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Dynamic monitoring of marine
floating raft aquaculture in
Jiangsu province based on
multi-source SAR imagery
Wen Li1, Jia Xu1*, Yuanyuan Chen2 and Chongbin Liu3

1School of Earth Sciences and Engineering, Hohai University, Nanjing, China, 2College of Civil
Engineering, Nanjing Forestry University, Nanjing, China, 3Artificial Intelligence and Digital Economy
Guangdong Provincial Laboratory (Shenzhen), Shenzhen, China
Long-term change monitoring of marine floating raft aquaculture (MFRA) in

Jiangsu Province is urgently needed to support aquaculture restructuring and

protect the regional marine environment. Optical remote sensing images have

been widely used in the extraction of MFRA but are usually limited by cloudy and

rainy weather conditions. Compared with optical images, Synthetic Aperture

Radar (SAR) can acquire images even under dense cloud cover, offering a reliable

alternative. However, existing studiesmainly focused on limited geographic areas

and didn’t consider different types of MFRA. This study proposes an automatic

framework for monitoring MFRA based onmulti-source SAR imagery. To achieve

a better extraction of MFRA, two key enhancements were introduced. First, the

SDWI and SDRI indices were utilized to effectively differentiate MFRA from

seawater. Second, a deep learning framework termed Boundary-Enhancing

Swin Transformer (BE-Swin) was developed for extracting different types of

MFRA. Results showed that (1) Combining ALOS-1 and Sentinel-1 data enabled

mapping the long-term dynamics of the MFRA in Jiangsu province, China. (2)

Compared with other deep neural network models, the BE-Swin model

improved the extraction accuracy by incorporating 3 key modules within the

Swin Transformer. The BE-Swin model enhances boundary extraction, reducing

errors, omissions, and adhesion issues. (3) MFRA in Jiangsu Province is distributed

in Haizhou Bay of Lianyungang, the radial ridge group region of Yancheng, and

the northern coast of Nantong. From 2008 to 2022, raft aquaculture in the

coastal region of Jiangsu Province experienced rapid expansion followed by

gradual contraction. (4) MFRA in Jiangsu Province can be categorized into three

types, pole-pixed, semi-floating, and full-floating raft aquaculture. The area of

pole-fixed raft aquaculture steadily increased, reaching 171.38 km2 in 2022.

Semi-floating raft aquaculture peaked at 318.36 km2 in 2015 but was reduced

by nearly half in 2022. Full-floating raft aquaculture was initially absent but has

shown a trend toward large-scale adoption, reaching 78.42 km2 in 2022.
KEYWORDS

synthetic aperture radar (SAR), marine floating raft aquaculture (MFRA), dynamic
change, sentinel-1, ALOS-1, swin transformer
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1 Introduction

Over the past decade, marine aquaculture has been recognized

as a pivotal strategy for sustainable development by ensuring food

security through high-yield protein production, stimulating coastal

economies with diversified aquatic species, and mitigating

ecological pressures via integrated bioremediation. According to

the Food and Agriculture Organization (FAO, 2022), global

aquaculture production increased by 609% between 1990 and

2020, corresponding to a compound annual growth rate (CAGR)

of 6.7%. The total live weight was 122.6 million tons and marine

aquaculture accounted for 33.6 million tons in 2020. The expansion

of aquaculture production within the context of fishery production

is occurring at a rate that outpaces that of capture fisheries.

Aquaculture represented 49% of global aquatic food production

in 2022, making it the second-largest contributor after capture

fisheries and a major source of food for human consumption. China

is a key player in global seafood production, consumption, and

trade, with aquaculture production accounting for 60% of total

global exports (Crona et al., 2020). However, the rapid expansion of

aquaculture has brought huge economic effects to coastal areas

while at the same time triggering a series of ecological trade-offs,

resulting in adverse consequences such as water pollution (Anh

et al., 2010), heavy metal contamination (Emenike et al., 2022), the

shrinkage or disappearance of natural wetlands (Sun et al., 2020),

and the destruction of natural habitats (Duan et al., 2021).

Aquaculture monitoring is a critical prerequisite for mitigating

the ecological externalities of its rapid development.

As a critical offshore aquaculture system, marine floating raft

aquaculture (MFRA) enables high-density cultivation across diverse

coastal zones and supports the growth of multiple species of marine

organisms. It is one of the types of aquaculture activities commonly

found in coastal zone areas. The coastal zone typically encompasses

the marine area near the land and the adjacent land, serving as an

ecotone between terrestrial and marine ecosystems. It is rich in blue

carbon and plays a vital role in maintaining biodiversity and

biogeochemical cycles. Jiangsu Province is located in the middle

of the coastal area of mainland China and the Yangtze and Huai

River deltas, with vast intertidal mudflats and inland and coastal

waters that provide unique conditions for the development of

aquaculture. In the coastal zone of Jiangsu Province, aquaculture

is widely distributed, with MFRA being one of the key types. Each

type of MFRA exhibits distinct structural characteristics, cultured

species, environmental impacts, and management requirements.

The growing diversity of aquaculture types has increased the

complexity of scientific monitoring and policy management for

MFRA, highlighting the need for the further refinement of MFRA

classification. To effectively restructure aquaculture and protect the

marine environment, it is essential to understand the spatial

distribution and dynamic change patterns of marine aquaculture

in the Jiangsu Province.

Initially, marine aquaculture monitoring relied on manual

surveys, which were time-consuming, laborious, and time-sensitive.
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The widespread application of remote sensing technology in this field

highlights the advantages of new technologies, offering large-scale,

highly efficient, and dynamic monitoring services. These technologies

are particularly useful for monitoring and extracting information on

the widely dispersed aquaculture in coastal areas. Currently, a

significant number of optical remote sensing images have been

widely used in the extraction of MFRA. Traditional methods were

commonly used in this field in the early days, Liu et al. (2020) used an

unsupervised classification algorithm and visual interpretation

combined method to extract the area of Chinese coastal raft cage

aquaculture in 2018 from Landsat 8 imagery. Román (Román et al.

(2023) utilized a novel GIS-based analysis method to assess the

potential of high-resolution unmanned aerial vehicle (UAV)

multispectral data for retrieving spatial information on oyster

farming structures, using Bourgneuf Bay as a case study. With the

development of the algorithmic field, automated techniques have

been introduced for mariculture monitoring, for example, Quaade

et al. (2024) proposed an efficient and scalable computer vision

method by fine-tuning the YOLOv5 model to successfully quantify

the spatial and temporal distribution and production of mariculture

cages in the French Mediterranean using Google Earth imagery and

the BD ORTHO series of aerial images.

However, in cloudy regions, particularly in tropical and coastal

areas, obtaining large-scale, long-term time series optical remote

sensing images is challenging due to the limited ability of optical

imagery to penetrate clouds, rain, and fog. Compared with optical

images, Synthetic Aperture Radar (SAR) can acquire image data

from any site around the clock, even in the presence of dense cloud

cover. Furthermore, radar waves generate a higher backscatter

response from aquaculture structures compared to surrounding

water surfaces (Travaglia et al., 2004), enabling the identification

and distinction of aquaculture structures from other natural and

man-made features. Therefore, various SAR data have also been

employed to extract marine aquaculture information. Lee et al.

(2006) employed Airborne Synthetic Aperture Radar (AIRSAR)

data and Japanese Earth Resources Satellite (JERS-1) data to

examine the unique structure of oyster farms located in Korea.

Choe et al. (2012) used RADARSAT-2 and ALOS-1 full-

polarimetric SAR data to monitor the distribution of oyster reefs

in the intertidal zones of Jebu Island and Hampyung Bay off the

west coast of Korea. Zhang et al. (2020) proposed a segmentation

network combined with a non-subsampling contour transform

(NSCT) separation network, which effectively extracted MFRA

from Sentinel-1 images. Gao et al. (2022) proposed a D-ResU-Net

semantic segmentation model to extract MFRA in Changhai

County, Liaoning Province, China. Liu et al. (2023) proposed a

dual-branch hybrid coding network (DBHE-Net) segmentation

method based on GF-3 full polarimetric SAR images, which

effectively integrates the local perceptive ability of CNN and the

global expressive ability of Transformer for raft aquaculture type

recognition. Chen and Li (2024) proposed a specially tailored deep

learning-based network (MAZNet) for the problem of

automatically extracting MAZs from the Sentinel-1 C band,
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which performs input optimization and model structure

enhancement based on polarization and raft structure features.

Despite the considerable enhancement in monitoring capability

that has been achieved in cloudy areas by the SAR technique, its

resolution limitation and model generalization problem constrain

the large-scale application of the technique. Consequently, there is a

necessity for the future integration of multi-source data fusion and

time series analysis in order to construct a dynamic monitoring

framework that achieves a balance between accuracy and timeliness.

Additionally, many existing studies didn’t consider different types

of MFRA. However, long-term change monitoring of MFRA in

Jiangsu Province is urgently needed to effectively restructure

aquaculture and protect the marine environment in the region.

To address these issues, the specific objectives of this research

were as follows:(1) to verify the reliability of using ALOS-1 and

Sentinel-1 SAR images for dynamic monitoring of MFRA in Jiangsu

Province from 2008 to 2022; (2) to develop a deep neural network

tailored for extracting different types of the MFRA from dual-

polarized SAR imagery; (3) to obtain MFRA datasets and analyze

the distribution and change in marine aquaculture in Jiangsu

Province from 2008 to 2022. The research results are expected to

provide reference and insight for the green development of marine

aquaculture and marine ecological environment protection.
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2 Study area and data

2.1 Study area

As a pivotal coastal province in eastern China, Jiangsu features a

954-kilometer coastline, with its jurisdictional waters strategically

positioned at the intersection of the southern Yellow Sea and the

northern East China Sea (Xu et al., 2022). Along this coastline lie

approximately 500,000 hectares of developed coastal wetlands and

intertidal mudflats, forming an exceptional natural foundation for

modern mariculture development. Three coastal cities—

Lianyungang, Yancheng, and Nantong—are situated sequentially

from north to south. Our study focused on the MFRA and the

distance between the farthest floating raft aquaculture area and the

coastline is about 40 km. Thus, the study area was defined as a 40-km

wide offshore buffer established in the direction of the deep sea based

on the year-by-year administrative coastline of Jiangsu Province.

The study area predominantly features three mariculture

configurations (Figure 1): (1) Pole-fixed raft culture employs

bamboo or wooden stakes as supporting structures, securing

cages or cultivation panels via synthetic fiber cables. This

configuration demonstrates enhanced wave resistance, making it

suitable for high-energy coastal waters with sandy or rocky
FIGURE 1

The scope of the study area (Left) and three types of MFRA: (Right b, e)Pole-pixed raft aquaculture, (Right c, f)semi-floating raft aquaculture, and
(Right a, d)full-floating raft aquaculture.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1594048
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2025.1594048
substrates; (2) Semi-floating raft culture integrates raft frames with

mesh panels, achieving tidal-level self-adaptation through

polyurethane buoys and adjustable support poles. This system

optimizes production efficiency in intertidal zones, maintaining

4–6 hours daily emersion periods; (3) Full-floating raft culture

adopts an anchored storm-resistant configuration comprising high-

density polyethylene frameworks, polyurethane floaters and depth-

adjustable cultivation cages. The corresponding cultured species for

each type of MFRA as illustrated in Table 1.
2.2 Data

2.2.1 ALOS-1 data
The Advanced Land Observing Satellite-1 (ALOS-1), launched

by the Japan Aerospace Exploration Agency (JAXA) in January

2006, retired in 2011, was equipped with two optical instruments

and a phased Array L-band SAR (PALSAR). PALSAR sensor is

capable of being operated in five different observing modes: fine

beam single polarization (FBS), fine beam double polarization

(FBD), quad polarization mode (POL), ScanSAR mode, and

direct transmission (DT) mode (Rosenqvist et al., 2007). The

ALOS-1 PALSAR images used in this study have a spatial

resolution of 15 meters and a revisit period of approximately 46

days. a total of 249 dual-polarization (HH and HV) images, selected

from January to March 2008, were obtained. ENVI SARscape

software was used for pre-processing, including orbit correction,

thermal noise removal, radiometric calibration, speckle filtering,

terrain correction, geocoding, and conversion to dB.

2.2.2 Sentinel-1 data
The Sentinel-1 mission, managed by the European Space

Agency (ESA), comprises a constellation of two satellites, the first

of which was launched on 3 April 2014, each equipped with a C-

band synthetic aperture radar (SAR). This configuration enables the

satellites to provide all-weather, day-and-night imagery of Earth’s

surface. There are four modes of Sentinel-1 operational imaging:

interferometric wide swath mode (IW), wave mode (WV), stripmap

(SM), and ultra-wide swath mode (EW). A total of 63 and 48 dual-

polarized (VV and VH) interferometric wide swath (IW) GRD

images from January to March 2015 and 2022, respectively, were

acquired via Google Earth Engine (GEE). The Sentinel-1 SAR GRD

images used in this study have a spatial resolution of 10 meters and

a revisit period of approximately 12 days. All images underwent

standard pre-processing steps, including orbit correction, thermal

noise removal, radiometric calibration, speckle filtering, terrain

correction, geocoding, and conversion to decibel (dB).
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2.2.3 Other auxiliary data
Coastline data for Jiangsu Province were derived from the East

Asian Monsoon Eco-geographic Zone Boundary dataset published

by the Institute of Geographic Sciences and Natural Resources

Research, Chinese Academy of Sciences (Liu and Shi, 2015).

Mariculture data from the Fishery Statistical Yearbook of Jiangsu

Province for 2015 to 2022 was collected from the Ministry of

Agriculture and Rural Affairs of the People’s Republic of China

(https://www.moa.gov.cn/), to evaluate the accuracy of the

extraction results for MFRA.
3 Model and methodology

In this study, an automatic framework for monitoring of MFRA

based on multi-source SAR imagery was proposed. The framework

is described in Figure 2, which includes four main steps: (1) Data

collection and preprocessing, (2) Model training and accuracy

assessment, (3) Result prediction and MFRA extraction, (4)

Spatial analysis and dynamic monitoring. To achieve a better

extraction of MFRA, two improvements were introduced in the

framework. Firstly, the SDWI and SDRI indices were introduced to

accurately distinguish MFRA and seawater. Secondly, a deep

learning-based network was developed for extracting different

types of MFRA from dual-polarized SAR imagery. To further

explain the workflow, the model and methodology are described

in detail below.
3.1 Imaging characteristics analysis and
index selection

Synthetic Aperture Radar (SAR) images exhibit four common

polarizations: HH, HV, VH, and VV. The backscatter

characteristics of radar signals vary with polarization, which can

influence the accuracy of MFRA extraction. In this study, the

imaging mode of Sentinel-1 is interferometric wide (IW) with two

polarizations, including VV polarization and VH polarization. The

image mode of ALOS-1 is fine beam double polarization (FBD) with

two polarizations, including HH polarization and HV polarization.

To improve monitoring accuracy, target imaging characteristics

analysis, and index construction are very important. Based on the

observation of the performance of MFRA in the study area under

different polarization types (Figure 3), the HV polarization band of

ALOS-1 enables only limited visual interpretation of pole-type raft

aquaculture (a2). Similarly, the VH band of Sentinel-1 reveals only

part of the pole-type raft aquaculture (c2), while it entirely fails to

capture the fully floating raft aquaculture (e2). In contrast, the

isotropic polarization images showed more prominent

characteristic information of MFRA. To exploit the benefits of

double polarization features, a variety of radar indices were

calculated to determine which combination of polarizations is

most suitable for distinguishing between MFRA and seawater.

Considering the performance of MFRA in different index feature

images and the value of feature importance of each Radar index in
TABLE 1 The corresponding cultured species for each type of MFRA.

Type of MFRA Cultured Species

Pole-fixed Raft Culture Laver

Semi-floating Raft Culture Laver

Full-floating Raft Culture Mussel, oyster and rapana venosa
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Table 2, the SDRI and SDWI indices were chosen for MFRA

extraction. The Sentinel-1 dual-polarized water index (SDWI)

proposed by Jia et al. (2019) multiplies the VV and VH

polarization images and multiplies them by 10, thereby enhancing

the water bodies and eliminating other influences. The Sentinel-1

dual-polarized raft index (SDRI) proposed by Liu et al. (2023) also

multiplies the VV and VH polarization images to increase the

difference between MFRA and seawater. To correspond to Sentinel-

1, ALOS-1 dual-polarized water index (ADWI) and ALOS-1 dual-

polarized raft index (ADRI) were calculated by replacing VV and

VH polarization with HH and HV polarization respectively.

In summary, the VV, SDWI, and SDRI features of Sentinel-1,

and the HH, ADWI, and ADRI features of ALOS-1, were able to

highlight each type of MFRA concurrently in Figure 3. Therefore,

the HV and VH polarizations were excluded to circumvent the

potential risk of HV and VH polarizations to the integrity of the

extraction results.
3.2 Deep learning framework for MFRA
extraction

3.2.1 Data preparation
The primary dataset used in this study consisted of ALOS-1 and

Sentinel-1 SAR images. Through the imaging characteristics

analysis and index construction, the HH, ADWI, and ADRI were

selected for the ALOS-1 SAR image, and the VV, SDWI, and SDRI

bands were selected for the Sentinel-1 in this study. The selected

band and indices were then fused into experimental image data with

three channels. After acquiring the experimental image data, we

manually extracted three types of MFRA in each SAR image based
Frontiers in Marine Science 05
on visual interpretation. The Pole-pixed raft aquaculture, semi-

floating raft aquaculture, and full-floating raft aquaculture targets

were labeled as 1, 2, and 3 respectively. The other features were

labeled as 0 to generate the final ground truth maps. All the SAR

images and their corresponding ground truth were cropped into

512×512 pixels sub images for model training. Considering that

background pixels vastly outnumber the MFRA pixels, we

improved the quality of our training samples by selecting regions

where the three MFRA types occur at high density. Additionally, we

employed processing techniques such as rotation, mirroring, and

noise injection to augment the dataset and enhance its diversity.

Therefore, the final dataset comprises 2020 sample pairs for ALOS-

1 and 6580 sample pairs for Sentinel-1, with 70% allocated for

training, 15% for validation, and 15% for testing.
3.2.2 Model structure
The Swin Transformer (Liu et al., 2021) is a pioneering visual

Transformer backbone network that leverages a hierarchical

structure and a shift window mechanism. It achieves cross-scale

visual feature modeling through efficient non-overlapping local

window self-attention computation, thus achieving breakthrough

performance in tasks such as image classification, target detection,

and semantic segmentation with linear computational complexity.

However, the Swin Transformer may face challenges when

extracting MFRA from SAR images, particularly due to a series of

boundary issues such as incompleteness, fragmentation, and

adhesion. In addressing this challenge, the boundary-enhancing

Swin Transformer model (BE-Swin) was proposed by incorporating

three modules to explicitly use the boundary and semantic context

information compared to the original Swin Transformer: the
FIGURE 2

Workflow of raft aquaculture extraction.
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Boundary Extraction (BE) module, the Multi-scale Semantic

Context Fusion (MSF) module, and the Attention Gated

Boundary Enhanced Semantic Context (AGBES) module.

As shown in Figure 4, BE-Swin first employs the Swin

Transformer as its backbone to extract multi-layer features. The

image is then downsampled to 128 × 128 × 256(F1) following initial

7 × 7 convolution, batch normalization (BN), and max-pooling

operations. This is followed by a further downsampling to 64 × 64 ×

512(F2) for the extraction of middle-layer detail features, and then
Frontiers in Marine Science 06
after residual block stacking for the extraction of high-level

semantic features, which are 32 × 32 × 1024(F3), 16 × 16 × 2048

(F4 and F5). Respectively, F5 as the highest-level feature maps has

rich semantic information and larger sensory fields. Three modules

are introduced as follows:
1. The BE module is utilized to extract boundary information

by directly leveraging the intermediate features of the

backbone network. Thanks to the deep convolutional
FIGURE 3

Cross-Sensor Polarization Band and Radar Index Analysis: (a, b) ALOS-1 HH/HV/ADWI/ADRI (c-e) Sentinel-1 VV/VH/SDWI/SDRI.
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Fron
neural network, it employs a layered approach that

combines the features of the low-level detail information

(F1, F2) and the high-level semantic information(F5). The

boundary features (Fb) are generated with dimensions of

128×128×1, achieved by applying a 1×1 convolution on the

channel followed by a fusion of downsampling and

upsampling operations. The generation of the binary

boundary labels is achieved from ground truth via the

Laplacian transform. The BE module is capable of

extracting and enhancing the fuzzy boundary to improve

the boundary differentiation.

2. To fuse the multi-scale semantic information into a feature

map, the MSF module adopts the channel attention

mechanism to enhance the high-level semantic
tiers in Marine Science 07
information by fusing different receptive fields and three

high-level features with a uniform number of channels.

This process results in the acquisition of 32 × 32 × 512

multi-scale fusion features(Ff ), which has been

demonstrated to effectively improve the model ’s

perception of targets at different scales. The MSF module

enhances the expression ability of different scale targets by

fusing multi-scale features.

3. The AGBES module up-samples Ff to 128 × 128 × 128 and

performs weighted fusion with the boundary feature Fb.

This process generates the boundary-enhanced feature(Fe)

by embedding the boundary information into the high-level

semantic features. The AG module automatically learns to

focus on target structures of different shapes and sizes,

easily integrates with standard CNN architectures, and

minimizes computational overhead while improving

model sensitivity and predictive accuracy (Oktay et al.,

2018). It is achieved by using simple addition and

multiplication operations to enhance the semantic

intraclass consistency. The AGBES module integrates

boundary and semantic features to enhance classification

consistency and segmentation accuracy.
Finally, BE-Swin restores the feature map to the original size of

512 × 512 × 1 by up-sampling operation and outputs four types of

pixel-level probability distributions using a Softmax classifier to

complete the accurate extraction of pole-pixed raft aquaculture,

semi-floating raft aquaculture, full-floating raft aquaculture and

background. It is acknowledged that MFRA targets in Jiangsu
FIGURE 4

The structure of BE-Swin.
TABLE 2 Index feature sets extracted from Sentinle-1 satellite.

Radar Index Parameters Formula

Normal Difference Index NDI NDI = VV − VH

Normalized Difference
Polarized Index

NDPI NDPI =
VV − VH
VV + VH

Ratio of
backscatter coefficient

Ratio Ratio  =  VV=VH

Square Difference Index SDI SDI =
(VV2 − VH2)
(VV2 + VH2)

Sentinel-1 Dual-polarized
Water Index

SDWI SDWI = ln (10*VV*VH) − 8

Sentinel-1 Dual-polarized
Raft Index

SDRI SDRI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VV � VH
p

 −15
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Province are typical of a reduced scale, particularly in the context of

pole-pixed raft aquaculture. BE-Swin extracts hierarchical semantic

features and re-weights single-scale features through the MSF

module. This ensures the effective utilization of cross-scale

complementary information, thereby ensuring the accuracy and

robustness of the model in high-resolution remote sensing images.

3.2.3 Model training
The BE-Swin model was trained and tested using the PyTorch

framework on an NVIDIA RTX 3080 GPU with 10 GB under

Windows 10 with CUDA 11.3. All models were trained for 100

epochs with a batch size of 8 and an initial learning rate of 0.001. To

ensure fairness, all models used the same data splits, preprocessing,

and training settings. The BE-Swin model showed stable

convergence, with loss values plateauing before training

completion. Results are averaged over three runs with different

random seeds.
3.3 Model evaluation metrics

To assess the accuracy and reliability of the extraction results,

and to guide future research optimizations, five commonly used

metrics are employed: precision (Equation 1), recall (Equation 2),

F1-score (Equation 3), accuracy (Equation 4) and mean intersection

over union (mIoU) (Equation 5). The formulae for calculating the

above evaluation metrics are as follows:

precision =
aii

o
k

j=1
aji

(1)

recall =
aii

o
k

j=1
aij

(2)

F1 − score = 2� precision � recall
precision + recall

(3)

Accuracy =
o
k

i=1
aii

N
(4)

mIoU =
aii

o
k

j=1
aij +o

k

j=1
aji − aii

(5)

The variable k denotes the total number of classes, inclusive of

the background class. We can use a k� k confusion matrix to

present the results of the classifier, while its element aij at the

intersection of the   ith and the   jth column for i, j = 1,…, k is the

number of instances from the   ith classified to the   jth class. N

denotes the total number of pixels in the image under consideration.
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4 Result and analysis

4.1 Model performance and MFRA
extraction results

To better evaluate the performance of the BE-Swin model, we

used the same dataset to train and test our model and other neural

network models. Figure 5 shows the prediction results of the BE-

Swin model and other comparison models for different types of

MFRA. Some scenes have been selected to compare the extraction

results of the different models. The first two rows of Figure 5

correspond to the extraction results of the ALOS-1 dataset. The next

three rows of Figure 5 correspond to the extraction results of the

Sentinel-1 dataset. The color-coding system employed in this study

delineates between pole-pixed raft aquaculture (orange), semi-

floating raft aquaculture (fuchsia), full-floating raft aquaculture

(red), and the background (black). The first two columns of

Figure 5 correspond to the SAR images and the ground truth,

respectively. The next four columns show the extraction results of

the different models. It is undeniable that each mode exhibits some

degree of misclassification and omission. Specifically, the U-Net

model shows more misclassification (a2&b2), omission(c2&d2),

and boundary adhesion(b2&e2). The MA-Net and DeepLab V3+

models show better results than the U-Net model. However, the

DeepLabV3+ model still shows some omissions (c4&d4) and more

boundary incompleteness or fragmentation (a4, b4&e4). The MA-

Net model (Fan et al., 2020) still shows some misclassifications

(c3&d3). The proposed BE-Swin model shows the best extraction

results. It shows reduced misclassification and omission errors,

effectively preserving the authentic shapes and boundaries of

MFRA. This improvement is attributed to the integration of

boundary and semantic features, which enhances classification

consistency and segmentation accuracy.

Tables 3, 4 show the evaluation metric values for each model of

Sentinel-1 and ALOS dataset respectively. In Table 3, the results

show that the BE-Swin model achieves the highest overall accuracy

and mIoU, indicating superior overall performance. The U-Net

model achieves unsatisfactory figures in all indicators, especially for

the full-floating raft aquaculture. Compared with the other two

types, accurately extracting full-floating raft aquaculture areas from

SAR images presents significant challenges due to the subtle and

complex features of these structures. Their low prominence in SAR

imagery often leads to difficulties in precise identification and

extraction. In this study, for full-floating raft aquaculture, the BE-

Swin model achieves the highest levels in three metrics precision,

recall, and F1-score. For semi-floating raft aquaculture, the BE-Swin

model achieves higher precision but lower recall compared with

MA-Net and DeepLab V3+. For pole-pixed raft aquaculture, the

BE-Swin model achieves the highest recall and F1-score with a

precision of 95.18%. In Table 4, the results show that the BE-Swin

model achieves the highest levels in all the indicators, suggesting

that it is a more suitable choice to use the BE-Swin model in the

ALOS-1 dataset.
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As demonstrated in Tables 3, 4, the BE-Swin model exhibits a

clear advantage in extracting diverse categories of MFRA across both

datasets. Therefore, this model was employed to comprehensively

extract all MFRA in Jiangsu Province to analyze the distribution and

change in marine aquaculture from 2008 to 2022. We extracted

MFRA from ALOS-1 (2008) and Sentinel-1 (2015 and 2022) SAR

images and the extraction results are shown in Figures 6, 7.

Compared with the original SAR images, the MFRA maps

extracted by the BE-Swin model were consistent with the

distribution range of marine aquaculture areas in the real images.

As shown in Figures 6 and 7, the MFRA is mainly concentrated in the

Haizhou Bay area of Lianyungang City and the Southern Yellow Sea

radial sand ridge group region, in which the Yellow Sea radial sand

ridge group region depth is within 25 m, formed by the interaction of

the river (the ancient Yangtze River and the ancient Yellow River)

and the sea (the Yellow Sea) (Zhang et al., 2011). Figure 8a shows the

total areas of MFRA calculated using the method in this study.

Within 16 years, the MFRA areas in the coastal zone of Jiangsu
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Province have generally experienced a rise followed by a decrease in

the change. From 2008 to 2015, the area ofMFRA in Jiangsu Province

increased from 261.97 km2 to 418.18 km2 and decreased to 364.82

km2 by 2022. We also collected fishery statistical yearbook data for

the Jiangsu Province from the Ministry of Agriculture and Rural

Affairs of the People’s Republic of China and the relative errors were

calculated based on the data. The results showed a strong consistency

between our results and the fishery statistical yearbook data. The

relative error was <10.5% and the relative error in 2015 was the lowest

at 4.99%. These statistical data on the extent of MFRA serve as a

valuable predictive tool for estimating aquaculture production.
4.2 Spatiotemporal distribution and
dynamics of MFRA

Figure 8 shows the area changes of three types of MFRA in

Jiangsu Province from 2008 to 2022, and Figure 9 shows the spatial
FIGURE 5

Comparison of the results obtained from multiple models (a2-e2, a3-e3, a4-e4, a5-e5) with test images and ground truth (a1-e1).
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distribution changes of multiple types of MFRA. In general, raft

aquaculture in the entire coastal area of Jiangsu Province

experienced a rapid expansion to a slow contraction from 2008 to

2022. Different types of rafts do not have the same trends in area

and distribution. Among them, the area of pole-fixed raft

aquaculture has steadily increased over the years, eventually

forming a significant scale, which reached the maximum area of

171.38 km2 in 2022. As shown in Figure 9a, this aquaculture type

has expanded from the nearshore to deeper offshore waters in the

Haizhou Bay area of Lianyungang City, Jiangsu Province. Semi-

floating raft aquaculture emerged on a large scale in 2008, becoming

the predominant form of marine raft aquaculture that year, a

significant portion of which overlapped with the Southern Yellow

Sea radial sand ridge group region in the shallow waters off the

central coastline of Jiangsu Province. The overall area of semi-

floating raft aquaculture in Jiangsu Province has experienced a

change of increasing and then decreasing from 2008 to 2022 and

reached a peak of 318.36 km2 in 2015. As shown in Figure 9b, the

overall distribution of semi-floating raft aquaculture is concentrated
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in the Southern Yellow Sea radial sand ridge group region and the

coast, and this type of MFRA is dismantled by nearly half in 2022.

Full-floating raft aquaculture was not adopted in aquaculture in

Jiangsu Province in the early stage, but there is a tendency to

gradually form large-scale aquaculture, which reached a maximum

area of 78.42 km2 in 2022. As shown in Figure 9c, from 2015 to

2022, these rafts were more and more widely distributed, coexisting

with pole-pixed raft aquaculture in the Haizhou Bay area of

Lianyungang City. They have mostly distributed in the area

farther away from the shore of Jiangsu Province compared to

pole-pixed raft aquaculture, closer to the coastline where

Shandong Province meets Jiangsu Province.

Figure 10 shows changes in the nuclear density of MFRA in

Jiangsu Province. Raft aquaculture in Jiangsu Province is distributed

in Haizhou Bay of Lianyungang City, the radial ridge group region

of Yancheng City, and the northern coast of Nantong City. The

density of raft aquaculture in the Haizhou Bay area of Lianyungang

City experienced a process of rapid growth followed by a slow

decline. The raft aquaculture in Yancheng City and Nantong City
TABLE 3 Evaluation indicators for different models of Sentinel-1 dataset (the bold values represent the best results).

Model Raft type Precision Recall F1-score Accuracy mloU

U-Net

full-floating 54.27 89.12 67.46

87.71 59.76semi-floating 79.57 66.34 72.36

Pole-pixed 87.38 57.48 69.34

MA-Net

full-floating 59.98 94.49 73.38

95.31 70.11semi-floating 76.42 85.95 80.91

Pole-pixed 95.44 65.88 77.95

DeepLab V3+

full-floating 59.87 94.40 73.27

95.16 67.65semi-floating 84.41 83.34 83.87

Pole-pixed 96.73 48.63 64.73

BE-Swin

full-floating 60.80 94.68 74.05

95.71 71.94semi-floating 84.60 81.56 83.05

Pole-pixed 95.18 79.57 86.68
TABLE 4 Evaluation indicators for different models of ALOSl-1 dataset (the bold values represent the best results).

Model Raft type Precision Recall F1-score Accuracy mloU

U-Net
semi-floating 89.62 76.24 82.39

83.55 54.93
Pole-pixed 53.29 68.93 60.11

MA-Net
semi-floating 93.73 95.75 94.73

93.40 58.15
Pole-pixed 84.08 84.56 84.32

DeepLab V3+
semi-floating 93.79 95.82 94.79

93.33 61.43
Pole-pixed 89.2 88.47 88.83

BE-Swin
semi-floating 93.93 95.85 94.88

93.71 61.89
Pole-pixed 90.40 88.67 89.53
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FIGURE 6

Extraction results of Sentinel-1 dataset.
FIGURE 7

Extraction results of ALOS-1 dataset.
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was adjacent to each other, and the overall density experienced a

trend of slow growth followed by a rapid decline.
5 Discussion

5.1 Policy drivers behind temporal and
spatial changes

Since 1953, China has formulated The Five-Year Plan for

National Economic and Social Development, which sets goals and

directions for national economic development every five years,

including special plans for fisheries. The Fisheries Development

Plan of the 11th to 14th Five-Year Plan (2005–2025) issued by the

Ministry of Agriculture and Rural Affairs of Jiangsu Province

counted the achievement of the previous five-year target and also

mentioned important instructions for upgrading the aquaculture

industry from traditional capture fisheries. According to the

Fisheries Development Plan, the utilization rate of shallow sea

areas in the island groups of Lian Dao, Qin Shan Dao, and the

nearshore waters of Lianyungang will be increased, and a seaweed,

crab, and shellfish breeding base is planned to be established in

Haizhou Bay. Yancheng City plans to take full advantage of the

sandbanks and radial sand ridge group region to vigorously develop

shellfish and algae aquaculture production. The temporal and

spatial changes of MFRA in Jiangsu Province appear to be in

response to the relevant Fisheries Development Plan. The marine

raft aquaculture in Jiangsu Province experienced a rapid expansion

from 2008 to 2015. In the Haizhou Bay area of Lianyungang City,

the scale of both pole-fixed and full-floating raft aquaculture has

steadily increased year by year.

However, the semi-floating floating raft aquaculture in the

Radiation Shazhou area of Yancheng City has experienced a

substantial reduction in its cultivation area from 2015 to 2022. As

we know, in 2016, China’s Ministry of Agriculture issued a

document on the guiding opinions on speeding up the promotion

of fishery transformation and structural adjustment, which
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explicitly required the improvement of the aquaculture waters,

beach and mudflat planning, and scientific layout of marine

aquaculture. Subsequently, the Jiangsu Provincial Aquaculture

Waters and Mudflats Plan (2020-2030) issued by the Ministry of

Agriculture and Rural Affairs of Jiangsu Province delineates Jiangsu

Province’s aquaculture waters and mudflats into three categories:

prohibited aquaculture zones, restricted aquaculture zones, and

designated aquaculture zones. As shown in Figure 11, part of the

radial sand ridge group region in Yancheng waters was classified as

the restricted aquaculture zone (Figure 11 highlighted in blue box).

Consequently, semi-floating raft aquaculture in the restricted

aquaculture zones experienced a significant reduction in scale

between 2015 and 2022. The prohibited aquaculture zones

delineated in Lianyungang City waters further regulate the

development of pole-pixed raft aquaculture, which can be

reflected in the red and orange highlighted areas in Figure 11.
5.2 Spatial distribution analysis in relation
to coastal distance

The spatial distribution of different types of MFRA varies

greatly along the coastal zone. To analyze the spatial distribution

of the three types of MFRA, the entire study area of the 40-km

buffer zone was divided into eight statistical areas at 5 km intervals

and the proportion relationship of the areas occupied by the three

types of MFRA in different distance zones from the coastline was

statistically analyzed. As shown in Figure 12a, the spatial

distribution of pole-fixed raft aquaculture in Jiangsu Province has

exhibited a notable seaward expansion during the study period. In

2008, these aquaculture installations were predominantly located

within 5 km of the coastline. By 2015, the majority had extended to

within 15 km of the shore, and by 2022, they reached up to 20 km

offshore. This finding is corroborated by (a1-a3) in Figure 9. As

shown in Figure 12b, the spatial distribution of semi-floating raft

aquaculture in Jiangsu Province varies with distance from the

coastline. Approximately 48% of the total aquaculture area is
FIGURE 8

Jiangsu MFRA area trends (2008–2022) (a) Total area (this paper’s results vs. yearbook statistics) and relative error. (b) Three MFRA categories.
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located between 20 and 35 km from the shore and less than 4% is

situated between 35 and 40 km from the coastline. The decline in

semi-floating raft aquaculture within the 0 to 10 km range from the

coastline can be observed from 2008 to 2022. As shown in
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Figure 12c, in 2008, the presence of full-floating raft aquaculture

was non-existent, while in 2015, the majority of full-floating raft

aquaculture was distributed within 5 to 35 km from the coastline,

and within 10 to 40 km in 2022. This indicates an overall extension
FIGURE 9

Dynamic changes of pole-pixed raft aquaculture (a1-a3), semi-floating raft aquaculture (b1-b3), and full-floating raft aquaculture (c1-c3).
FIGURE 10

Kernel density analysis of raft aquaculture in Jiangsu province, 2008, 2015 and 2022.
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into the deep sea, a conclusion that is also verified in Figure 9

(c1-c3).
5.3 Limitations of the study

In this study, the spatiotemporal distribution and long-term

changes of MFRA were obtained by using multi-source SAR

imagery. However, as the ALOS-1 FBD and Sentinel-1 IW GRD

images differ in resolution and polarization modes, the use of multi-

source data may increase errors in the extraction results. The

extraction results obtained from the ALOS-1 dataset are inferior to

those derived from the Sentinel-1 dataset, thus leaving for
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improvement. In addition, although our results show strong

consistency with the fishery statistical yearbook data, the errors in

the area still exist. Since the area of the marine aquaculture in this

study was calculated based on the image resolution and the number

of extracted pixels, future studies could try to use high-resolution

SAR images. Furthermore, although the BE-Swin model proposed in

this paper effectively mitigates boundary issues to some extent, issues

such as incompleteness and adhesion persist, particularly in full-

floating raft aquaculture. Therefore, developing a better model by

introducing hybrid attention mechanisms and optimizing the

boundary enhancing modules is worthy of further exploration. As a

direction for future research, we also intend to investigate multimodal

fusion approaches that combine Sentinel-1 and ALOS-1 PolSAR data.
FIGURE 11

The prohibited aquaculture zones, restricted aquaculture zones, and designated aquaculture zones in Jiangsu Province.
FIGURE 12

The cumulative proportion of the area distribution of different types of MFRA in the coastline space: (a) Pole-pixed raft aquaculture, (b) semi-floating
raft aquaculture, (c) and full-floating raft aquaculture.
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This may help to exploit the complementary spatial, spectral, and

temporal characteristics of the two datasets, potentially enhancing the

accuracy and robustness of MFRA extraction.
6 Conclusions

Compared with optical images, SAR images can be acquired 24

hours a day, 7 days a week, without the constraints of cloud cover,

snow, and ice. In this study, we developed a deep neural network

tailored for extracting different types of MFRA from dual-polarized

SAR imagery and obtained the distributions and dynamic changes

of MFRA in Jiangsu Province from 2008 to 2022 by using ALOS-1

and Sentinel-1 images. The following conclusions were drawn:
Fron
1. Combining ALOS-1 and Sentinel-1 data makes it possible to

map the long-term dynamics of the MFRA in Jiangsu

province, China. The spatiotemporal distribution and area

data of MFRA obtained from SAR images are of great

significance for verifying the implementation effect of local

policies and the scientific conservation of coastal

marine ecosystems.

2. The BE-Swin model can enhance the extraction of boundary

information for MFRA, eliminating errors, omissions, and

adhesion issues at the boundaries. Compared with other

deep neural network models, the BE-Swin model improved

the extraction accuracy. The overall accuracy of the

proposed model in Sentinel-1 data reached 95.71% and

was also as high as 93.71% in ALOS-1 data.

3. MFRA in Jiangsu Province is distributed in Haizhou Bay of

Lianyungang City, the radial ridge group region of

Yancheng City, and the northern coast of Nantong City.

In general, raft aquaculture in the entire coastal area of

Jiangsu Province experienced a rapid expansion to a slow

contraction from 2008 to 2022. It appears to be in response

to the relevant Fisheries Development Plan.

4. MFRA in Jiangsu Province is divided into three categories,

namely, pole-pixed raft aquaculture, semi-floating raft

aquaculture, and full-floating raft aquaculture. The area of

pole-fixed raft aquaculture has steadily increased over the

year and reached 171.38 km2 in 2022. The area of semi-

floating raft aquaculture in Jiangsu Province has experienced

a change of increasing and then decreasing from 2008 to

2022. It reached a peak of 318.36 km2 in 2015 and dismantled

by nearly half in 2022. Full-floating raft aquaculture was not

adopted in aquaculture in Jiangsu Province in the early stage,

but there is a tendency to gradually form large-scale

aquaculture, which reached 78.42 km2 in 2022.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
tiers in Marine Science 15
Author contributions

WL: Methodology, Data curation, Writing – original draft,

Investigation, Validation, Conceptualization. JX: Funding

acquisition, Supervision, Conceptualization, Writing – review &

editing, Methodology. YC: Supervision, Writing – review & editing.

CL: Writing – review & editing, Supervision.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by Key Laboratory of Land Satellite Remote Sensing Application,

Ministry of Natural Resources of the People’s Republic of China

(No.KLSMNR-K202209), the special fund for Natural Resources

Development (Innovation Project of Marine Science and

Technology) of Jiangsu Province (No. JSZRHYKJ202101), the

Jiangsu AgriculturaScience and Technology Innovation Fund

under Grant (No.CX(22)2001).
Acknowledgments

We thank the Japan Aerospace Exploration Agency and

European Space Agency for distributing the ALOS-1 and

Sentinel-1 data and the Institute of Geographic Sciences and

Natural Resources Research, Chinese Academy of Sciences for

providing the East Asian Monsoon Eco-geographic Zone

Boundary dataset.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1594048
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2025.1594048
References
Anh, P. T., Kroeze, C., Bush, S. R., and Mol, A. P. J. (2010). Water pollution by
intensive brackish shrimp farming in south-east Vietnam: Causes and options for
control. Agr Water Manage 97, 872–882. doi: 10.1016/j.agwat.2010.01.018

Chen, W., and Li, X. (2024). Deep-learning-based marine aquaculture zone
extractions from dual-polarimetric SAR imagery. IEEE J-stars 17, 8043–8057.
doi: 10.1109/JSTARS.2024.3384511

Choe, B.-H., Kim, D., Hwang, J.-H., Oh, Y., and Moon, W. M. (2012). Detection of
oyster habitat in tidal flats using multi-frequency polarimetric SAR data. Estuarine
Coast. Shelf Sci. 97, 28–37. doi: 10.1016/j.ecss.2011.11.007

Crona, B., Wassénius, E., Troell, M., Barclay, K., Mallory, T., Fabinyi, M., et al.
(2020). China at a crossroads: an analysis of China’s changing seafood production and
consumption. One Earth 3, 32–44. doi: 10.1016/j.oneear.2020.06.013

Duan, Y., Tian, B., Li, X., Liu, D., Sengupta, D., Wang, Y., et al. (2021). Tracking
changes in aquaculture ponds on the China coast using 30 years of Landsat images. Int.
J. Appl. Earth Obs. 102, 102383. doi: 10.1016/j.jag.2021.102383

Emenike, E. C., Iwuozor, K. O., and Anidiobi, S. U. (2022). Heavy metal pollution in
aquaculture: sources, impacts and mitigation techniques. Biol. Trace Elem. Res. 200,
4476–4492. doi: 10.1007/s12011-021-03037-x

Fan, T., Wang, G., Li, Y., and Wang, H. (2020). MA-net: A multi-scale attention
network for liver and tumor segmentation. IEEE Access 8, 179656–179665.
doi: 10.1109/ACCESS.2020.3025372

FAO (2022). The state of world fisheries and aquaculture 2022 (FAO). Available
online at: https://openknowledge.fao.org/handle/20.500.14283/cc0461en (Accessed
February 4, 2025).

Gao, L., Wang, C., Liu, K., Chen, S., Dong, G., and Su, H. (2022). Extraction of
floating raft aquaculture areas from sentinel-1 SAR images by a dense residual U-net
model with pre-trained resnet34 as the encoder. Remote Sens. 14, 3003. doi: 10.3390/
rs14133003

Jia, S., Xue, D., Li, C., Zheng, J., and Li, W. (2019). Study on new method for water
area information extraction based on Sentinel-1 data. Yangtze River 50, 213–217.
doi: 10.16232/j.cnki.1001-4179.2019.02.038

Lee, S.-K., Hong, S.-H., Kim, S.-W., Yamaguchi, Y., and Won, J.-S. (2006).
Polarimetric features of oyster farm observed by AIRSAR and JERS-1. IEEE Trans.
Geosci. Remote Sens. 44, 2728–2735. doi: 10.1109/TGRS.2006.879107

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows. 10012–10022. Available online
at: https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_Transformer_
Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper
(Accessed February 19, 2025).
Frontiers in Marine Science 16
Liu, C., and Shi, R. (2015). Boundary Data of East Asia Summer Monsoon
Geo_Eco_region (EASMBND). doi: 10.3974/geodb.2015.01.12.V1

Liu, Y., Wang, Z., Yang, X., Zhang, Y., Yang, F., Liu, B., et al. (2020). Satellite-based
monitoring and statistics for raft and cage aquaculture in China’s offshore waters. Int. J.
Appl. Earth Obs. 91, 102118. doi: 10.1016/j.jag.2020.102118

Liu, C., Xu, J., Ding, H., and Li, Z. (2023). Marine RAFT aquaculture type
identification from polarimetric SAR image based on dual-branch hybrid encoding
network, dbhe-net., in 2023 SAR in Big Data Era (BIGSARDATA). 1–4. doi: 10.1109/
BIGSARDATA59007.2023.10294766

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., et al. (2018).
Attention U-net: Learning where to look for the pancreas. doi: 10.48550/
arXiv.1804.03999

Quaade, S., Vallebueno, A., Alcabes, O. D. N., Rodolfa, K. T., and Ho, D. E. (2024).
Locating and measuring marine aquaculture production from space: A computer vision
approach in the French Mediterranean. doi: 10.48550/arXiv.2406.13847

Román, A., Prasyad, H., Oiry, S., Davies, B. F. R., Brunier, G., and Barillé, L. (2023).
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