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Improving short-term forecasts
of sea ice edge and marginal ice
zone around Svalbard
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1Department of Research and Development, Norwegian Meteorological Institute, Oslo, Norway,
2Department of Research and Development, Norwegian Meteorological Institute, Tromsø, Norway,
3Department of Research and Development, Norwegian Meteorological Institute, Bergen, Norway
Sea ice is a major threat to marine operations around Svalbard, and accurate

short-term (1–5 days) forecasts of sea ice edge (SIE) and marginal ice zone (MIZ)

are crucial for safe marine operations. In this paper, we investigate the effects of

assimilating the AMSR2 sea ice concentration (SIC), the Norwegian sea ice chart,

and the OSTIA sea surface temperature (SST) on the short-term forecasts of SIE

and MIZ around Svalbard. The used model, Barents-LAON, is based on the

coupled ROMS-CICE model with the Local Analytical Optimal Nudging (LAON)

for data assimilation. The assimilation effects are evaluated through seven model

experiments, from Free run to the full assimilation of OSTIA SST, AMSR2 SIC, and

ice chart. The results show that the Free run of Barents-LAON contains a large

cold bias, which significantly overestimates the sea ice extent and

underestimates the SST. Assimilation of SST mildly improves the analyses of SIE

and MIZ, and additional assimilations of AMSR2 SIC and ice chart considerably

improve the analyses and forecasts. We show that 1–3 days of forecasts of SIE

and MIZ with assimilations of both SIC and SST outperform the CMEMS

operational forecasts TOPAZ5 and neXtSIM, the US Navy GOFS3.1 system, and

the Norwegian Meteorological Institute’s Barents-EPS. The assimilation of both

ice chart and OSTIA SST is shown to have the largest improvement for MIZ

analysis and forecasts. All the Barents-LAON short-term SIE forecasts with

assimilations of SIC and SST outperform the sea ice chart persistence forecasts

after the first day. However, all the MIZ forecasts, regardless of using the

operational models or the current model experiments, are shown to have

lower skills than the sea ice chart persistence. This suggests two possible

defects: 1) the present AMSR2 SIC is not sufficiently accurate for separating

MIZ from dense pack ice, and 2) some important physical processes may be

lacking for the transformation between dense pack ice and MIZ in the present

coupled ocean and sea ice models.
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1 Introduction

Svalbard is the northernmost territory of Norway, composed of

an archipelago in the Arctic Ocean about midway between

mainland Norway and the North Pole. Compared to other areas

at similar latitudes, the climate on Svalbard and the surrounding

seas is considerably milder, wetter, and cloudier, due mainly to the

atmospheric heat and moisture transport associated with the warm

West Spitsbergen Current (AMAP, 2017). As a result, Svalbard

waters have long been an area of high-level maritime activities from

a pan-Arctic perspective (Olsen et al., 2020). Along with the

reducing Arctic sea ice, there is a continuous growth in marine

activities such as shipping, fisheries, tourism, and oil and gas

exploration around Svalbard (AMAP, 2017; Olsen et al., 2020),

with remarkable increases in the operational seasons and

navigational areas (Stocker et al., 2020).

Sea ice is a major threat to ships and offshore operations around

Svalbard. In general, operations in sea ice would require ice-

strengthened vessels or icebreakers with a sufficient ice class. Off-

shore platforms, harbors, and coastal loading terminals would also

require much stronger construction than those in ice-free waters.

However, most ships and fishing vessels are not well ice-

strengthened; therefore, they must be run in a confined area for

safety purposes. In such a case, it is critically important to frequently

monitor and accurately predict the sea ice conditions to assist safe

marine operations. Accurate short-term (1–5 days) forecasts of sea

ice edge (SIE) and marginal ice zone (MIZ) are of particular

impor tance for suppor t ing such mar ine opera t ions

around Svalbard.

SIE is the demarcation between open sea and sea ice of any kind

(WMO, 2014). It can generally be separated into two types:

compacted and diffuse. The compacted SIE refers to the close and

clear-cut SIE, which is compacted commonly by winds/currents and

occasionally by waves. The diffuse SIE refers to the poorly defined

SIE, which has an area of dispersed ice. In practical usages, SIE is

often defined as the demarcation where sea ice concentration (SIC)

equals 0.15 in the passive microwave radiometer (PMR) sea ice

mapping and climate modeling communities. By contrast, it is often

defined as the demarcation where SIC = 0.1 in the operational ice

charting community, such as the Norwegian Meteorological

Institute ice chart (https://cryo.met.no) and US National Ice

Center (NIC) ice chart (https://usicecenter.gov/Products). To our

knowledge, there have been no intercomparison studies for these

two SIE definitions. Basically, the ice chart combines a large number

of satellite observations, so it generally provides a more accurate

description of the SIE. By contrast, the PMR tends to underestimate

the SIC in low SIC areas (Cavalieri, 1994; Breivik et al., 2009; Kern

et al., 2019; Wang et al., 2024). As a result, the SIE in the ice chart

generally defines a larger sea ice extent than in the PMR

observations, when they use the same SIC of 0.1 for demarcation.

Using a higher SIC (0.15) in the PMR observations tends to provide

a SIE even more inside into the sea ice area compared with using

SIC = 0.1. Therefore, except for compacted SIE, the SIE in the sea ice

chart generally defines a larger sea ice extent than that in the PMR

observations. In the current study, we have used SIC = 0.1 as the
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demarcation for model SIE, which agrees with the ice charting

practice. Wang et al. (2023) argue that choosing SIC = 0.1 as the

demarcation for SIE has several benefits. Most importantly, it has a

clear physical representation that distinguishes open water (SIC < 1/

10) and very open drift ice (SIC in 1–3/10), as defined in WMO

(2014). In addition, it provides a consistent definition for the joint

sea ice modeling and charting community. Here, we also use SIC =

0.1 as the demarcation for SIE.

According to WMO (2014), MIZ is defined as the region of an

ice cover affected by waves and swell penetrating into the ice from

the open ocean. Typical MIZ conditions are found along the

southern edges of the ice pack in the Bering Sea, Greenland Sea,

and Barents Sea, in the Baffin Bay, and along the complete northern

edge of the Antarctic ice cover (Røed and O’Brien, 1983). MIZ is a

dynamic zone under strong interactions between the atmosphere,

ocean, sea ice, and waves, frequently with strong atmosphere-ice-

ocean activities such as rapid sea ice freezing/melting (Josberger,

1983; Tucker et al., 1991), mesoscale ocean and atmosphere eddies

(Johannessen et al., 1987; Inoue and Hori, 2011), turbulence

(Padman and Dillon, 1991; Sunfjord et al., 2007), and ocean

upwelling and downwelling (Røed and O’Brien, 1983; Häkkinen,

1986), therefore playing a critical role in the polar climate system.

Due to the relatively low SIC and SIT, the MIZ is also an area much

more navigable than the inner dense pack ice (Stephenson et al.,

2011). Ocean waves and swell are the primary source of energy for

ice breakup in the MIZ and are, therefore, the main driver

determining its properties and extent (Squire et al., 1995; Squire,

2007; Dumont et al., 2011). The relatively small ice floes in the MIZ

influence the mechanical properties of the ice and, thus, its response

to winds and ocean waves and currents (Shen et al., 1987; Feltham,

2005). These small ice floes have a significant effect on the summer

sea ice melting due to the increased lateral perimeters compared to

large ice floes over the same area (Steele, 1992).

Due to the complicated interactions between atmosphere,

ocean, sea ice, and waves, accurate modeling of MIZ is still one of

the most challenging tasks in the sea ice research, particularly the

MIZ dynamics (Bennetts et al., 2022; Dumont, 2022). In order to

quantify the MIZ, Wang et al. (2024) separate the MIZ as traditional

MIZ and dynamical MIZ. The traditional MIZ is defined solely on

the basis of the SIC, commonly being [0.1–0.8]. By contrast, the

dynamical MIZ can be parameterized through a combination of SIC

and SIT. Although not adequate for describing the MIZ dynamics,

the traditional MIZ has been applied in a large number of MIZ-

related problems, such as sea ice charting (e.g., the NIC ice chart),

satellite observations (e.g., Strong, 2012; Liu et al., 2019), primary

productions (e.g., Barber et al., 2015), marine ecosystems (e.g.,

Wassmann, 2011; Arrigo, 2014), and ship navigation (e.g., Palma

et al., 2019). Because the dynamical MIZ has not been systematically

observed and its theory is still under development, in this study, we

only consider the modeling of the traditional MIZ, which has been

available in operational ice services for decades.

Sea ice around Svalbard, particularly in the Fram Strait and

Barents Sea, is strongly affected by the atmosphere circulation

(Vinje, 2001; Maslanik et al., 2012), and the northward Atlantic

warm water (Sandø et al., 2010; Smedsrud et al., 2013).
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Consequently, the sea ice conditions in this area are often under

rapid and complex changes, resulting in extra challenges in accurate

predictions of SIE and MIZ. Several operational sea ice forecast

models have been monitored in the Norwegian Meteorological

Institute with a focus on the evaluation of the forecast skills.

These model systems include TOPAZ4 (Sakov et al., 2012) and its

successor TOPAZ5 (now operational) and neXtSIM (Williams

et al., 2021) at the EU Copernicus Marine Environmental

Monitoring Service (CMEMS), the Global Ocean Forecasting

System (GOFS 3.1) at the US Naval Research Lab (Posey et al.,

2015), and the Barents-2.5km Ensemble Prediction System

(Barents-EPS) at the Norwegian Meteorological Institute (Röhrs

et al., 2023). It is often seen that the first 2 days of forecasts of these

operational models have larger integrated ice edge error (IIEE) than

persistence forecast.

The discrepancy between the modeled and observed SIE and

MIZ has long been noticed in the operational sea ice forecasts and

climate simulations. It is suspected that the insufficient

representation of the MIZ processes, particularly the wave-ice

interaction, may be the main reason for the low prediction

capabilities of the sea ice models (Kohout et al., 2014; Dumont,

2022). In this study, we show that lack of accurate sea ice

observations may be another important reason, since the widely

used PMR generally has a poor capability in capturing low SIC

(Cavalieri, 1994; Breivik et al., 2009; Kern et al., 2019; Wang et al.,

2024). Assimilation of such biased observations would, therefore,

also induce similar biases. In fact, a close inspection of the

operational forecasts indicates that the IIEE is already large in the

first day forecast, whereas the increase in the IIEE remains relatively

small in the later days. This suggests that the main IIEE of the

operational forecasts is in the initial condition, resulting from the

data assimilation of PMR observations.

The main purpose of this study is to investigate whether and to

what extent the assimilation of AMSR2 SIC and ice chart can

improve the short-term forecasts of SIE and MIZ. Using the Local

Analytical Optimal Nudging (LAON) method, Wang et al. (2023)

assimilated the high-resolution AMSR2 SIC in a pan-Arctic coupled

ocean and sea ice model (HYCOM-CICE). It is found that the

LAON assimilation can significantly improve the simulated SIC and

produce significantly more accurate SIE and MIZ than the CMEMS

analyses TOPAZ4 and neXtSIM, as well as the PMR satellite

observations AMSR2 SIC. In this study, we apply the LAON

method in a regional coupled ocean and sea ice model (Barents-

LAON) for the assimilation of AMSR2 SIC and sea ice chart. Due to

the large systematic bias of the model system, we here also

assimilate SST to avoid large bias of the simulated sea ice cover.

The present study is organized as follows. In section 2, we

describe the regional coupled ocean and sea ice model system

Barents-LAON. Section 3 introduces the observed SIC for

assimilation and evaluation, as well as four SIC products from

operational forecast models. Section 4 describes the evaluation

metrics. In Section 5, we perform 5-day forecast experiments to

evaluate the effects of assimilating AMSR2 SIC, sea ice chart, and

OSTIA SST on the forecasts of SIE and MIZ. The results are
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compared with TOPAZ5, neXtSIM, GOFS 3.1, and Barents-EPS.

The discussion and conclusions are given in Section 6.
2 Model and data assimilation

Barents-LAON is based on the METROMS COIN model

(Wang, 2025), which is an independent branch of the METROMS

model system (Kristensen et al., 2017). LAON is the optimal version

of the Combined Optimal Interpolation and Nudging (COIN;

Wang et al., 2013) method for data assimilation (Wang et al.,

2023). METROMS is a coupled ocean and sea ice model based on

the coupled Regional Ocean Modeling System (ROMS, version 3.7)

and the Los Alamos sea ice model (CICE, version 5.1.2). The

Barents-LAON model domain is the same as the Barents-2.5km,

being a horizontal grid with a resolution of 2.5 km for the Barents

Sea and Svalbard areas (Röhrs et al., 2023; also see Figure 1). The

METROMS model physics has been well described in the previous

studies (Duarte et al., 2022; Röhrs et al., 2023), and the LAON sea

ice data assimilation system has been presented in the coupled

HYCOM-CICE model (Wang et al., 2023). In this study, we extend

the LAON method also for SST assimilation and implemented in

the Barents-LAON system. The model components and data

assimilation are briefly described below.
2.1 Ocean model

ROMS is a free-surface, terrain-following, primitive equations

ocean model (Shchepetkin and McWilliams, 2005). It solves the

Boussinesq primitive equations, with the basic state variables being

temperature, salinity, surface elevation, and horizontal current

velocities. The model setup includes a second order turbulence

closure scheme with turbulent kinetic energy and a generic length

scale as state variables (Warner et al., 2005). In the vertical, 42 layers are

used with an increasing vertical resolution from 1.2 m to 0.2 m in the

top 100 m. It uses split explicit time stepping for solving slow baroclinic

modes separately from fast barotropic modes, with the time steps being

90 and 3 s, respectively. Momentum and tracers are advected using a

third-order upwind scheme in the horizontal and a fourth-order

centered scheme in the vertical. Turbulent kinetic energy and length

scale are advected vertically and horizontally using a fourth-order

centered scheme. Tracers are mixed along surfaces of constant

geopotential, whereas momentum is mixed along the bottom

topography following coordinate surfaces. The model uses the same

configuration as in the work of Röhrs et al. (2023).
2.2 Sea ice model

CICE is a dynamic and thermodynamic, multiple ice-thickness

category sea ice model (Hunke et al., 2015). In each computational

cell, sea ice conditions, such as ice concentration and thickness, are

described by the sub-grid scale distributions on the basis of the ice
frontiersin.org
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thickness distribution (ITD) theory (Thorndike et al., 1975).

Evolution of the ice conditions is solved by splitting it into three

pieces, namely, a horizontal two-dimensional (2D) transport, a

vertical one-dimensional (1D) transport in the thickness space,

and a redistribution of the ice in the thickness space through a

ridging model. In our simulations, the original five category ITD

(kcatbound = 0) is selected to describe the ice conditions, and the

vertical snow and ice are resolved with seven ice layers and one

snow layer for each ice thickness category.

The ice velocity is calculated from the sea ice momentum equation

that account for air and water drags, Coriolis force, sea surface tilt, and

the divergence of internal ice stress. In this study, the internal stress is

calculated on the basis of the elastic-viscous-plastic (EVP) rheology

(Hunke et al., 2015), using the revised EVP approach (Bouillon et al.,

2013). The ice strength is reformulated according to Rothrock (1975).

The sea ice advection is calculated using the incremental remapping

scheme (Lipscomb and Hunke, 2004). The subgrid sea ice deformation
Frontiers in Marine Science 04
and the redistribution of various ice categories follow Rothrock (1975),

with a modified expression for the participation function (Lipscomb

et al., 2007).

The sea ice thermodynamic growth rate is determined by

solving the 1D vertical heat balance equations for each ice

thickness category and snow, using the mushy-layer scheme that

also accounts for the evolution of sea ice salinity (Turner et al.,

2013). The upper snow/ice boundary (i.e., ice or snow surface) is

assumed to be balanced under shortwave and longwave radiations

and sensible, latent, and conductive heat fluxes when the surface

temperature is below freezing. When the surface is warmed up to

the melting temperature, it is held at the melting temperature and

the extra heat is used to melt the snow/ice surface. The bottom sea

ice boundary is assumed to be at dynamic balance, growing or

melting due to the heat budget between ice conductive heat flux and

the under-ice oceanic heat flux. The lateral melting is calculated

using the default parameterization in CICE with a constant effective
FIGURE 1

Barents-2.5km model domain shown by the thick rectangle. The red dots show the annual mean fluxes of the rivers (in total, 318), with the
maximum of about 292.5 m3 s−1.
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ice floe diameter of 300 m (Maykut and Perovich, 1987). The melt

pond is assumed to occur only on level ice, following the LEVEL-

ICE melt pond parameterization (Hunke et al., 2013).
2.3 Ocean-sea ice coupling

The ROMS-CICE coupling utilizes the Model Coupling Toolkit

(MCT; Larson et al., 2005) for intermodel exchange of state variables

and fluxes (Duarte et al., 2022; Röhrs et al., 2023). The surface fluxes of

heat, mass, and momentum are designed to be calculated in the

component with most information about the surface using required

information from the other components. The coupling employs the

principle of “levitated” ice, so there is no actual exchange of mass

between the ocean and the ice. Freshwater and salt fluxes from the ice

model are converted to a virtual salt flux before they are used in the

ocean model. In this “massless” state, the ice does not displace water

(e.g., water flows do not see under-ice morphology such as keels), and it

is only seen by the ocean as a source of surface fluxes responding to the

present ocean state. The ice and ocean models are run concurrently,

with exchange of information every baroclinic ocean time step (90s).

The information used by each model is, therefore, of little time lag

compared with its own state.
2.4 Atmospheric forcing and model
boundary conditions

The atmospheric forcing is the surface fields from the

operational analysis of the Integrated Forecast System (IFS) at

European Centre for Medium Weather Forecasts (ECMWF),

including wind speed, air temperature, humidity, rain fall, and

cloud cover. These forcing fields have a horizontal resolution of 0.1°

and temporal resolution of 6 h. They are used to calculate surface

fluxes as the ocean upper boundary conditions in ROMS and to

calculate surface stress, heat fluxes, and snow aggregation on the ice

cover in CICE.

The model boundary conditions are provided by the newly

operationalized TOPAZ5 (CMEMS, 2024a). It provides daily

averages of temperature, salinity, sea surface elevation, and ocean

current velocities for the ocean component, and daily averages of

sea ice fraction, sea ice thickness, first year ice age, snow depth, and

ice velocity for the sea ice component. In ROMS, a sponge zone with

up to 10-fold increased horizontal tracer diffusivity and viscosity is

implemented within 30 grid points from the boundary. Nudging of

passive tracers toward the boundary fields from TOPAZ5 is

imposed within the sponge zone. 2D momentum anomalies are

radiated out of the model domain using the tangential phase speed

of the barotropic signal.

Point sources for river influx are specified along the coasts in the

model domain which include locations, daily values for

temperature, salinity, and flux. The red dots show the annual

mean fluxes of the 318 rivers (Figure 1), with a maximum of

about 292.5 m3 s−1. Climatological values for rivers on the
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Svalbard archipelago are used, whereas river data on mainland

Norway originates from daily estimates provided by the Norwegian

Water Resources and Energy Directorate. Tidal forcing is provided

as amplitudes and phases of the 10 major tidal constituents in the

model domain, obtained from the TPXO global inverse barotropic

model (Egbert and Erofeeva, 2002) and imposed on velocities and

free surface elevation. The tidal signal is also added to velocities and

surface elevation during the processing of boundary data.
2.5 LAON data assimilation

The LOAN data assimilation system is designed to nudge the

model results to the optimal estimate such that (Wang et al., 2023)

∂X
∂ t

= F(X, t) +
K
DT

Xobs − X½ � (1)

where X denotes any concerned variables to be assimilated, Xobs is

the corresponding observations, DT is the observation time step, F

(X, t) denotes the processes related to the model free run, and K is

the Kalman gain, which, in the local situation, becomes

K =
s 2
mod

s 2
mod + s 2

obs

(2)

where sobsis the observation standard deviation (SD), and smod is

the model SD approximated by the absolute difference between

model and observation values (Wang et al., 2013, 2023; Fritzner

et al., 2018)

smod = Xmod − Xobsj j (3)

From Equations 1–3, the LAON assimilation of SST can be

simply implemented following Wang et al. (2023)

SSTj = SSTj−1 +
Dt
DT

K(SSTobs − SSTj−1) (4)

where SST and SSTobs are the model SST and observed SST, and

subscript j = 1, 2, 3,…, N, in which N = DT/Dt is ratio of observation
time step DT to the model time step Dt (Wang et al., 2023). For the

multi-category CICE model, we apply a same formulation as in

Wang et al. (2023). When the total model SIC aice is greater than 0, a

proportional formulation is applied to update all the ice categories

such that

an,j = an,j−1(1 + g ) (5)

vn,j = vn,j−1(1 + g ) (6)

vsn,j = vsn,j−1(1 + g ) (7)

where vn and vsn are ice and snow volumes for the nth ice category,

and the rate of incremental innovation g is (Wang et al., 2023)

g = K
Dt
DT

aobs
max(aice, 0:1)

− 1

� �
(8)
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where aobs and aice are the observed and model total SIC.

The function max in Equation 8 is used to avoid huge values

when aobs/aice≫ 1. When aice= 0 and aobs > 0, we assume that new

model sea ice will form with the sea ice thickness as follows

(Fritzner et al., 2018; Wang et al., 2023, 2024)

hnew = 0:02e2:8767aobs (9)

In addition to the new model ice thickness (Equation 9), we set

the new snow volume as 0.1 of the ice volume, sea ice salinity as 5

psu, and sea ice temperature at the freezing temperature with the

corresponding entropy.
2.6 Model experiments

We performed seven experiments to investigate the effects of

data assimilation on the analyses and forecasts of SIE and MIZ.

Table 1 shows the experiments with varying assimilations of SST

and SIC for the period from 1 January to 30 April 2024. Free run

assimilates no data, DA-SST assimilates the OSTIA SST only, DA-

SIC assimilates the AMSR2 SIC only, and DA-Both0 assimilates the

AMSR2 SIC and OSTIA SST. DA-Both1 and DA-Both2 are both

designed to assimilate the merged SIC and OSTIA SST, but with

different treatments when sea ice charts are not available. In DA-

Both1, no SIC assimilation is performed when ice chart is

unavailable, whereas DA-Both2 assimilates the AMSR2 SIC

instead when no ice chart is available. DA-Both3 also assimilates

both SST and SIC but assimilates the ice chart only when it is

available and assimilate AMSR2 SIC when the ice chart is

unavailable. The reason for the experiments DA-Both1, DA-

Both2, and DA-Both3 is that the ice chart is unavailable during

weekends and holidays. By performing these experiments, we hope

to identify a best approach to predicting the SIE and MIZ in such an

imperfect conditions.

We note here that only five experiments were performed to

investigate the effects of assimilation on the short-term forecasts

(Table 1), with daily 5-day forecasts for the period from 2 January to

24 April 2024. The Free run and DA-SST contain very large biases.

Their forecasts are generally of very limited values to real sea ice

predictions, so are not performed.

The model initial fields, boundary conditions, and atmosphere

forcing are the same for all the seven experiments. The initial fields

are interpolated from the operational analyses of TOPAZ5 at 0

o’clock on 1 January 2024. The boundary conditions are daily mean

fields interpolated from the TOPAZ5 analyses, and the atmosphere

forcing fields are the 6-h operational analyses from the ECMWF,

both from 1 January to 30 April 2024. Both SIC and SST

observations are daily fields. For model analysis, each observation

is considered as unchanged [see (Equations 4-7)] on the day and

continuously assimilated into the model using the LAON method,

from 0 o’clock to the last time step before the next day. After a full-

day assimilation each day, a new restart file is generated for model

forecasts at 0 o’clock of the next day. The forecast starts from 0

o’clock on the next day, and no observations are assimilated during

the 120 h forecast period.
Frontiers in Marine Science 06
3 Data

We use three observed SIC products and four modeled SIC

products in this study. The observations include AMSR2 SIC from

the University of Bremen, sea ice chart from the Ice Service of the

Norwegian Meteorological Institute (NIS) and the merged SIC from

an optimal combination of the AMSR2 SIC and NIS ice chart. The

modeled SIC products are from TOPAZ5, NeXtSIM, GOFS3.1, and

Barents-EPS. All the data were interpolated to the model grid using

the nearest neighbor interpolation.
3.1 Observed SIC

3.1.1 AMSR2 SIC
The AMSR2 microwave radiometer onboard the GCOM-W1

satellite measures the microwave emission from the Earth, at a

nominal incident angle of 55° and a swath width of 1,450 km. The

AMSR2 SIC dataset that we used here is the version 5.4 with a grid

resolution of 3.125 km, which utilizes the highest spatially resolving

AMSR2 channels at 89 GHz (Melsheimer, 2019). It uses the same

ARTIST sea ice (ASI) algorithm as it was developed for the AMSR-E

89-GHz channel (Spreen et al., 2008). It has a higher spatial

resolution than most other AMSR2 SIC datasets although the

atmospheric influence can be higher. The uncertainty is calculated

following the same procedure in Spreen et al. (2008), where the

overall error sums from three sources: the radiometric error from

the bright temperature, the variability of the tie points, and the

atmospheric opacity. The uncertainty is expressed in terms of

standard deviation (SD).

3.1.2 NIS ice chart
The ice chart is produced on the basis of manual interpretation

of satellite data and other observations such as coastal station and

ship reports (Copeland et al., 2024). The ice charting employs a

variety of satellite observations to obtain a more realistic SIE and

MIZ, and these have evolved since ice charting began in 1967 to

include higher spatial resolution and all-weather capable sensors

over the years. The main satellite data used are the weather

independent Synthetic Aperture Radar (SAR) data from

Sentinel-1, RADARSAT-2, and RADARSAT Constellation

Mission (RCM). The analyst also uses visual and infrared data

from METOP and NOAA Advanced Very High Resolution

Radiometer (AVHRR), NOAA Visible Infrared Imaging

Radiometer Suite (VIIRS), and Sentinel-3 Ocean and Land Colour

Instrument (OLCI) and Sea and Land Surface Temperature

Radiometer (SLSTR) in cloud-free conditions. These satellites

provide coverage of the charting area several times a day and

allow the ice chart to be produced in a scale-free vectorized

format, with a nominal resolution of less than 400 m. A

rasterized NetCDF-format is produced for Copernicus Marine

Service with a resampling to 1-km grid spacing (Dinessen and

Hackett, 2018). The NIS ice chart includes seven ice concentration

categories following the WMO sea ice nomenclature (WMO, 2014):

fast ice (SIC = 10/10), very close drift ice (9–10/10), close drift ice
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(7–8/10), open drift ice (4–6/10), very open drift ice (1–3/10), open

water (<1/10), and ice free (0). For practical use, a mean value is

applied to denote the different ice categories in the ice chart. The

uncertainty is approximated as the half of the range of the

corresponding ice category, except being 0.01 for the fast ice.

3.1.3 Merged SIC
According to Wang et al. (2020), assimilating merged

multisensor observations is equivalent to assimilating all the

observations concurrently. Therefore, the effect of assimilating

both AMSR2 SIC and sea ice chart can be investigated using the

merged AMSR2-ice chart data. In this study, we use the merged SIC

from multisensor optimal merging of AMSR2 SIC and NIS ice chart

(Wang et al., 2024). The AMSR2 SIC is the same as in 3.1.1, and the

NIS ice chart the same as 3.1.2. The merged SIC effectively mitigated

the original shortcomings in both the AMSR2 SIC and the NIS ice

chart (Wang et al., 2024). Because the NIS ice chart is only available

during the working days, the merged SIC on weekends and holidays

is the same as the AMSR2 SIC.
3.2 Modeled SIC

3.2.1 TOPAZ5 SIC
The TOPAZ5 SIC is obtained from the CMEMS operational

product (CMEMS, 2024a, accessed in April 2024), which is a

nominal product of the CMEMS Arctic Monitoring and Forecasting

Center (MFC) for ocean physics (Hackett et al., 2023). It is produced by

the newly operationalized TOPAZ5 Arctic Ocean and sea ice

prediction system, using the version 2.2.98 of HYCOM ocean model

(Bleck, 2002) coupled to the CICE 5.1.2 (Hunke et al., 2015), with the

deterministic ensemble Kalman filter (DEnKF; Sakov and Oke, 2008)

for data assimilation. The model domain covers the North Atlantic and

Arctic basins with a grid spacing of approximately 6–8 km. The model

is run daily to provide 10 days of forecast (average of 10 members) of

the three-dimensional (3D) physical ocean and sea ice variables. The
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data assimilation is performed weekly to provide 7 days analysis

(ensemble average), in which a 100-member DEnKF is used to

assimilate SIC, SIT, sea ice drift, SST, sea level anomaly and in situ

temperature/salinity (T/S) profiles (Hackett et al., 2023). TOPAZ5 runs

once a day at the Norwegian Meteorological Institute. The forecast and

analysis are then interpolated and disseminated to a 6-km grid using

the polar stereographic projection. The disseminated product is

available as hourly surface fields, daily and 6-h averaged 3D fields.

3.2.2 neXtSIM SIC
The neXtSIM SIC is from the CMEMS operational product

(CMEMS, 2024b, accessed in May 2024). It is an hourly product

produced by the Arctic MFC through the neXtSIM sea ice

prediction system (Hackett et al., 2023). The neXtSIM is a stand-

alone sea ice model using the Brittle-Bingham-Maxwell sea ice

rheology (Rampal et al., 2019; Williams et al., 2021), on an adaptive

triangular mesh of 10-km average cell length. The model is forced

with surface atmosphere fields from the ECMWF and ocean fields

from TOPAZ5. It runs daily, assimilating manual ice charts, SIT

from CS2SMOS in winter and providing 9-day forecasts (CMEMS,

2024b). The output variables are SIC, SIT, ice drift velocity, snow

depths, sea ice type, sea ice age, ridge volume fraction, and albedo,

provided at hourly frequency. The adaptive Lagrangian mesh is

interpolated for convenience on a 3-km resolution regular grid in a

polar stereographic projection.

3.2.3 GOFS 3.1 SIC
The GOFS3.1 SIC is from https://www.hycom.org/dataserver, with

the forecasts downloaded once they became available. The GOFS

3.1 is based on the HYCOM version 2.2.99 (Metzger et al., 2017),

coupled to the CICE version 4.0 (Hunke and Lipscomb, 2008). The

model uses a tripole global grid (grid resolution about 9 km at

equator, 7 km at mid-latitude, and 3.5 km at the North Pole). The

atmospheric forcing is from the Navy Global Environmental Model

(NAVGEM) at Fleet Numerical Meteorology and Oceanography

Center (Hogan et al., 2014). The system uses the Navy Coupled

Ocean Data Assimilation (NCODA) system (Cummings and

Smedstad, 2013) for data assimilation, which is based on a 3D

variational scheme and assimilates available satellite and in situ

observations. The assimilated ocean variables are SST, SSH

anomaly, and T/S profiles. For sea ice assimilation, the AMSR2

SIC is firstly merged with the semi-automated analysis from

Interactive Multisensor Snow and Ice Mapping System (IMS)

produced by the U.S. National Ice Center, which is then

assimilated into CICE for operational forecast (Posey et al., 2015).

The output variables include 3D ocean temperature; salinity and

velocity; surface mixed layer and location of mesoscale features; and

ice concentration, thickness, and drift.

3.2.4 Barents-EPS SIC
The Barents-EPS SIC is obtained from https://thredds.met.no/

thredds/fou-hi/barents_eps.html (accessed in May 2024). It is

produced in the Norwegian Meteorological Institute using the

operational coupled ocean and sea ice ensemble prediction model
TABLE 1 Data assimilation (DA) experiments together with the
applied observations.

Experiment SST
DA

SIC DA Forecast

Free run No No No

DA-SST Yes No No

DA-SIC No AMSR2 SIC Yes

DA-Both0 Yes AMSR2 SIC Yes

DA-Both1 Yes Merged SIC on working days, no
SIC assimilation otherwise

Yes

DA-Both2 Yes Merged SIC on working days,
AMSR2 SIC otherwise

Yes

DA-Both3 Yes ice chart on working days, AMSR2
SIC otherwise

Yes
SST here represents the OSTIA SST data. The fourth column indicates whether the forecast
experiments are performed.
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Barents-2.5km v.20 (Röhrs et al., 2023). The model uses the same

coupled ROMS-CICE model and configuration as in this study, but

using the DEnKF (Sakov and Oke, 2008; Fritzner et al., 2019; Röhrs

et al., 2023) for data assimilation. The assimilated variables include

SIC, SST, and in situ T/S profiles. The model runs four times per day

to provide 96 h of hourly ensemble mean and SD for SIC, SIT, ice

velocity, SST, SSS, surface current velocity, and elevation.
4 Evaluation metrics

We use IIEE (Goessling et al., 2016) to evaluate the modeling

skill for SIE and use integrated MIZ error (IME; Wang et al., 2023)

to evaluate the modeling skill for MIZ. To be consistent with the

NIS ice chart, we here use SIC = 0.1 as the demarcation for SIE and

0.85 as the demarcation between MIZ and dense pack ice. The

prediction skills for SIE and MIZ are evaluated against the sea ice

chart persistence. These metrics are briefly described below.
4.1 IIEE and IME

The IIEE is determined following Goessling et al. (2016)

IIEE =
Z
A
max(cf − ct , 0)dA +

Z
A
max(ct − cf , 0)dA , (10)

where A denotes the whole model domain, the subscripts f and t

denote the forecast and the truth (here, we use the NIS ice chart as

an approximate). The variable c = 1 where SIC a ≥ 0.1 and c = 0

elsewhere. The first term on the right side of (Equation 10) denotes

the overestimate, and the second term denotes the underestimate.

Similar to the formulation for the IIEE, the IME is defined as

follows (Wang et al., 2023)

IME =
Z
A
max(cf − ct , 0)dA +

Z
A
max(ct − cf , 0)dA  : (11)

The only difference between Equations 10, 11 is the definition

of the variable c. For the IME, c = 1 where SIC ∈ [0.1, 0.85], and

c = 0 elsewhere.
4.2 Prediction skill of SIE and MIZ

We define the following metrics to evaluate the prediction skill

for SIE,

SSIE = 1 −
IIEEm
IIEEr

 , (12)

where the subscripts m and r denote the concerned model and

reference, respectively. Similarly, we define the prediction skill for

MIZ

SMIZ = 1 −
IMEm
IMEr

  : (13)

Equations 12, 13 provide a simple description of the prediction

skills for the concerned model against the reference. It is seen that
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the skills would be positive when the modeled IIEE or IME is

smaller than the reference, and vice versa. When the model predicts

the same IIEE or IME as the reference, the skill would be 0. When

the model perfectly predicts the SIE or MIZ, the modeled IIEE or

IME would be 0, and the skill would be 1.
5 Results

5.1 Effects of assimilation on the analyses
of SIE and MIZ

5.1.1 Daily SIC spatial distribution
Figure 2 compares the observed and modeled SIC on 19

February 2024. For the purpose of evaluating the analyses of SIE

and MIZ, we have separated the whole ice cover into dense pack ice

(SIC > 0.85) and MIZ (SIC ∈ [0.1,0.85]), with the rest as open water

(SIC < 0.1). As pointed out in previous studies (Cavalieri, 1994;

Kern et al., 2019; Wang et al., 2024), the PMR tends to

underestimate low SIC area. This can also be seen when

compared to the ice chart Figure 2a vs. Figure 2b), particularly

where the AMSR2 MIZs are narrower.

The Free run indicates that the model system without data

assimilation tends to significantly overestimate the sea ice cover

(Figures 2c vs. 2b). This is particularly pronounced in the

Greenland Sea. Assimilation of the OSTIA SST slightly reduces

the large bias in the Greenland and Barents seas (Figures 2d vs.

Figure 2b), but the overestimated sea ice cover in the Greenland Sea

is still remarkable. By contrast, assimilation of SIC is able to

substantially improve the simulation of the ice field. Even the

assimilation of AMSR2 SIC alone can considerably improve the

sea ice cover, although the MIZ is considerably overestimated in the

northeastern Barents Sea (Figure 2e vs. Figure 2b). Additional

assimilation of the OSTIA SST further improves the analyses of

the SIE and MIZ (cf. Panels e and f with b in Figure 2). It is seen that

the assimilation of AMSR2 SIC and OSTIA SST (Figure 2f)

produces closer sea ice coverage to the ice chart (Figure 2b) than

the AMSR2 observation (Figure 2a).

Figures 2g, h show the sea ice distribution using the assimilation

of both merged SIC and OSTIA SST. Although both DA-Both1 and

DA-Both2 assimilate the same merged SIC on 19 February 2024

(working day), there are still some noticeable differences in these

two analyses, e.g., the MIZs in the Greenland Sea and west coast of

Novaya Zemlya. When comparing these two experiments with DA-

Both0 (Figure 2f), there are marked differences in the MIZs, e.g., in

the Greenland Sea and west coast of Novaya Zemlya (cf. Panels f, g,

d with b in Figure 2). In this case, DA-Both1 tends to be noticeably

closer to the NIS ice chart (Figure 2g vs. Figure 2b). DA-Both3 also

assimilates both OSTIA SST and SIC, using pure ice chart for the

working days and AMSR2 SIC for the rest days. It provides a SIC

analysis very close to DA-Both1 and DA-Both2 (cf. Figures 2g–i).

As a comparison, we also present the SIC analyses from the four

operational products, namely, Barents-EPS, TOPAZ5, neXtSIM,

and GOFS 3.1 (Figures 2j–m). In general, Barents-EPS

overestimates the ice extent in the Greenland Sea, particularly

overestimating the area of dense pack ice. TOPAZ5 generally has
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a much closer agreement with the ice chart, although it tends to

overestimate the SIC in the northeastern Barents Sea. NeXtSIM

tends to overestimate the SIC in the Greenland Sea and

underestimate the MIZ there. GOFS3.1 generally gives an good

analysis of the SIC, particularly in the Greenland Sea, although

some underestimates occurs in the MIZ in the Barents Sea. This is

partly due to the fact that GOFS3.1 assimilates the National Ice

Center ice chart (Posey et al., 2015), whereas TOPAZ5 and Barents-

EPS do not.

This daily distribution only provides one-case results. Further

assessment of the model analyses is performed in Section 5.1.3,

using IIEE and IME for the whole 4-month period—1 January to 30

April 2024.

5.1.2 Daily SST
Daily SST biases from the different experiments are shown in

Figure 3, together with the daily ensemble mean SST bias from

Barents-EPS (Figure 3a). These SST biases are evaluated against the

daily OSTIA SST (CMEMS, 2024c). Except for the SST near the

southern boundary and west of Svalbard, the Barents-EPS provides

an analysis very close to the observation, with the mean bias of

−0.01°C and SD of 0.40°C.
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The Free run has a considerable cold bias in much of the

Norwegian Sea and Greenland Sea (Figure 3b). The underestimate

of the SST in the Greenland Sea is mainly due to the overestimated

sea ice cover, under which the SST is maintained close to the

freezing point. The underestimate of the SST in the Norwegian Sea

is most likely due to the underestimate of the warm current from

the south, as seen from the overall spatial pattern of the

underestimated SST. Assimilation of the AMSR2 SIC significantly

mitigates the underestimated SST in the Greenland Sea (Figure 3b

vs. Figure 3c). However, there is almost no improvement in the ice-

free Norwegian Sea. Both Free run and DA-SIC have large mean

bias, being −0.33°C and −0.27°C, respectively.

Assimilation of SST significantly improves the simulated SST

(Figure 3d). Over much of the Norwegian Sea and Greenland Sea,

the large underestimation of the SST has been remarkably

mitigated. However, there is still a mean bias of −0.22°C over the

whole Barents region. In particular, the large cold SST bias remains

north of Svalbard, due to the overestimated sea ice cover.

There is little difference in the SST when both SIC and SST are

assimilated (Figures 3e–h). Compared with the assimilations of SIC

alone (Figure 3c) and SST alone (Figure 3d), most of the large biases

have been mitigated, except for the small areas along the west coast
FIGURE 2

SIC observations (a, b) and analyses (c–m) on 19 February 2024, with the ice cover separated into dense pack ice (red), MIZ (yellow), and open water
(light blue). The blue lines show the SIE of the ice chart, and the green lines show the demarcation between MIZ and dense pack ice of the ice chart.
Here, DA denotes data assimilation. The experiments are referred to Table 1.
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of Svalbard. It is noteworthy that the mean biases in these

experiments are still about −0.18°C (Figures 3e–h). This indicates

that the SST assimilation is still not optimal. Further investigations

are needed to improve the SST analysis.

5.1.3 IIEE and IME
Figure 4 shows the IIEE and IME from 1 January to 30 April

2024 for all the model runs, the AMSR2 observations, and the four

operational analyses (Barents-EPS, TOPAZ5, neXtSIM, and

GOF3.1). All the IIEE and IME are calculated against the sea ice

charts. The discontinuities in the IIEE and IME are due to the

missing sea ice charts on weekends and holidays. It is seen that, in

the whole simulation period, the Free run has very large IIEE

(Figure 4a), largely over 4 × 105 km² after 1 February, indicating a

large bias in the model system. Compared with the Free run, the

assimilation of the OSTIA SST (DA-SST) has a mild correction in

the SIE, with the IIEE generally about 2 × 105 km² after 1 February.

Compared with the other model analyses, these two runs are

significantly larger, being about three and two times of the other

IIEEs (see the legend in Figure 4a). The relatively large IIEE of DA-

SST is mainly due to the characteristics of the LAON assimilation,

which only nudges the SST to the optimal estimate but without

direct modification of the sea ice cover during the assimilation. Due

to the systematic cold biases in both of the sea ice and ocean model

components, the sea ice coverage would still be notably

overestimated when only SST is assimilated, resulting in large

IIEE. At the same time, the updated SST near the SIE would also
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be modified by the overestimated sea ice cover, resulting in

underestimated SST and improved sea ice extent through sea ice

melting. Such a change in the SST can be seen in the northern coast

of Svalbard in Figure 3d.

The AMSR2 observation provides a consistent reference for the

present study to the earlier study in Wang et al. (2023), although for

different sea areas. It is seen that TOPAZ5 IIEE has a smaller mean

than the AMSR2 IIEE (see legend in Figure 4a). This is different

from the TOPAZ4 IIEE, which is considerably larger than the

AMSR2 IIEE (Wang et al., 2023), indicating a significant

improvement in the model development of the TOPAZ system.

Barents-EPS and neXtSIM generally produce similar large IIEE.

GOFS3.1 produces a similar IIEE to TOPAZ5, both smaller than

Barents-EPS and neXtSIM.

Due to the large bias in the model system, the assimilation of

AMSR2 SIC alone (DA-SIC) tends to have large IIEE in the analysis

(Figure 4a). Contrast to the results in the NorHAPS (Wang et al.,

2023), DA-SIC IIEE is larger than the AMSR2 IIEE. It is also larger

than those of TOPAZ5 and GOFS3.1 but still smaller than those of

Barents-EPS and neXtSIM (Figure 4a). With the additional

assimilation of the OSTIA SST (DA-Both0), the model produces

smaller IIEE than all the other operational analyses. Further

assimilation of the merged SIC provides further improvements,

with the mean IIEE down to about 0.65 × 105 km² (DA-Both1 and

DA-Both2). There remains of little difference in the modeled IIEEs

between DA-Both1 and DA-Both2, partly due to the fact that the

evaluations are only based on the days when sea ice charts are
FIGURE 3

SST biases (°C) on 19 February 2024 from Barents-EPS (a) and the experiments (b–h). The blue lines show the SIE of the ice chart, and the green
lines show the demarcation between MIZ and dense pack ice of the ice chart. Here DA denotes data assimilation. The experiments are referred to
Table 1.
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available. DA-Both3 produces slightly lower IIEE than DA-Both1

and DA-Both2, indicating a slight advantage for SIE analysis.

Similar to the results in Wang et al. (2023), the IME is about

twice of the IIEE for most analyses, suggesting about half of the IME

is due to the misclassifications between MIZ and dense pack ice. In

the present case, the Free run IME is very close to its IIEE (Figure 4),

particularly after 1 February. This exceptional result can be well

explained by Figure 2, where the Free run significantly

overestimated the sea ice cover. In such a case, the open water

and MIZ (Figure 2b) is largely modeled as dense pack ice in the Free

run, thereby generating similar values of IME and IIEE (Figure 4).

For the four operational analyses, only GOFS3.1 has lower IME

than the AMSR2 observation. The assimilation of AMSR2 SIC alone

produces slightly smaller IME than the AMSR2 observation but

larger than that of GOFS3.1. The assimilations of both SIC and SST

(DA-Both0, DA-Both1, DA-Both2, and DA-Both3) all produce

lower IME than GOFS3.1. Both DA-Both1 and DA-Both2

produce considerably lower IME than DA-Both0 (Figure 4b), but

there is generally little difference in the simulated SIE and MIZ

between DA-Both1 and DA-Both2. It is noteworthy that DA-Both3

produces a considerably better MIZ analysis than DA-Both1 and

DA-Both2, appearing to be the best option for the MIZ analysis.

This tends to suggest that the present AMSR2 SIC is not very

accurate for separating MIZ from dense pack ice.
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5.2 Effects of assimilation on the forecasts
of SIE and MIZ

5.2.1 Effect on SIE forecast
Figure 5 shows the prediction skills of the five experiments

(DA-SIC, DA-Both0, DA-Both1, DA-Both2, and DA-Both3) and

the four operational forecasts (Barents-EPS, TOPAZ5, neXtSIM,

and GOFS3.1), evaluated against the persistence forecast of the sea

ice chart using (Equations 12, 13). As noted in Section 4.2, positive

skill indicates that the model prediction skill is higher than the

referenced sea ice chart persistence, and vice versa. It is seen that all

the mean prediction skills for the 1-day SIE forecast are low than 0

(see legend in Figure 5a), indicating these models are still less skillful

in predicting the SIE than the sea ice chart produced one day before.

For longer days of forecast, all the experiments using both SIC and

SST assimilations have higher skills than the sea ice chart

persistence (panels b–e in Figure 5). By contrast, the assimilation

of SIC alone (DA-SIC) always shows notably negative skills. This

indicates that a noticeable portion of the prediction skill is from the

improved initial fields due to the addition of SST assimilation (see

DA-SIC vs. DA-Both0 in Figure 4a). The initial fields without SST

assimilation have a cold bias in the SST field, which enhances the

freezing of open water near the SIE. The additional assimilation of

SST significantly suppresses the SST underestimate and therefore
FIGURE 4

Time series of the integrated ice edge error (IIEE) and integrated marginal ice zone error (IME) for different products from 1 January to 30 April 2024:
(a) IIEE and (b) IME. The numbers in the legends show the mean ± standard deviation of the corresponding IIEE and IME. The experiments are
described in Table 1.
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mitigates the overestimate of the sea ice cover from

excessive freezing.

It is noted that the seasonal simulation with only SST

assimilation has quite high errors in the IIEE (DA-SST in

Figure 4a). This is partly due to the characteristics of the LAON

assimilation. In the situation of assimilating the SST alone, it only
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modifies the SST field but does not directly modify the sea ice cover.

In such a case, the overestimated sea ice cover is only adjusted

through the model physics. When the cold bias in the sea ice model

component is large, the overestimate of the simulated sea ice cover

tends to substantially remain, thereby resulting in a large bias in the

simulated SIE. On the whole, the large IIEE in DA-SST is due to the
FIGURE 5

Prediction skills of the forecast SIE evaluated against the persistence forecast of sea ice chart, from 1 day to 5 days (a–e). The experiments are
referred to Table 1. It is noted that Barents-EPS only provides 4 days of forecast.
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model bias in the sea ice model component, whereas the

improvement in the simulated SIE with additional SST

assimilation is due to the overall improved initial ocean and sea

ice conditions.

The experiments performed here assimilate SIC and SST using

the LAON method. These two assimilated data are generally less

than those used in the operational products that commonly include

SIT, sea ice velocity, and SSS. Similar to the assimilation results in

Wang et al. (2023), the LAON assimilation exhibits higher SIE

prediction skills compared with the assimilations using EnKF

(TOPAZ5 and BarentEPS), 3D variational (GOFS 3.1), and

nudging (neXtSIM). There are generally little differences in the

forecast IIEEs between DA-Both1, DA-Both2, and DA-Both3

(Figure 5). Due to the large systematic bias in the METROMS

Barents-2.5km model (see the Free run in Figure 4), the effect of

LAON data assimilation starts to diminish from 5-day forecast, and

the prediction skills start to decrease accordingly (Figure 5). While

still positive, the prediction skills of these experiments are surpassed

by the operational forecasts of TOPAZ5 and GOFS3.1. TOPAZ5

and GOFS 3.1 become more skillful than the sea ice chart

persistence after 3-day forecast (panels c–e in Figure 5), whereas

Barents-EPS and neXtSIM remain to be negative prediction skills

for all the 5 days (Figure 5).

5.2.2 Effects on MIZ forecast
Figure 6 illustrates the prediction skills for MIZ from 1 to 5 days

of forecasts. On the whole, the LAON assimilations of both ice chart

and SST (DA-Both1, DA-Both2, and DA-Both3) show remarkably

higher skills than the other products, particularly for the 1–3 days of

forecasts (see the mean skills in the legends). It is of negligible

difference whether to assimilate the AMSR2 SIC during the

weekends or holidays, as shown by the prediction skills between

DA-Both1 and DA-Both2. DA-Both2 is slightly better in SIE

forecast (Figure 5), whereas DA-Both1 is slightly better in MIZ

forecast (Figure 6). DA-Both3 has the highest prediction skills for

MIZ in the first two days (Figure 6). This suggests that the AMSR2

SIC is not as accurate as the ice chart for separating the MIZ from

dense pack ice.

DA-Both0 does not assimilate the sea ice chart, but it also shows

comparable prediction skills to those assimilating the ice chart, except

for the first day. This is partly due to the biases in the AMSR2 SIC

observation and the model system. The AMSR2 SIC generally

provides an underestimated sea ice extent, whereas the model

system tends to provide an overestimate of the sea ice extent

during the winter season. On the whole, the excessive growth of

the model sea ice counteracts the initially underestimated sea ice

cover with AMSR2 SIC assimilation, thus improving the prediction

skill in the later days. This can be clearly seen in both Figures 5 and 6,

where DA-Both0 has lower prediction skills than DA-Both1, DA-

Both2 and DA-Both3 in the first 2 or 3 days but becomes to have

higher or comparable prediction skills in the later days. Assimilation

of SIC alone (DA-SIC) generally produces low prediction skills for

MIZ forecasts. This indicates that additional assimilation of SST can

significantly improve the forecast of MIZ when the model is highly

biased, similar to the SIE forecasts (Section 5.2.1).
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It is noteworthy that the mean prediction skills for MIZ are all

negative for all the models and experiments from 1 to 5 days

(Figure 6). This indicates that the model predictions are not yet

sufficiently mature for skillful MIZ forecasts. Nevertheless, the

LAON assimilation of the SIC and SST illustrates close prediction

skills to the sea ice chart persistence forecasts, particularly for 3–5

days (Figure 6c–e). Considering the bias in the SST field (Section

5.1.2), improving the data assimilation may still be a feasible way to

further improve the MIZ forecast.
6 Concluding remarks

Sea ice is a major threat to the marine operations around

Svalbard. Accurate forecasts of SIE and MIZ are crucial but

remain extremely challenging. A large number of efforts have

been made in recent years to improve the mechanisms on the

interactions among the atmosphere, ocean, sea ice, and waves (see

overviews in Bennetts et al., 2022; Dumont, 2022). How these new

understandings and developments can improve the forecasts of SIE

and MIZ remains to be further verified, particularly for short-term

operational forecasts.

In this study, by using a coupled ocean and sea ice model

(METROMS) with the LAON data assimilation in a regional

configuration (Barents-LAON), we demonstrate that the LAON is an

effective method for data assimilation. Despite the large biases in the

model system, the Barents-LAONwith both SIC and SST assimilations

can provide better analyses and better 1–3 days of forecasts of SIE and

MIZ (Figures 4–6) than all the operational products (TOPAZ5,

neXtSIM, GOFS3.1, and Barents-EPS). Although the assimilation of

SST alone generally has a limited contribution to the improvements of

SIE and MIZ analyses (Figure 4), the SST assimilation does have a

notable contribution to the improvements of SIE and MIZ forecasts

when it is performed together with the SIC assimilation (DA-SIC vs.

DA-Both0 in Figures 5, 6). This change is due to the overall

improvements in the initial ocean and sea ice conditions with SIC

and SST assimilations.

The model experiments show that the differences in the prediction

skills for SIE and MIZ are generally small between DA-Both1 and DA-

Both2. This suggests that it is not very critical whether or not to

assimilate the AMSR2 SIC on weekends and holidays, when the sea ice

chart has been assimilated on working days. Additional assimilation of

the AMSR2 SIC on weekend and holidays (DA-Both2) has slightly

higher prediction skill for SIE forecasts (Figure 5), whereas no such

assimilation (DA-Both1) appears to have slightly higher prediction skill

for MIZ forecasts (Figure 6). However, more studies are needed to truly

confirm this conclusion.

Assimilation of sea ice chart can significantly improve the analysis

and short-term forecasts of SIE and MIZ. Compared with the

assimilation of AMSR2 SIC and SST (DA-Both0), all the

experiments with the assimilation of sea ice chart (DA-Both1, DA-

Both2, and DA-Both3) show significantly lower IIEE and IME

(Figure 4). In particular, DA-Both3 emerges to produce significantly

better analyses (Figure 4) and 1–2 days of forecasts for MIZ compared

with DA-Both1 and DA-Both2 (Figure 6), although they tend to
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provide similar analyses and forecasts for SIE (Figures 4, 5). This

indicates that the additional assimilation of the AMSR2 SIC tends to

degrade the analyses and forecasts of MIZ when the ice chart has

already been assimilated. This implies that the present AMSR2 SIC is

not sufficiently accurate for distinguishing the MIZ from dense

pack ice.
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The present prediction skills for SIE and MIZ differ considerably.

The Barents-LAONwith assimilations of both SIC and SST (DA-Both0,

DA-Both1, DA-Both2, and DA-Both3) all outperform the sea ice chart

persistence for SIE forecasts except for the first day (Figure 5). However,

the mean prediction skills for MIZ are still lower than the sea ice chart

persistence (Figure 6), in all the experiments and all the operational
FIGURE 6

Prediction skills of the forecast MIZ evaluated against the persistence forecast of sea ice chart, from 1 to 5 days (a–e). The experiments are referred
to Table 1. It is noted that Barents-EPS only provides 4 days of forecast.
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forecasts. This suggests that some important physical processes

connected with the MIZ evolution may be not adequately described

in the present coupled ocean and sea ice models, such as those related to

waves. Such missing processes are particularly important for the regions

of large transformation betweenMIZ and dense pack ice, as the Barents-

LAON model does provide rather high prediction skills for SIE

forecasts. The large model bias may be another factor leading to the

unsatisfactory MIZ forecasts. Further improvements are needed for the

present Barents-LAON to fully outperform the sea ice chart persistence

for short-term SIE and MIZ forecasts.

The prediction skills for SIE and MIZ can be further improved,

which is planned to be done in the near future. Firstly, the model

system needs to be optimized. This is essential and actually a notable

portion of the deterioration of the prediction skill is from the systematic

model bias. As shown in Section 5, both of the ocean and sea ice model

components have cold biases. Such model biases are highly likely

related to the overestimated sea ice drift (Röhrs et al., 2023) and to the

underestimated warm North Atlantic Current in the Norwegian Sea as

seen in this study. These biases can be greatly mitigated through

optimization of model parameters, for example using Green’s functions

(Menemenlis et al., 2005) or machine learning (Kutz, 2023). Secondly,

the assimilation of the SST may be refined. The present configuration

for the assimilations of both SIC and SST still has a noticeable mean

bias in the SST field, for example, about −0.18°C on 19 February 2024

(Figure 3). This bias tends to increase with time, which can deteriorate

the analyses and forecasts of SIE and MIZ. A better assimilation can

mitigate the overall SST bias, thus improving the forecasts of SIE and

MIZ. Thirdly, using instantaneous SIC observations instead of the daily

mean observations for data assimilation may also improve the analyses

and forecasts, as shown using the EnKF (Durán Moro et al., 2024).

Finally, coupling the model system with a wave model may further

improve the MIZ, particularly for the demarcation between the MIZ

and dense pack ice, as the wave-ice interactions influence both

physical/dynamical and thermodynamical processes in the MIZ.
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