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Genome sequences of sponge bacterial endophytes will be useful for

understanding the bioactive compound synthetic potential and molecular

mechanisms of sponge-bacteria interactions. In this study, the complete

genome of the bacterium E9 isolated from the Red Sea sponge species was

sequenced and its antibiofilm activity was assessed through laboratory assay.

Experiments indicated the strong antibacterial and antibiofilm activity of the

extracts of bacterium E9. Complete genome sequencing reveals that genome

assembly generated a single chromosome of 2123451 base pairs with a guanine-

cytosine (GC) content of 32.9% with 2420 protein coding sequences and a gene/

genome ratio of 83.7%. The bacterial strain was identified as Staphylococcus

epidermidis based on phylogenetic analysis. A total of 9 biosynthetic gene

clusters were identified in the genome using the open-source platform

AntiSMASH. The observed antibacterial and antibiofilm activity of the strain E9

may be due the presence of gene clusters such as nonribosomal peptides, lasso

peptides and terpenes. Overall, the whole genome analysis indicated the

bacterium’s capability to adapt in diverse environments including invertebrate

hosts, and bioactive compound synthesis.
KEYWORDS

sponge-associated bacteria, bioactive metabolites, antibacterial compounds, complete
genome, biofilms, biosynthetic gene cluster
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1 Introduction

The marine environment, particularly the Red Sea, has emerged

as a promising source of novel bioactive compounds with potential

therapeutic applications (El-Hossary et al., 2020). Of particular

interest are the symbiotic bacteria associated with marine

invertebrates, such as sponges, which have evolved to produce a

diverse array of secondary metabolites (Liang et al., 2023). These

compounds often serve as chemical defenses for their hosts and

represent a vast, largely untapped reservoir of potential agents with

therapeutic properties including antifouling and antibiofilm

(Pawlik, 1993; Zhang et al., 2022). Marine microorganisms are

potential future sources of effective antifouling and antibiofilm

agents (Satheesh et al., 2016; Sukmarini et al., 2024). These

compounds can impede microbial attachment, growth, cell

communication, and the subsequent formation of biofilms

(Rendueles and Ghigo, 2012). Additionally, they can disrupt

bacterial signaling by inactivating quorum sensing mechanisms

and inhibiting the production of enzymes responsible for

degrading bacterial signals and polymers (Vimala, 2016). Notably,

some of these compounds exhibit multiple bioactivities, including

antimicrobial, anti-algal, and antilarval properties, and have been

successfully isolated from heterotrophic marine bacteria associated

with sponges (Freeman et al., 2021).

The bioactive compounds produced by these microorganisms are

the result of secondary metabolism, which occurs through enzymatic

pathways encoded by specific biosynthetic genes within their genomes.

This biosynthetic capability is often associated with specialized cells, and

intriguingly, the resulting secondary metabolites may not confer any

direct benefit to the producing organism (Luckner, 2013). Within the

genomes, the genes encoding these enzymes or regulatory proteins are

typically clustered together in what is referred to as a biosynthetic gene

cluster (BGC) (Naughton et al., 2017). Medema et al. (2015) define a

BGC as a “physically clustered group of two or more genes in a

particular genome that collectively encodes a biosynthetic pathway for

the production of a specialized metabolite, including its

chemical variants”.

Recent advancements in genomic technologies have revolutionized

our approach to discovering bioactive compounds. The advent of high-

throughput sequencing and improved computational tools has made it

possible to sequence entire bacterial genomes quickly and accurately

(Viju et al., 2021). This has opened new avenues for research and

innovation in biotechnology and pharmacology. One of the most

significant developments is genome mining, a powerful bioinformatic

strategy that allows researchers to identify biosynthetic gene clusters

(BGCs) within bacterial genomes. These BGCs are groups of co-located

genes that work together to produce secondary metabolites, which are

compounds not directly involved in the normal growth, development,

or reproduction of the organism (Naughton et al., 2017; Adnani et al.,

2017; Sandoval-Powers et al., 2021). The secondary metabolites

identified from the marine bacteria based on biosynthetic origin

include polyketide derivatives, terpenoids, omega-3 polyunsaturated

fatty acids and amino acid derivatives (Giordano et al., 2015; Wibowo

et al., 2023).Many of these secondarymetabolites hold great promise for

pharmaceutical development due to their bioactive properties such as
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antibacterial, antifungal, antiviral, antibiofilm, anti-inflammatory and

anticancer activities (Wibowo et al., 2023).

By analyzing complete bacterial genomes, researchers can

systematically search for and characterize BGCs (Naughton et al.,

2017). This process involves comparing genetic sequences to known

BGCs and predicting the structures and functions of the resulting

compounds (Adnani et al., 2017). Genomemining has already led to the

discovery of numerous novel antibiotics, anticancer agents, and other

therapeutically valuable compounds (Viju et al., 2021). The complete

genome analysis of bacteria, combined with genomemining techniques,

provides an efficient and effective way to uncover and harness the vast

potential of bacterial secondary metabolites.

The Red Sea, known for its unique environmental conditions,

harbors a rich diversity of marine life, including numerous sponge

species and their associated microbiota (DiBattista et al., 2016).

Bacteria from the Red Sea found in association with sponges were

reported to show particular promise and possess an unusually high

number of BGCs compared to their counterparts from other

environments (Othoum et al., 2018). This study focuses on an

endophytic bacterial strain E9 isolated from a Red Sea sponge

identified as Hyrtios erectus. The bacteria were subjected to

antibacterial and antibiofilm activity against fouling bacteria. By

employing whole-genome sequencing and subsequent

bioinformatic analysis to detect BGCs, we aim to characterize the

genome of this strain, identify and analyze the BGCs present within

its genome and to assess the potential of these BGCs to produce

bioactive compounds.
2 Materials and methods

2.1 Collection of sponge samples

The sampling for this study was conducted along the Jeddah

Red Sea coast at Obhur, a creek located in the North of Jeddah

region of Saudi Arabia (N21°42.562′ E39°05.764′). Approvals were
obtained from the relevant authorities to collect sponge samples at

appropriate depths. Sites with potential for high biodiversity were

selected and documented through photography for future reference.

The collected sponge sample was identified as previously described

by Sánchez-Rodrıǵuez et al. (2018).
2.2 Isolation of bacteria from the sponge

Bacterial isolates were obtained from the surfaces of sponges

using culture-based techniques as outlined by Anand et al. (2006)

and Satheesh et al. (2012). In brief, the surfaces of the sponge

samples were cleaned to eliminate loosely attached bacteria by

washing them multiple times with filtered seawater (FSW) that

had been sterilized through autoclaving. Following this, FSW was

added to the sponges and agitated for one hour. The resulting

solution was then used for bacterial isolation through serial dilution.

An aliquot of 1 ml of the solution was transferred into sterilized

tubes containing 9 ml of FSW, creating serial dilutions ranging from
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10–1 to 10-6. Each dilution was inoculated onto Zobell Marine Agar

(ZMA) plates using the spread plate method, where 0.1 ml of the

dilution was transferred to the plates and evenly spread with a

sterilized spreader in duplicate. The plates were aerobically

incubated at 30°C for 72 hours, with observations recorded every

24 hours. Pure cultures of individual bacterial colonies were

obtained by subculturing onto fresh ZMA plates. This was

followed by morphological evaluation of the colonies and

microscopic observation following Gram staining.
2.3 Extraction of bioactive crude extracts

Bioactive components were extracted from the bacterium isolated

from the sponge using ethyl acetate as a solvent, following the

procedure established by Sánchez-Rodrıǵuez et al. (2018). Briefly,

the bacterial strain was cultured overnight in Zobell marine broth

(ZMB) at 30°C and 5 ml of overnight culture was transferred to a 500

ml Erlenmeyer flask containing ZMB filled to half capacity (250 mL).

These flasks were incubated with shaking at 25°C for 5 days. After

incubation, the cultures were centrifuged at 9,000 rpm for 20 minutes

at 4°C to separate the supernatant and cell residue. Equal volume of

ethyl acetate (selected for its low toxicity and medium polarity

suitable for extracting both polar and nonpolar bioactive

compounds) was added to the culture supernatant (CS) in an

Erlenmeyer flask and shaken at room temperature for 24 hours.

The mixture was then separated using a separating funnel into

solvent and liquid phases. This extraction process was repeated

three times with the liquid phase before discarding it. The collected

solvent phase was filtered through Whatman No. 1 filter paper. the

solvents were removed to concentrate the extracts in a rotary

evaporator (Buchi, Switzerland) at 50°C, 240 mbar pressure. The

crude extract was dissolved in 10%Dimethyl sulphoxide (DMSO) at a

concentration of 25 mg ml-1 and then stored in a refrigerator until

required for further use.
2.4 Antibacterial and antibiofilm activity

The antibacterial and antibiofilm activities were assessed against

five selected biofilm-forming strains identified as microfouling bacteria

which were previously reported (Abdulrahman et al., 2021). DMSO

(100%) was used as the negative control while the extract

concentration was maintained at 1mg/ml. These evaluations were

conducted using the agar well diffusion method and the microtiter

assay method respectively as previously described (Teanpaisan et al.,

2017). The tested biofilm-forming bacteria strains included

Pseudoalteromonas sp. IMB1 (ON003955), Halomonas sp.

IMB2 (ON415519), Vibrio alginolyticus IMB11 (ON003958),

Pseudoalteromonas gelatinilytica IMB14 (ON003961), and

Pseudoalteromonas gelatinilytica IMB15 (ON003962). All evaluations

were done in triplicates. The biofilm formation inhibition assay was

conducted by adding 100 mL of bacterial suspensions (adjusted to

McFarland standard) and 100 mL of the test extracts (from the stock

solution) into each well of a microtiter plate. The plates were then

incubated at 28°C for 48 hours. After incubation, the absorbance was
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measured at a wavelength of 570 nm. The percentage of biofilm

inhibition (BI) was calculated using the following formula:

BI = ½(OD Control –OD Sample)=OD Control� � 100

Where:
• OD Control represents the optical density of the control

(untreated) wells.

• OD Sample represents the optical density of the wells

treated with the test extracts.
2.5 Genome extraction, sequencing,
assembly and annotation

2.5.1 Sample preparation and sequencing
Genomic DNA was extracted from the samples using the

E.Z.N.A® DNA extraction kit (OMEGA) following the

manufacturer’s instructions. Library preparation was performed

using the Illumina TruSeq™ Nano DNA Sample Prep Kit

according to the manufacturer’s protocols. Briefly, the extracted

genomic DNA was fragmented to an average size of 300–500 bp

using a Covaris M220 ultrasonic device. The fragmented DNA

underwent end-repair, followed by the addition of an A base to the

3’ ends and ligation of index adapters. The library was then enriched

through 8 cycles of PCR amplification. To recover the target size

fragments, the amplified library was purified using 2% agarose gel

electrophoresis. The concentration of the purified library was

quantified using the TBS380 Picogreen assay (Invitrogen).

Sequencing was performed on the Illumina Hiseq 4000 platform

using a 2 x 150 bp paired-end sequencing strategy.

2.5.2 Quality control and data processing
Raw sequencing data underwent quality control using

Trimmomatic-0.39 (Bolger et al., 2014). Sequences containing

adapter contamination were removed, and bases with a quality

score below Q20 were trimmed from the ends of the reads. Reads

with more than 10% ambiguous bases (N) or shorter than 75 bp

were discarded. The quality of the cleaned data was assessed,

including metrics such as GC content and the percentage of bases

with quality scores Q20 and Q30.

2.5.3 Bioinformatics analysis
The cleaned sequencing data was analyzed using a comprehensive

bioinformatics pipeline. First, we used unicycler (https://github.com/

rrwick/Unicycler) to perform genome assembly with default

parameters and received the optimal results of the assembly. GC

depth and genome size information were calculated by custom Perl

scripts to judge whether the DNA sample was contaminated or not.

2.5.4 Genome assembly and quality control
Raw paired-end Illumina reads were trimmed and quality-

controlled using Trimmomatic (version 0.36) (Bolger et al., 2014)

with parameters SLIDINGWINDOW:4:15 and MINLEN:75. These
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clean, quality-controlled reads were used for subsequent analyses. Raw

PacBio reads were converted to FASTA format using Samtools Fasta (Li

et al., 2009). The Illumina data was utilized to evaluate genome

complexity and to correct the long reads. The strain genome was

then circularized using Circulator (Hunt et al., 2015). This whole

genome shotgun project has been deposited at DDBJ/ENA/GenBank

under the accession number JBLZIG000000000. The version described

in this paper is JBLZIG010000000. The details of BioProject

(PRJNA1228063) and BioSample (SAMN47005962) were also

available in the same database.

2.5.5 Phylogenetic analysis
A phylogenetic tree based on the 16S rRNA gene sequence of

strain E9 was constructed using MEGA11 software (Tamura et al.,

2021). Additional 16S rRNA gene sequences from other species were

obtained from the NCBI database for comparison. Sequence alignment

was performed using the MUSCLE algorithm (Edgar, 2004). The

phylogenetic tree was then generated using the Neighbor-Joining

method with 1000 bootstrap replications (Saitou and Nei, 1987).

2.5.6 Functional annotation
Functional annotation of the assembled genome was conducted

using various tools and databases, including Clusters of Orthologous

Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa et al., 2023), to identify

functional genes and metabolic pathways. The predicted protein-

coding sequences were functionally annotated through comparison

against several known protein databases using BLASTP with an E-

value threshold of ≤ 1e-5. To ensure biological significance, only the

optimal alignment result was retained as the gene’s database alignment

information when multiple alignments were found. All predicted gene

models were aligned against these databases to provide comprehensive

functional annotations. The results from these multiple annotation

sources were integrated to provide a holistic understanding of each

gene’s potential function and its role in biological pathways.

2.5.7 Biosynthesis gene cluster analysis
The gene mining open-source platform AntiSMASH

(Antibiotics and Secondary Metabolite Analysis Shell, bacterial

version 5.0: http://antismash.secondarymetabolites.org) was used

as the tool for BGC analysis. In brief, the complete sequence (gbk

file) of the bacterium was uploaded to the AntiSMASH platform

and submitted for analysis. After 10 minutes of processing, the

results displayed were analyzed and compared with the BGCs

submitted in the BGC database Mi-BIG (Minimum Information

about a Biosynthetic Gene cluster).
3 Results

3.1 Antibacterial and antibiofilm activity

The antibacterial activity of the crude extract from the marine

bacterium E9 was assessed against various biofilm-forming strains.

The extract exhibited moderate antibacterial effects, with inhibition
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zones ranging from 11 mm against Halomonas sp. IMB2 to 16.1

mm against Pseudoalteromonas gelatinilytica IMB 14. DMSO

controls didn’t show antibacterial activity in this assay. These

results are summarized in Table 1. The antibiofilm activity of the

extract varied among the tested microfouling bacterial strains. The

extract exhibited highest biofilm inhibition by achieving

approximately 55% inhibition against strain IMB14. This was

closely followed by the antibiofilm activity against strain IMB11

with 50% inhibition. The extract also showed strong antibiofilm

activity of about 40% inhibition against strain IMB1. In contrast,

strains IMB15 and IMB2 displayed lower inhibition levels, at

approximately 30% and 20%, respectively after treated with the

extract of strain E9. These findings are illustrated in Figure 1.
3.2 Identification and whole genome
analysis of the bacterium E9

The organism shows large, rounded colonies that are transparent

but not mucoid on ZMA plates and appear as Gram-positive cocci

following Gram staining and microscopy. The sequencing results

revealed the organism as Staphylococcus epidermidis after using the

NCBI BLAST which recorded similarity in the range of 98% with

other previously reported organisms (Figure 2). The genome circle

map of strain E9 is presented in Figure 3. The important

characteristics of the genome such as the distribution of genes on

positive and antisense chains, GC content, homologous genes,

genome islands and COG functional genes are displayed in the

genome circle map. The study and analysis of the genome of

bacteria reveal several important features of the genome structure

and gene distribution. According to the data in Table 2, the bacterium

E9 has 2420 gene numbers with an average gene length of about 877

Kb, which results in a gene density of 0.953 genes per kb.
3.3 Functional classification of genes

COG functional classification analysis revealed that the

majority of genes of the bacterium E9 were involved in metabolic
TABLE 1 Antibacterial activity of crude extract (1000 µg/ml) of
Staphylococcus epidermidis E9 against some microfouling organisms.

Tested Organism Zone of Inhibition (mm)

Control (DMSO)
Pseudoalteromonas sp.
IMB1 (ON003955)

0
13 ± 0.8

Halomonas sp. IMB2 (ON415519) 11 ± 1.24

Vibrio alginolyticus
IMB11 (ON003958)

13.3 ± 0.9

Pseudoalteromonas gelatinilytica
IMB14 (ON003961)

16.1 ± 0.6

Pseudoalteromonas gelatinilytica
IMB15 (ON003962)

15.8 ± 1.5
Values are mean ± SD, n=3.
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activities (Figure 4). COG analysis revealed that the largest role was

played by unknown functions with 405 genes, followed by amino

acid transport and metabolism with 197 genes, and then translation,

ribosomal structure and biogenesis and inorganic ion transport and

metabolism with 170 and 163 genes, respectively. The genes

encoding secondary metabolites synthesis and defense

mechanisms were 27 and 40 respectively. The gene ontology

(GO) analysis also revealed that a larger percentage of genes

encoding the metabolic and cellular functions were present in the

genome of the strain E9 (Figure 5). Regarding molecular function

genes, those encoding catalytic activity topped the list followed by

the genes encoding binding activity (Figure 5).

KEGG ORTHOLOGY (KO) of the genome showed the

presence of a higher number of genes encoding metabolic

pathways (Figure 6). Following the metabolic pathway genes,

those encoding the biosynthesis of secondary metabolites were

also predicted in large numbers (232 genes). KO analysis also

revealed the presence of genes (38 genes) encoding quorum

sensing, an essential function of the bacteria living on surfaces or

associated with other organisms.
3.4 Biosynthetic gene cluster analysis

The BGC finder AntiSMASH identified a total of 9 BGCs from

the genome of the bacterium E9 (Table 3). The identified BGCs

were belonging to NRPS, terpene, siderophores, lasso peptide,

opine-like-metallophore and cyclic-lactone-autoinducer. Whereas

the predicted products include staphylopine, aureusimine,

staphyloferrin, Belactosin, carnobacteriocin, bicereucin,

Mutanocyclin and listeriocytocin.
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4 Discussion

Bacteria associated with sponges and other invertebrates are

considered a prolific source of bioactive molecules with antibiofilm

and antifouling activities (Satheesh et al., 2016). The findings from

this study on the antibacterial and antibiofilm activity of the crude

extract from the sponge-associated marine bacterium E9 provide

valuable insights into the potential applications of marine-derived

compounds in combating biofouling and biofilm formation on

submerged surfaces. The moderate antibacterial activity observed

against biofilm-forming strains, with inhibition zones ranging from

11 mm to 16.1 mm, aligns with previous studies that have reported

varying degrees of antibacterial efficacy from marine bacteria. For

instance, a study by Al-Daghistani et al. (2021) demonstrated that

extracts from marine bacteria exhibited significant inhibition zones

against pathogenic bacteria, with some strains showing maximum

inhibition zones as high as 25 mm against some bacteria.

The antibiofilm activity of the E9 extract revealed that strain

IMB14 had the highest inhibition rate at approximately 55%, which

is comparable to findings from other marine-derived extracts. For

example, extracts from sponge-associated Alcanivorax sp.

demonstrated biofilm inhibition ranging from 46% to 71% against

various biofilm-forming bacteria (Jamal and Satheesh, 2022). The

varying levels of biofilm inhibition observed in this study highlight

the complexity of biofilm formation and the need for targeted

approaches when developing antibiofilm agents. The strong

inhibition rates noted for strains IMB11 and IMB1 at around

50% and 40%, respectively, further emphasize the potential of

marine bacteria as sources of bioactive compounds. The lower

inhibition levels observed for strains IMB15 and IMB2 (30% and

20% respectively) suggest that not all strains respond equally to the

crude extract, which is consistent with research indicating that

different bacterial species exhibit varying susceptibilities to

antibiofilm agents (Balasubramanian et al., 2018).

The bacterium E9 isolated from the sponge was identified as

Staphylococcus epidermidis based on whole genome sequencing and

the phylogenetic tree construction. S. epidermidis is a well-known

human pathogenic strain, that usually inhabits in human skin and

mucus membranes (Severn and Horswill, 2023). However, previous

studies confirmed the presence of S. epidermidis in marine

environments that expanded their ecological role (Gunn and

Colwell, 1983). Previously Zhang et al. (2016) reported the

antibacterial activity of S. epidermidis strain isolated from marine

fish. Further, Zaghloul et al. (2021) isolated S. epidermidis strain

from the marine waters which produce biocement. The association

of S. epidermidis strain with marine sponges was also recorded

previously (Paul et al., 2021).

Antibiofilm activities of S. epidermidis strains were reported

previously against pathogenic bacterium such as S. aureus (Iwase

et al., 2010). Protease enzymes produced by S. epidermidis strains

are reported to be the reason for the biofilm inhibitory activity

(Glatthardt et al., 2020; Vandecandelaere et al., 2014; Iwase et al.,

2010; Sugimoto et al., 2013). Glatthardt et al. (2020) confirmed the

production of small molecules by commensal S. epidermidis strain
FIGURE 1

Antibiofilm activity of the extract of sponge endophytic bacterium
E9 against bacteria isolated from the substrates. Pseudoalteromonas
sp. (IMB1), Halomonas sp. (IMB2), Vibrio alginolyticus (IMB11).
Pseudoalteromonas gelatinilytica (IMB14), Pseudoalteromonas
gelatinilytica (IMB15).
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that disrupts the biofilms. Further, another study by Nakatsuji et al.

(2017) reported that S. epidermidis commensal strains produce

antimicrobial compounds to inhibit S. aureus. This indicates that

commensal S. epidermidis strains produce metabolites that inhibit

the attachment or growth of other bacteria.

Complete genome sequencing data of many pathogenic S.

epidermidis strains are available in genomic databases (Chaudhry

and Patil, 2016). However, the whole genome of this strain

associated with marine organisms is very limited and most of the

sequences available in public databases are based on 16S rRNA

sequencing. Whole genome analysis is important to understand the
Frontiers in Marine Science 06
ecological role of this bacterium specifically with the sponge host.

Whole genome analysis of the S. epidermidis strain in this study

showed a gene density of 0.953 genes per kb indicating a relatively

compact genome structure that minimizes intergenic regions (Ng,

2022). The GC content in gene regions recorded a moderate level of

GC-rich sequences of about 32.9%, which in turn affects the stability

of genes and their expression patterns (Kato et al., 2003; Ng, 2022).

The Intergenetic region length indicated 414511 base pairs with

lower GC content values of about 27.6% indicating less evolutionary

pressures compared to gene regions (Ng, 2022; Hou and Lin, 2009).

Intergenetic length constituted about 16.3% of the genome, which
FIGURE 2

Phylogenetic tree of the bacterial strain E9. The strain was identified as Staphylococcus epidermidis based on phylogenetic analysis.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1588772
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jamal et al. 10.3389/fmars.2025.1588772

Frontiers in Marine Science 07
may play a role in many regulatory functions and control of gene

expression (Rayburn, 1993).

The functional analysis indicated the presence of genes

responsible for the secondary metabolites and defense

mechanisms in the genome of S. epidermidis. The secondary

metabolite production is important for the bacteria as these

molecules play significant role in interaction with other

organisms, signaling and against other competitors (Petersen

et al., 2020; Giordano et al., 2015). The secondary metabolite

producing capability of this strain was further confirmed by

KEGG Orthology analysis which predicted 232 genes related to

the biosynthesis of secondary metabolites. Also, BGC analysis

revealed that the genome of the bacterium contained some gene

clusters for the production of bioactive metabolites such as lasso

peptides, NRPS and terpenes The compounds predicted through
FIGURE 3

A genome circle map of strain E9. The circles represent genome-size markers of the functional classification.
TABLE 2 Statistics of genetic information of whole genome of
bacterium E9.

Type Values

Gene numbers 2420

Gene total length 2123451

Gene average length (Kb) 877

Gene density (Kb) 0.953 genes per kb

GC content in gene region (%) 32.9

Gene/Genome (%) 83.7

Intergenetic region length 414511

GC content in intergenetic region (%) 27.6

Intergenetic length/Genome (%) 16.3
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BGC analysis participate in different biological functions that

include antimicrobial activity, signaling and metal chelation.

These functions are essential for the microorganisms to live in

diverse environments including invertebrate hosts (Whalen et al.,
Frontiers in Marine Science 08
2019; Wang et al., 2022). Further, the presence of BGCs related to

terpene biosynthesis and NRPS revealed the biotechnological

potentials of this strain particularly for drug discovery (Calisto

et al., 2025; Yi et al., 2024). Among the potential bioactive
FIGURE 4

COG functional classification analysis of genome of bacterial strain E9.
FIGURE 5

Gene ontology (GO) function analysis showing cellular component, molecular function and biological process in the genome of bacterial strain E9.
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compounds predicted through BGCs analysis, previous studies

reported the production of carotenoids by many Staphylococcus

species (Solouki Nezhad et al., 2019; Leidy et al., 2020; Manrique-

Moreno et al., 2022). Further, presence of lasso peptide

(bacteriocin) cluster genes in Staphylococcus species was

previously reported by Carson et al. (2017). Additionally,

Staphylococcal bacteriocins exhibited strong antimicrobial

activities including antibiofilm activity against Staphylococcus

aureus (Newstead et al., 2020).
Frontiers in Marine Science 09
The genome of the S. epidermidis strain also contains 38 genes

relevant for quorum sensing, which is essential for communication,

biofilm formation and interaction with the host organisms (Wu and

Luo, 2021; Rutherford and Bassler, 2012). The GO analysis of the

genome indicated the prevalence of genes encoding catalytic

activities. Enzyme production is one of the important functions of

bacteria living in stressful conditions such as marine environments,

which indicates the capability of the bacteria to carry out

biochemical transformations for acquiring nutrients or molecular

interactions with other organisms (Gu et al., 2024; Hobbs et al.,

2018). Due to the opportunistic pathogenic nature of S. epidermidis

(Burke et al., 2024), further analysis will provide more insights into

the potential role of this endophyte on the sponge host.

In conclusion, whole genome analysis of S. epidermidis strain

isolated from the marine sponge revealed the presence of genes

responsible for diverse functions. The predicted secondary

metabolites indicated the bacterial strain’s antimicrobial activity,

ecological adaptability and competitiveness in different

environmental conditions. The antibiofilm activity exhibited by

the extracts of S. epidermidis showed the potential applications of

this bacterium in medicine, biotechnology and environmental areas.

The interaction of this bacterium with marine invertebrates may be

a symbiotic relationship or as pathogens due to it’s opportunistic

pathogenic behavior. Hence further studies on understating this

relationship will be useful for potential applications in bioactive

compound synthesis. Further, the presence of large numbers of

genes with unknown functions would be of interest for deeper

analysis of novel metabolic pathways that may provide the basis for

the synthesis of bioactive molecules.
FIGURE 6

KEGG orthology (KO) of the genome of bacterial strain E9.
TABLE 3 Biosynthetic gene clusters and the predicted secondary
metabolites from the genome of bacterial strain E9.

S. No. Region Type Predicted
products

1 Region 1.1 opine-like-metallophore Staphylopine

2 Region 1.2 NRPS Aureusimine

3 Region 1.3 terpene Carotenoid

4 Region 1.4 siderophore Belactosin

5 Region 1.5 lassopeptide Carnobacteriocin

6 Region 1.6 cyclic-lactone-autoinducer Bicereucin

7 Region 1.7 lasso peptide Mutanocyclin,
leuvalin, tyrvalin

8 Region 1.8 lasso peptide Listeriocytocin

9 Region 1.9 lasso peptide Belactosin
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