels are included. Since good training data generally

requires hundreds of images (Martin et al., 2001), such workflows

can be impractical. An alternative to human-generated training data

is the use of synthetic training data. Synthetic training data refers to

artificially generated data created to simulate real-world scenarios

(Jordon et al., 2022); in our case, holograms of marine particles.

Here, we explore whether (a) a machine-learning-based

approach outperforms traditional algorithms in the segmentation

of reconstructed holograms, and (b) whether synthetic holograms

are a useful alternative to human-annotated training data for

this approach.

For machine-learning-based particle segmentation, we use a

state-of-the-art edge detection method based on structured forests

(Dollár and Zitnick, 2015), owing to its high accuracy, good

generalization, fast speed and no requirement on the input image

dimension. We produce a big synthetic holographic dataset of

marine particles. Using this synthetic data, a 2-step training

strategy is applied: the structured forest model with the original

weights is trained on a big synthetic holographic dataset, and then

fine-tuned on a small group of real, pixel-wise annotated

holographic data. Based on the trained structured forest model,

we develop a pipeline (named HoloSForests) for extracting the size

information of marine particles from holograms recorded by a

holographic camera. We also compare our method’s performance

against 10 traditional segmentation methods.
2 Materials

2.1 Real data collection and processing

A real holographic dataset of natural oceanic particles was

collected during an ocean research expedition near South Georgia

[part of the UK Controls over Ocean Mesopelagic Interior Carbon

Storage program (Sanders et al., 2016)] using a commercial

submersible digital holographic camera (LISST-HOLO, Sequoia,

USA) in Nov/Dec 2017. The camera’s optical and configuration

parameters1 are given in Table 1. It records high-resolution inline

holograms of microscale particles using a collimated laser beam

from a 658 nm laser. The recording distance range from the sensor

is 28 – 78 mm in the air. The sensor (hologram) dimension is
frontiersin.org
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1600 × 1200 pixels, and its pixel pitch size is 4.4 mm. It has also been

evaluated as having the capability of imaging particles in their

original size (Graham and Nimmo-Smith, 2010). The camera was

mounted on a purpose-built frame (the Red Camera Frame) and

deployed vertically to ~230 m, recording a hologram with a volume

of 1.86 mL every 1.2 – 2.5 m. In total, 5,047 holograms from 11

vertical profiles were used in this work.

To visualize the recorded particles in digital holograms,

holograms need to be first reconstructed numerically using a

reconstruction algorithm on a computer. Additionally, a focus

measure (Liu et al., 2023a) is needed to detect focused images of

recorded particles. For this task, we used the particle image

extraction suite, FastScan (Thevar et al., 2023), which can rapidly

reconstruct and auto-focus inline digital holograms recorded using

collimated laser beams, and output the vignettes of imaged particles.

FastScan uses the Angular Spectrum algorithm to reconstruct

holograms (Liu et al., 2023a; Schnars et al., 2015), and a contour-

gradient-based auto-focus algorithm to extract recorded particles

from the reconstructed holograms (Burns and Watson, 2014).

These algorithms are implemented using parallel computation on

a powerful Field Programmable Gate Array resulting in high

processing speeds [838 Mp/s (Thevar et al., 2023)].

A total of 20,328 particle vignettes were extracted from the

dataset. These vignettes were classified and manually verified using

Ecotaxa2. Noise/background particle vignettes were removed, and

the remaining vignettes were sorted into 40 taxonomic classes. The

20 most representative classes (in terms of abundance and

morphological diversity) were selected, yielding 8,902 vignettes.

Examples of the extracted particle vignettes are shown in Figure 1.
2.2 Synthetic data simulation and
processing

A synthetic holographic dataset, including reconstructed

particle vignettes and their ground-truth edge images, was created

(Figure 2). Each synthetic hologram was simulated based on the

parameters of LISST-HOLO (Table 1). To simulate holograms, we

used images of natural marine particles (zooplankton) imaged using
2 https://ecotaxa.obs-vlfr.fr/gui/index.
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ZooScan (Giering et al., 2019) due to their noiseless background and

similar shape, complexity and resolution to objects imaged by

LISST-HOLO. 877 ZooScan vignettes were binarized and used as

the target pool. To simulate a synthetic hologram, up to 10 particles

(vignettes) were randomly selected from the pool and randomly

placed within the system’s recording optical path (28 to 78 mm

depth from the camera sensor in the air). Each vignette was

positioned at least 50 pixels away from each edge of the

hologram. Details of each vignette in its synthetic hologram

(location, size, and recording distance from the sensor) were

stored. The dimension of each full-size synthetic hologram was

the same as the holograms recorded by LISST-HOLO (1600 × 1200

pixels). Holograms were simulated using the Angular Spectrum

method (Liu et al., 2023a; Schnars et al., 2015). Noise was added to

the simulated holograms by taking real holograms without any

targets and superimposing them as background noise in the

simulated holograms. Specifically, the background hologram was

first normalized with the maximum pixel value equal to the mean

intensity of the simulated hologram (Liu et al., 2023a; Schnars et al.,

2015); two holograms were then added together; and the intensity of

the final hologram was lastly normalized into 0 – 255. The

‘recorded’ particles can be reconstructed from these simulated

holograms based on the stored simulation information, and the

‘true’ edges can be extracted from the corresponding binarized

ZooScan images.
3 Methods

3.1 Methodology in HoloSForests

Our pipeline - HoloSForests, consists of three steps for

estimating particles’ sizes (Figure 3). (1) An edge-detection model

(structured forests) was trained twice using two different datasets:

the model was first trained using the synthetic training dataset, and

then fine-tuned using a small number of real, pixel-wise annotated

holographic data from the natural oceanic dataset. (2) The trained

model was used to extract particles’ edges in real holograms, and a

set of morphological operations were then carried out in the

extracted edge images to obtain their region masks. (3) Lastly,

particles’ size information was estimated based on the calculated

convex-hull region masks from the extracted region masks.

All the algorithms in HoloSForests were conducted on

MATLAB (licence: 980953), and then ran on a computer with a

processor of 12th Gen Intel(R) Core(TM) i7-12700 and RAM of

16 GB.

3.1.1 Model training
We used the structured-forests-based model (referred to as

structuredForests) by Dollár and Zitnick (2015) for the edge

detection. The model consists of eight decision trees. In each tree,

the maximum depth is 64, and the number of each of the positive

and negative patches is 5 × 105. To increase the diversity of the trees

and edge-detection accuracy, the trees are trained independently,

and the features and splits are randomly subsampled when training
TABLE 1 Optical and configuration parameters of LISST-HOLO.

Parameters Values

Wavelength 658 nm

Illuminating light collimated beam

Recording structure inline

Recording distance range from the sensor (in the air) 28 – 78 mm

Hologram (sensor) dimension 1600 × 1200 pixels

Pixel pitch size 4.4 mm

Particle size range 25 – 2500 mm
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FIGURE 1

Sample particle vignettes extracted by FastScan in the dataset of natural particles recorded in situ. Each white bar indicates 100 mm.
FIGURE 2

Workflow of data simulation. [x, y, w, h, f] indicates the details of the vignette in the synthetic hologram, including the top-left location in the
hologram [x, y], vignette size [w, h], and recording distance from the sensor [f]. Each image size is adjusted for layout.
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each node in each tree. Structured learning was used to map the

edges between the input and output images in each tree. The eight

trees are combined as a random forest to achieve robust outputs,

and the overlapping edge maps are averaged to obtain a soft edge

response. The ensemble model predicts a structured 16 × 16

segmentation mask (output) from a larger 32 × 32 image patch

(input), thus with 16 × 16 output patches, each pixel receives 256

predictions. The score of each pixel in the output edge map is

averaged over these 256 votes. A descriptive structure graph of the

model is shown in Supplementary Figure 1 in Supplementary

Material. The model codes are available from GitHub3.

The original weights of the model from the training on the

Berkeley Segmentation Data Set 500 (BSDS, 500 natural images

with annotated boundaries) (Martin et al., 2001) were used, since

they provided good generalization on detecting the edges in natural

images. The model (with original weights) was trained on our

synthetic training data. To improve its performance on real

holographic data, the trained model was further fine-tuned on

our real holographic data based on the technique of transfer

learning (Hosna et al., 2022; Pan and Yang, 2010).

3.1.2 Region extraction
structuredForests produces soft edge images, where each pixel

value ranges from 0 to 1. In these images, higher pixel values

indicate a higher probability of the pixel being located at an edge

(second image of the bottom row in Figure 3). Therefore, the output

edge images require further processing to extract particle

size information.
3 https://github.com/pdollar/edges.
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A series of pixel-wise morphological operators were used on the

output edge images (Figure 4). Since each edge image has high

contrast between the particle edges and the background (second

image of the bottom row in Figure 3), the thresholding algorithm

Otsu [a fast binarization method based on the intra-class variance

between the foreground and background (Otsu, 1979)] was used to

determine the edge pixels in each edge image. The detected edges by

the structured forest model are wide (Figure 3), resulting in an

estimated particle area that is slightly bigger than the original.

Therefore, if there were more than three pixels in the width

direction of the edges, the edges in a binary edge image were

thinned by removing one pixel from their two sides, respectively. To

obtain the particle mask, the operation of hole filling was then used

to fill the holes surrounded by edges in the binarized edge image.

Subsequently, two steps were implemented to remove regions that

were too small: morphological opening using a disk-shaped

structure element with a diameter of 6 pixels and removing the

regions that are smaller than 25 pixels. In the last step, regions

within a 6-pixel distance from each other were merged in the mask

image. The criteria of 6 and 25 pixels was chosen based on the

minimum concentrated particle size (25 μm) and pixel size (4.4 μm)

of LISST-Holo, as: 25   μm
4:4   μm ≈ 6 and p(25   μm2 )2

(4:4   μm)2
≈ 25.

3.1.3 Particle size estimation
Since hole filling is applied in the workflow, an extracted

region by the proposed method might not be the actual region for

a particle, particularly when a string-shape particle forms a

circular pattern in the image. Therefore, the size information of

particles obtained using the proposed method is expected to have

less bias to such particles, if it is calculated in terms of the convex

hull region.
FIGURE 3

Workflow of HoloSForests to estimate the size information of particles in the particle vignettes. Three steps are contained in this workflow: (1) model
training in the purple box, (2) edge-based region detection in the orange box, and (3) size estimation in the magenta box.
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Three concepts were used to describe particle size based on the

extracted convex hull region: (1) major-axis length (the Euclidean

distance of the two furthest points in a region boundary), (2) minor-

axis length (the Euclidean distance of the two closest points in a

region boundary), and (3) equivalent spherical diameter (ESD)

(Giering et al., 2020b). ESD describes the size of an irregularly

shaped object using the diameter of a sphere which has the same

area as the object. It is calculated as Equation 1:

ESD = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aconhull

p

r
(1)

where Aconhull is the convex hull area of a particle which is

calculated as Aconhull =oi,jRconhull(i, j)� (4:4  mm)2 with Rconhull

indicating a binary convex hull mask of the particle, and 4.4 μm

indicating the pixel pitch size of LISST-HOLO. Since LISST-HOLO

can only detect particles whose ESDs are in the range from 25 to

2500 μm, those particles whose ESDs are not in this range are

omitted when estimating particle size.

Note that hull-based size estimates are higher compared to the

pixel-based size estimates for natural particles with highly irregular,

concave or porous shapes. Yet, this metric is useful as an upper

bound for drag estimation, assessing particle morphology [e.g.,

‘solidity’ and ‘roundness’ (Giering et al., 2020b)], and the space

taken up by particles.
3.2 Datasets for model training and
evaluation

A total of three datasets were created for model training and

evaluation: a synthetic holographic dataset and two real holographic

datasets. One real holographic dataset of standardized basalt
Frontiers in Marine Science 06
spheres for model evaluation is described in Section 5 of

Supplementary Material.

3.2.1 Synthetic holographic data (SHD)
One thousand synthetic holograms containing a total of 7,000

marine particles were created using the method described in Section

2.2. Each simulated hologram was reconstructed at the z-distances

where the ZooScan vignettes had been placed, and the reconstructed

particles were extracted and saved. 3,000 of the 7,000 reconstructed

particle images were randomly selected to create the training

dataset. These reconstructed images and the edge images from

their original vignettes were used, respectively, as the input and

ground-truth images for training the model (Figure 2). We chose

this number because the performance of trained models on edge

detection did not obviously change when more than 3,000 particles

were used (Section 2 in Supplementary Material). An additional

1,000 pairs of reconstructed particle images and original edge

images were randomly selected from the rest of the synthetic

dataset as the testing data. This SHD dataset was used to test the

edge detection performance of structuredForests, as well as the

region extraction performance of HoloSForests.

3.2.2 Real holographic data - cruise (RHD-Cruise)
We compiled a training/testing dataset with natural and

complex marine particles. For this, we selected 5 representative

particle vignettes from each of the 20 taxonomic classes (Table 2),

yielding a dataset with 100 particle vignettes (Supplementary

Figure 3 in Supplementary Material). Three people manually

labelled the particle regions pixel by pixel in each vignette, and a

pixel was designated as a part of the region if at least two people

labelled it as a region pixel. The edges of the particle(s) in each

region mask (Table 2) are detected used the method proposed by
FIGURE 4

Flow chart of pixel-wise morphological operations for extracting the region masks from the edge image output from structuredForests.
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Liu et al. (2018). This dataset was used for two parts of work: (1)

when evaluating HoloSForests’ performance across the entire data,

3 particle vignettes from each class were randomly selected for

training, and the remaining 2 vignettes were used for testing (i.e., 60

real holographic vignettes as the training data and 40 vignettes as

the test data); (2) when evaluating the capability of HoloSForests for

estimating the size of particles for different taxonomic classes, 5-fold

cross validation (King et al., 2021) was adopted. For this, 1 vignette

in each class was used as test data, and the remaining 4 vignettes

were used as train data, and the process was iterated until every

vignette in each class was used as test data.
3.3 Evaluation metrics

Two metrics were adopted to evaluate the accuracy

performance of HoloSForests in terms of edge detection and

region extraction. Furthermore, the time efficiency (i.e., running

time) was also evaluated.
3.3.1 Structural similarity index measure (SSIM)
SSIM (Wang et al., 2004) was selected to evaluate the accuracy

performance of edge detection. It measures the similarity between

two images based on three features: luminance, contrast, and

structure. As a result, it provides a better evaluation of

image similarity compared to measures that rely solely on the

intensity of corresponding pixels in the two images. SSIM = 1

indicates that the two images are the same; the smaller the value is,

the more different the two images are. SSIM is calculated as

Equation 2:

SSIM(r, gt) =
(2mrmgt + C1)(2sr,gt + C2)

(m2
r + m2

gt + C1)(s2
r + s 2

gt + C2)
(2)

where m and s indicate the mean value and standard deviation

of an image, sr,gt is the covariance of two images; C1 and C2 are two

small constants to stabilise the division with a weak denominator

that are calculated by C1 = (K1L)
2 and C2 = (K2L)

2 where K1 = 0:01,

K2 = 0:03, and L = 255 for 8 bits/pixel images.
3.3.2 Intersection over union (IoU)
The accuracy of region extraction was evaluated using IoU

(Rezatofighi et al., 2019). It is a key metric to measure the accuracy

of region extraction based on binary images and is computed as the

ratio of the overlap of the predicted region (r) and ground truth gt)

as Equation 3:

IoU(r, gt) =
TP

TP + FP + FN
(3)

where TP is the intersected area between r and gt (TP = r ∩ gt),

FP is the area that is predicted to be part of the region but is not

actually part of the ground truth (FP = r ∪ gt − gt), and FN is the

area that is part of the ground truth but is not predicted as part of

the region (FN = r ∪ gt − r). A perfect overlap of the predicted

region and ground truth region has an IoU value of 1 (r = gt).
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3.4 Evaluation and validation

3.4.1 Optimization of edge detection capabilities
of structuredForests using synthetic data

Since the original structuredForests trained on the BSDS data

demonstrates good generalization in the original work, we

investigated how different training strategies performed in

detecting particle edges in holographic images. For this, five

models were generated by training on five different dataset

combinations: Model 1 was trained on BSDS (n = 500), Model 2

was trained on BSDS and RHD-Cruise (n = 500 + 60, respectively),

Model 3 was trained on BSDS and SHD60 (n = 500 + 60,

respectively; with 60 training images randomly selected from the

3,000 training images in SHD), Model 4 was trained on BSDS and

SHD (n = 500 + 3,000, respectively), and Model 5 was trained on

BSDS, SHD and RHD-Cruise (n = 500 + 3000 + 60, respectively).

The five models were then used to predict particle edges in the test

images from the SHD and RHD-Cruise datasets (1,000 and 40 test

images, respectively). Since the models produce the soft edges for an

input image, SSIM-related measures - including its mean (mSSIM,

reflecting the overall accuracy) and standard deviation (stdSSIM,

reflecting the robustness) - were used to evaluate the five models.

3.4.2 Comparison of HoloSForests with other
region extraction methods

HoloSForests was compared with ten other methods (Liu et al.,

2023b), including four edge-based methods (cannyEdge, sobelEdge,

prewittEdge, and robertsEdge), four region-based methods

(activeContour, regionGrowing, SRegionMerging, and

Watershed), a thresholding-based method (OtsuThresholding),

and a clustering-based method (KMeans). In the four edge-based

methods, the same morphological operations (excluding

binarization and edge thinning) were used to extract the region

masks from their output edge images. In the other six methods, the

operations for Region Mask Refining (Figure 4) were used to refine

the extracted region masks. Additionally, we evaluated the

capability of HoloSForests in region extraction for particles from

different taxonomic classes (20 classes in RHD-Cruise) using the 5-

fold cross validation (Section 3.2). Since extracted region masks are

binary, IoU-related measures - including its mean (mIoU, reflecting

the overall accuracy) and standard deviation (stdIoU, reflecting the

robustness) - were used to evaluate these eleven methods.

3.4.3 Real-word application
HoloSForests was used to analyze the vertical distribution of

particle size in two depth profiles (Event 034 and Event 098) recorded

during the ocean research expedition. Due to the high noise levels in

particle images from the surface to 4 m depth (Giering et al., 2020b),

the size distribution was assessed below this depth.
4 Results and discussion

Here we present and evaluate the performance of HoloSForests

in terms of edge detection, region extraction, and size estimation.
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4.1 Optimization of edge detection
capabilities of structuredForests using
synthetic data

First, we assessed the effectiveness of structuredForests in

detecting particle edges in reconstructed holograms, using both

synthetic and real datasets (Table 3). As expected, even though the

original model shows good generalisation (Model 1), training on

holographic images (Model 2-5) improves both metrics (mSSIM

and stdSSIM): Model 1 is least accurate (smallest mSSIM) and least

robust (largest stdSSIM) on both test datasets. Therefore, the model

should be trained on holographic data to detect particle edges in

holographic images. The results of Model 2 and Model 3 shows that

training with few holographic images (n = 60) improves the model

performance in accuracy and robustness, however, the output is

domain-specific, particularly regarding accuracy: training on

synthetic data improves performance on both synthetic and real

data, but more on synthetic, while training on real data enhances

both, with greater gains on real data. This domain specificity

becomes weak when the model is trained on a large synthetic

dataset (n = 3,000): compared to Model 1, increasing of mSSIM in

Model 4 by 25.0% on the synthetic data and 23.7% on the real data,

respectively. Although our most comprehensively trained model

(Model 5, trained on both real and synthetic data) performs

similarly on the synthetic test data compared to Model 4, its

performance is slightly better on the real test data. We conclude

that training on synthetic data is an effective way to improve edge

detection in holographic images; the addition of even a small

number of real images (2%) improves the model’s edge detection

accuracy and robustness on real holographic data.

The results from the performance evaluation (Table 3) are

supported by visual inspection of the predicted edges of three

example images from both the synthetic and real holographic

datasets (Figure 5). For both synthetic and real holographic

example images, we can see that the edge images output from the

extensively trained models (Models 4 and 5) have clean
Frontiers in Marine Science 09
backgrounds and clear edges (the pixel values along edges are

higher), while the corresponding images from the base model

(Model 1) and low-level trained models (Models 2 and 3) show

more fake edges (noise) around the particles or across the entire

image. This visual inspection also demonstrates that the predicted

edges are wider than the labelled edges in ground truth images,

likely as a result of the soft detection scheme in the models. This

widening could cause a slight overestimate on a particle’s area

compared to its actual area. For this reason, we employed the

operation of edge thinning as a part of the morphological

operations (Figure 4).

Overall, our Model 5, which is trained on both the synthetic and

real holographic datasets, performs best in terms of accuracy and

robustness. We therefore used this model to detect particle edges in

the rest of our experiments (unless stated otherwise).
4.2 Comparison with other region
extraction methods

4.2.1 Performance on entire data
The proposed series of pixel-wise morphological operations by

HoloSForests (Figure 4) for extracting the region mask and the

convex hull from the reconstructed images are effective in defining

the area of even complex particles, like large colonial diatoms whose

‘inner texture’ is similar to the background noise (Figure 6).

Regarding accuracy and robustness, HoloSForests outperforms

the ten other region extraction algorithms (Table 4). On the

synthetic data, it markedly outperforms the other 4 edge-based

methods in terms of accuracy (mIoU: 0.81 vs 0.38 – 0.58,

respectively) and robustness (stdIoU: 0.18 vs 0.19 – 0.38,

respectively). SRegionMerging is the best region-based method,

yet it is slightly less accurate (mIoU: 0.79) than HoloSForests.

Moreover, its robustness is lower compared with HoloSForests

(stIoU: 0.23 vs 0.18, respectively). Similarly, the accuracy of

KMeans (mIoU: 0.78) is close to the one of HoloSForests, but it is
TABLE 3 Performance evaluation of structuredForests on edge detection on the synthetic and real holographic datasets in terms of accuracy (mSSIM
and stdSSIM) after it is trained on the five different datasets.

Model
Image number in
training dataset

Dataset

SHD (1,000 images) RHD-Cruise (40 images)

mSSIM stdSSIM mSSIM stdSSIM

Model 1
(BSDS)

500 0.6622 0.1349 0.5055 0.1685

Model 2
(BSDS+RHD-Cruise)

560 0.6717 0.1248 0.5646 0.1619

Model 3
(BSDS+SHD60)

560 0.7388 0.1185 0.5432 0.1644

Model 4
(BSDS+SHD)

3500 0.8279 0.0706 0.6254 0.1391

Model 5
(BSDS+SHD+RHD-Cruise)

3560 0.8284 0.0699 0.6373 0.1342
The bold values indicate the best result based on the corresponding measure.
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less robust (stdIoU: 0.20). OtsuThresholding is the fourth best

method with mIoU of 0.71. Another region-based method -

regionGrowing, is the least accurate method (mIoU: 0.32)

amongst all the 11 methods.

On the real holographic data, the accuracy of 9 of the 11

algorithms decreases relative to their performance on the

synthetic data (Table 4). regionGrowing even fails to detect the

regions in some images. Surprisingly, sobelEdge and prewittEdge

are more accurate and robust on the real data than on the synthetic

data, improving accuracy by ~0.20 and robustness by ~0.12.

HoloSForests remains the best method with only slight changes in

accuracy (a decrease of 0.04) and robustness (a decrease of 0.03),

which shows good generalization for both synthetic and real

holographic images. SRegionMerging becomes the third most-

accurate method (0.66), as sobelEdge takes the second place

(0.67). Amongst the 5 methods with reasonable accuracy

(mIoU > 0.6), KMeans performs the worst. With an accuracy of

< 0.5, cannyEdge, robertsEdge, and activeContour are not suitable

for detecting particle regions in the real holographic test data.
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Regarding the processing time, with the exception of

activeContour and regionGrowing, we are able to process the

1,000 synthetic holographic images within 30 seconds with all

methods. In contrast, both activeContour and regionGrowing

take more than 4 minutes. OtsuThresholding has the shortest

processing time of ~10 seconds. Although HoloSForests takes ~15

seconds to process 1,000 images, this speed still enables it to

instantly generate an output once it receives an input image [real-

time processing (Dougherty and Laplante, 1995)]. To detect the

regions in the 40 real holographic images, most methods take < 4

seconds, apart from activeContour (~17 seconds), Watershed (~39

seconds) and regionGrowing (stuck in detecting the regions in some

images). Although cannyEdge is the fastest method (0.66 second), it

has the lowest accuracy compared to the other algorithms (except

for regionGrowing). While HoloSForests is not the fastest method,

among those with reasonable accuracy (mIoU > 0.6), its processing

speed is only marginally slower than the fastest algorithm (1.13

seconds vs. 0.99 seconds) and remains acceptable for real-time

data processing.
FIGURE 5

Edge images of the synthetic and real holographic image examples output from the five models described above. GT – ground-truth images. The
pixel value scale is converted into [0, 255] from [0, 1] in the edge images for displaying them.
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FIGURE 6

Resultant output of each step in HoloSForests when processing one image example. The image size is adjusted for layout.
TABLE 4 Performance of the methods on region extraction on the synthetic and real holographic datasets in terms of the efficiency of accuracy
(mIoU and stdIoU) and time.

Method Algorithm type

Dataset

SHD (1000 images) RSD-Cruise (40 images)

mIoU stdIoU
processing
time * (s)

mIoU stdIoU
processing
time** (s)

HoloSForests
Machine learning
based

0.8054 0.1774 15.19 0.7613 0.1453 1.13

cannyEdge
Edge detection
based

0.3797 0.1940 17.12 0.2772 0.1856 0.66

sobelEdge
Edge detection
based

0.4728 0.3752 10.44 0.6726 0.2205 1.00

prewittEdge
Edge detection
based

0.4274 0.3746 10.17 0.6438 0.2503 0.99

robertsEdge
Edge detection
based

0.5828 0.3228 10.97 0.4758 0.2996 1.05

activeContour
Region detection
based

0.5322 0.2811 323.00 0.3716 0.2374 17.00

regionGrowing
Region detection
based

0.3219 0.2313 256.81 \*** \ \

SRegionMerging
Region detection
based

0.7899 0.2251 27.47 0.6561 0.2407 1.71

Watershed
Region detection
based

0.6644 0.2338 14.79 0.5289 0.2491 39.23

Otsu-
Thresholding

Thresholding based 0.7097 0.2282 9.96 0.5414 0.2580 1.89

KMeans Clustering based 0.7815 0.2039 12.99 0.6197 0.2637 3.30
F
rontiers in Marine S
cience
 11
The bold values indicate the best result based on the corresponding measure.
* The average image size in this dataset is 127 × 387.
** The average image size in this dataset is 152 × 119.
\*** Indicates the method failed to detect the region in some images of this dataset.
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To visualize the performance of the 11 algorithms, we showed

the extracted regions for example holographic images from five of

the complex plankton classes (Figure 7). Qualitatively analysed, the

performance rank of the methods is similar with the calculated

performance metrics (Table 4). HoloSForests performs consistently

well on the five images, with fine features at a reasonable level, such

as the complex shape of colony-forming diatoms and the

appendages of zooplankton. Other methods that also perform

reasonably well are sobelEdge, prewittEdge, and SRegionMerging.

In contrast, cannyEdge, activeContour, and regionGrowing cannot

detect the plankton in any of the images, likely because of the high

background noise from interference patterns in the reconstructed

holograms. robertsEdge, Watershed, OtsuThresholding, and

KMeans can detect the plankton in some images, however, they
Frontiers in Marine Science 12
also introduce false regions and/or miss real ones, likely due to the

noisy background.

4.2.2 Performance on individual taxonomic
classes

As the complexity of a particle’s shape influences the ability of an

algorithm to correctly identify the particle regions, we here

investigated how size estimation varies for different plankton

classes. To do so, we compared HoloSForests to the other top 4

algorithms (sobelEdge, SRegionMerging, prewittEdge, KMeans;

Table 4) in terms of mIoU on the RSD-Cruise test data.

HoloSForests overperforms the other 4 methods in all classes apart

from the class of chain-forming diatom Thalassiosira (Figure 8S),

where sobelEdge and prewittEdge are more accurate (mIoU: 0.64 vs
FIGURE 7

Regions (in white) and boundaries of their convex hulls (in red) extracted from five examples of the real holographic test data. The images have been
resized for the layout purpose.
FIGURE 8

Box plotting of the results of 5 methods when evaluating them on the images of each class of 20 classes. (A) Aggregate, (B) Asterionella, (C) Chaetoceros
chain, (D) Chaetoceros socialis, (E) Chainthin, (F) Ciliophora, (G) Copepod, (H) Corethron, (I) Cylinder, (J) Detritus, (K) Dinoflagellates, (L) Eucampia
antarctica, (M) Fecal pellets, (N) Fragilariopsis, (O) Nauplii, (P) Pennate, (Q) Round, (R) Square, (S) Thalassiosira, (T) Thalassiothrix. The example of
each class shown in Table 2 is given for visualization of them.
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0.71 and 0.68, respectively; Supplementary Table 1 in Supplementary

Material). It clearly outperforms the other methods for classes with

fine features, such as appendages and spikes (e.g., Chaetoceros sp.,

copepods and nauplii; Figures 8C, G, O) and complex shapes (e.g.,

aggregates andAsterionella sp.; Figures 8A, B). HoloSForests was least

accurate for thin and long particles (class Chainthin; mIoU = 0.58).

The discrepancies may be due to the relatively wide edges that it

predicts and which require thinning. For long objects that are only a

few pixels wide, a small change in width will lead to big differences in

relative size estimates. However, even for this class, HoloSForests still

performs remarkably better than the other 4 methods (mIoU: 0.11 –

0.37; Supplementary Table 1 in Supplementary Material).

Another advantage of HoloSForests is its robust performance

across most classes (as determined by stdIoU in Supplementary

Table 1 in Supplementary Material, and visualized by the short

boxes in Figure 8). HoloSForests deviates by ≤ 0.05 mIoU for 8 of

the 20 classes (Square, Cylinder, Copepod, Detritus, Aggregate,

Dinoflagellates, Fecal pellets, and Fragilariopsis). In contrast, the

second-best method - SRegionMerging - performs similarly well for

only 3 classes; while the remaining 3 methods can achieve this

robustness for only 1 class each. The most robust performance of

HoloForests comes from the class Square (stdIoU = 0.01;

Supplementary Table 1 in Supplementary Material), which
Frontiers in Marine Science 13
contains simple square-like particles (such as the side view of

centric diatoms). Interestingly, the value for another simple shape

- Round (stdIoU = 0.07; Supplementary Table 1 in Supplementary

Material) is higher than for some of the more complicated shapes

(e.g., Aggregates). Possible explanations could be: (1) the regions of

round particles are generally very small such that a small difference

between the extracted region and ground-truth regions can cause a

big decrease in IoU; (2) regular holographic fringes (i.e., noise)

usually occur around reconstructed round particles, which cause

instability in extracting their regions. The least robust classes are

Corethron sp., Thalassiosira sp., and chain-forming Chaetoceros sp.

(stdIoU = 0.27, 0.24, and 0.20, respectively; Supplementary Table 1

in Supplementary Material), since these particles have many fine

structures and/or multiple disconnected components (Table 2).

Overall, HoloSForests has good accuracy and robustness when

extracting the regions of complex natural particles from

reconstructed holograms.
4.3 Real-world application

Histogram analysis (Figures 9-1, 2) indicates the expected long-

tailed distribution: the majority of detected particles (> 90%) had
FIGURE 9

(1-2) Histograms showing particle size in 50 bins for the two profiles (1: Event 034, and 2: Event 098). (3-4) Vertical profiles of particle size (hull-
based ESD) estimated using HoloSForests from two deployments (3: Event 034, and 4: Event 098). The solid orange lines follow the smoothed
average. The dashed lines show the mean hull-based ESD in the depth ranges 4 – 50 m (red), 150 – 230 m (purple), and 4 – 230 m (orange). Please
note that the x-axis is logarithmic in the bottom two graphs.
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hull-based ESDs smaller than 500 mm, while only a small fraction (<

1%) exceeds 1000 mm. The scarcity of large particles is likely due to

a low abundance of particles of this size within the sampling area,

though we cannot completely rule out limitations in the FastScan

reconstruction algorithm for very large particles. However, given

that some particles exceeding 1000 mm were successfully

reconstructed by FastScan (Supplementary Figure 5 in

Supplementary Material), it is likely that the low detection rate of

these larger particles reflects their true low abundance in the

observation area at the time of data collection.

Both profiles (Figures 9-3, 4) exhibit similar trends in particle

size distribution, with a general decrease in particle size with

increasing depth. Notably, the mean hull-based ESD (Table 5)

shows a marked reduction between 50 m and 150 m depth. The

mean ESD decreased from 245.5 ± 202.9 mm to 123.0 ± 87.4 mm
from above 50 m to below 150 m in Event 034; while in Event 098, it

declined from 232.6 ± 179.0 mm to 136.5 ± 83.1 mm (above 50 m

and below 150 m, respectively). The average particle size across the

entire water column was 211.8 ± 182.6 mm and 218.2 ± 177.4 mm in

Event 034 and Event 098, respectively.

These size estimates are slightly smaller than previous estimates

of these particle profiles based on reconstructed images made using

the software HoloBatch combined with a sequence of image

processing steps aimed to avoid fragmentation of complex

particles (Planktonator; Giering et al., 2020b). The final vignettes

in that workflow had a clear white background, and particle regions

were hence determined using a range of region detection methods,

with Otsu being used as the reference algorithm. As the original

work used pixel-wise ESD, we recalculated their size estimates using

hull-based ESD and calculated mean sizes across the entire water

column. The recalculated values (234 ± 225 mm and 246 ± 239 mm
for Event 034 and Event 098, respectively) are ~10% higher than the

size estimates by HoloSForests. Compared to the previous work

(Giering et al., 2020b), our workflow here has several advantages.

Besides the faster hologram reconstruction time (using FastScan

compared to HoloBatch), visual inspection shows that FastScan is

less prone to fragment large complex plankton (such as Chaetoceros

socialis) than HoloBatch. The higher size estimates observed with

HoloBatch + Planktonator are likely due to Planktonator’s tendency

to over-combine particles, potentially incorporating ‘false’ particles

created by interference patterns, when particle abundance is high.

Overall, HoloSForests applies less image manipulation, which

likely provides images closer to reality (albeit with noisy

background). Lastly, we validated size estimates by HoloSForests
Frontiers in Marine Science 14
using both human pixel-wise annotations and size-sorted basalt

spheres (Section 5 in Supplementary Material), providing an

evidence base for the accuracy of the produced size estimates.
5 Conclusions

Images provide valuable information on marine particle size. DIH,

with its high resolution and capacity for relatively large-volume

recording, is a powerful tool for imaging marine microscale particles.

However, extracting particle size from holograms remains challenging

owing to the complex shape of naturally occurring particles and

background noise in reconstructed holograms. This paper presents a

method developed to address these challengers, which involves two

primary steps: (1) training a structured forest model on three datasets –

BSDS500, synthetic holographic data, and real holographic data - to

detect the particle edges in images; and (2) applying a series of pixel-

wise morphology operators (including binarization, edge thinning, hole

filling, morphological opening, small-region removal, close-region

merging, convex hull) on the edge-detection outputs to extract the

particle regions and convex-hull masks. Particle size information is

subsequently estimated from the extracted regions.

Our five main findings are:
1. The training strategy on a combination of synthetic

holographic images and a small number of real

holographic images increases the accuracy of particle

region extraction in holograms.

2. Amongst the 11 region detection methods tested in this

work, the proposed method HoloSForests gives the highest

accuracy when extracting particle regions from the

synthetic and real test images (respective mIoU of ~0.81

and ~0.76) at competitive processing speeds.

3. HoloSForests can accurately extract the regions of naturally

occurring oceanic particles with complicated shapes, such as

aggregate, Chaetoceros sp. chains, and chain-like thin particles.

4. HoloSForests has the capability of providing accurate size

information of recorded particles in holograms, even when

multiple particles with complicated shapes exist in the

same image.

5. Synthetic holographic data is a useful alternative to human-

annotated data for training a machine-learning-based

model for object detection/segmentation in holograms,

particularly when it is not practical to prepare a large

amount of human-annotated data.
Overall, we propose that our method is capable of rapidly and

accurately extracting particle regions from reconstructed holographic

images, as well as estimating the particle size accurately.
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TABLE 5 Mean values (mean) and stand deviation values (std) of the two
profiles in different depth ranges.

Profile Measure
Depth range

4– 230m 4– 50m 150– 230m

Event 034
mean 211.8 245.5 123.0

std 182.6 202.9 87.4

Event 098
mean 218.2 232.6 136.5

std 177.4 179.0 83.1
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