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Numerical simulation of wave
attenuation and shoreline
response in a coastal region
with submerged breakwater
Min Roh1, Chang-Heon Gwon1, Sooncheol Hwang1,
Jooyeon Lee1, Se-Chul Jang1 and Hyung-Suk Kim2*

1Ocean Space Development and Energy Research Department, Korea Institute of Ocean Science and
Technology, Busan, Republic of Korea, 2Department of Civil Engineering, Kunsan National University,
Kunsan, Republic of Korea
The non-hydrostatic numerical model NHWAVE was employed to investigate the

hydrodynamic behavior of a coastal region with submerged breakwater, focusing

on the structural dimensions and incident wave conditions. In the numerical

experiment, regular waves of varying specifications were used as incident waves,

and the breakwater dimensionswere adjusted based on the offshore distance from

the shoreline and its vertical distance from the water surface to the crest. The

above experimental conditions calculated water surface displacement and velocity

at different depths. The shoreline response, including erosion and accretion, was

predicted by assessing nearshore flow patterns, while the wave attenuation effect

was quantified based on wave height variations. The results indicate that wave

attenuation is significantly influenced by breaking-induced currents generated

during wave interaction with the breakwater crest. A shorter vertical distance from

submerged breakwater crest resulted in stronger breaking-induced currents. The

rotational direction of vortex-induced nearshore flow patterns significantly

influences shoreline response, resulting in either erosion or accretion. These

findings provide insights into the hydrodynamic and sediment transport

mechanisms associated with submerged breakwaters, contributing to optimizing

coastal protection measures.
KEYWORDS

non-hydrostatic numerical model, NHWAVE, submerged breakwater, wave attenuation,
shoreline response
1 Introduction

Unlike traditional coastal structures, submerged breakwaters are installed underwater to

protect the coastal environment while acting as a defense against coastal erosion and extreme

wave intrusion. Being installed underwater and not visible above the sea surface, submerged

breakwaters are highly advantageous for preserving coastal scenery. These structures also

function as underwater resistance barriers, effectively dissipating wave energy (Longuet-
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Higgins and Stewart, 1964; Lamberti et al., 2005; Burcharth et al.,

2007; Terrile and Brocchini, 2007; Ranasinghe et al., 2010). Recently,

research has expanded beyond the physical behavior characteristics of

submerged breakwaters to include studies on their economic benefits

and ecological impacts on the local economy by creating waterfront

spaces (Scyphers et al., 2015; Maiolo et al., 2020; Vona et al., 2020;

Martin et al., 2021). Additionally, in coastal regions with submerged

breakwaters, these structures affect the flow near the shoreline

morphology and help mitigate coastal erosion (Peregrine, 1998;

Zyserman et al., 2005; Martinelli et al., 2006; Ranasinghe et al.,

2010). While submerged breakwaters offer various functional

advantages, research on their wave attenuation performance and

coastal erosion response remains limited, particularly due to the

difficulty of conducting physical experiments and the site-specific

nature of their deployment, which further constrains empirical

investigations compared to conventional breakwater structures.

Furthermore, numerous physical variables such as cross-sectional

shapes, iteract with nonlinear waves, transformation and breaking

processes must be considered, and their complex behavior

necessitates laboratory-scale studies and field verification research

(Hanson and Kraus, 1990; Turner et al., 2001; Ning et al., 2016; Qu

et al., 2023; Xing et al., 2024; Hassanpour et al., 2025). However,

hydraulic experiments and field studies require various constraints

and significant costs, making research difficult. In contrast, numerical

analysis is not influenced by actual environmental conditions and

allows for diverse experimental scenarios (Bühler and Jacobson, 2001;

Kennedy et al., 2006; Hoan et al., 2011; Retsinis and Papanicolaou,

2020; Gao et al., 2023). Numerical analysis is also more cost-effective

than physical experiments or field studies and can significantly

reduce computation time with sufficient computational resources

(Liang et al., 2017; Zhu et al., 2019; Al-Towayti et al., 2024; Zheng

et al., 2024). As computer technology advances, research in this field

is becoming increasingly active (Brocchini et al., 2004; Meringolo

et al., 2015; Pahar and Dhar, 2016; Akbari and Taherkhani, 2019;

Kazemi et al., 2020).

As a solution, numerical research is actively being pursued, and

with advancements in computational power, efforts continue to

address increasingly complex problems such as the design of

submerged structure, coastal erosion, morphological changes, etc

(Huang et al., 2003; Ranasinghe et al., 2004, 2006; Zanuttigh, 2007;

Chen et al., 2025). Ongoing research focuses on predicting

topographic changes and wave energy dissipation under specific

wave conditions (Gao et al., 2021, 2024; Liu, 2023; Dong et al.,

2023). These advantages of numerical analysis are critical for

evaluating the performance and structural stability of submerged

breakwaters, which often require large-scale hydraulic model testing.

Prior to physical experimentation, numerical simulations facilitate

the design of reliable test conditions by offering predictive insights

and enabling the estimation of physical quantities that are challenging

to measure directly. Following the experiments, numerical analysis

plays an essential role in performing sensitivity analyses on key

physical parameters and in validating computational models

through comparison with physical experiment data.

This study used a numerical model to investigate the primary

functions of submerged breakwaters, focusing on wave attenuation
Frontiers in Marine Science 02
effects and shoreline response predictions. Shoreline erosion and

deposition responses were predicted through analysis based on the

relationship between submerged breakwater dimensions and

incident wave conditions. The numerical model’s computational

domain and wave conditions were set to be reproducible at a

laboratory scale, enabling validation of predictive accuracy

through future hydraulics experiments. In particular,

experimental conditions corresponding to the transitional phase,

where distinguishing shoreline response as either erosion or

deposition is challenging, were identified. These conditions will be

utilized in hydraulic model experiments to analyze the physical

behavior characteristics.
2 Numerical experiments

This study employed the non-hydrostatic numerical model

NHWAVE (Non-Hydrostatic WAVE Model) to investigate the

hydrodynamic behavior of a coastal region with submerged

breakwaters. A detailed description of the governing equations,

numerical methods, boundary conditions, and input conditions of

the numerical model is provided below (Ma et al., 2014).

The numerical model employed in this study was initially

validated against the benchmark results of Beji and Battjes (1993),

while the modeling of free surface behavior was further validated

through comparisons with the works of Lin and Li (2002); Stelling

and Zijlema (2003); Yuan and Wu (2004); Bradford (2005). In

addition, high-order dispersion characteristics in Boussinesq-type

models were addressed by Lynett and Liu (2004). Furthermore, the

model’s accuracy and scalability were demonstrated through

comparisons with hydraulic model experiments on wave

transformation and breaking phenomena in coastal environments

(Berkhoff et al., 1982; Synolakis, 1987). Although the present study

does not include a direct comparison with laboratory or field data,

the numerical model employed herein has been extensively

validated in previous studies under similar conditions. These

studies demonstrated the model’s capability to accurately

reproduce wave transformation, wave-induced currents, wave

breaking and sediment transport. Therefore, the model results in

this study are considered to be reliable within the defined scope.
2.1 Governing equations and numerical
schemes

The governing equations are based on the incompressible

Navier-Stokes equations (Equations 1, 2), and s-coordinate
system was applied to accurately simulate bottom topography and

free surface displacement (Phillips, 1957). This numerical model

incorporates a nonlinear k-Є turbulence model (Lin and Liu, 1998a;

Ma et al., 2011), which has been validated by successfully simulating

wave breaking on a planar beach (Lin and Liu, 1998b).

For spatial analysis, a Godunov-typemethod combining the finite

volume method and finite difference method was employed Zhou

et al. (2001); Kim et al. (2008); Liang and Marche (2009).
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For temporal analysis, a two-stage second-order nonlinear Strong

Stability Preserving (SSP) Runge-Kutta scheme was applied Gottlieb

et al. (2001). During model execution, Courant-Friedrichs-Lewy

(CFL) condition of 0.5 was maintained to ensure model accuracy

and stability. The accuracy of numerical calculations for fluid

behavior and the free surface was enhanced by applying

spatiotemporal numerical analysis techniques. The s-coordinate
system allowed for multi-layered depth-wise calculations,

improving the accuracy of hydrodynamic pressure calculations

influenced by wave-induced variations (Ma et al., 2014).

∂ ui
∂ x*

= 0 (1)

∂ ui
∂ t*

+ uj
∂ ui
∂ x*j

= −
1
r

∂ p

∂ x*i
+ gi +

∂ tij
∂ x*j

(2)

where, (i, j)=1, 2, 3, ui is the velocity component on x*i , p is

pressure, r is water density, gi = −gdi3 is gravitational force, tij =
nt( ∂ ui= ∂ x*j + ∂ uj= ∂ x*i ) is turbulent stress with nt is turbulent

kinematic viscosity.

t = t* x = x* y = y* s =
z* + h
D

(3)

where, D(x, y, t) = h(x, y, t) + h(x, y, t), h is water depth and h is

surface elevation. This coordinate system transforms the vertical

coordinate into a uniformly distributed space ranging s spans from

0 to 1 in (Equation 3), making it easier to handle complex variations

in height by converting them into a consistent range. Applying the

chain differentiation, the governing equations can be expressed as

(Equations 4, 5). This numerical model calculates total pressure by

dividing it into hydrodynamic and hydrostatic pressure

components, and the turbulence diffusion term is approximated

using a nonlinear k-e turbulence model, which has been successfully

applied to wave breaking on a planar beach (Ma et al., 2014).
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where, U = (Du,Dv ,Dw)
T . The fluxes and the sources terms are

given by (Equations 6, 7).

F =

Duu +
1
2 ɡD

2

Duv

Duw

2
664

3
775 G =

Duv

Dvv +
1
2 ɡD

2

Dvw

2
664

3
775 H =

uw

vw

ww

2
664

3
775 (6)

Sh =

ɡD ∂ h
∂ x

ɡD ∂ h
∂ y

0

2
664

3
775 Sp =

− D
r

∂ p
∂ x +

∂ p
∂s

∂s
∂ x*

� �

− D
r

∂ p
∂ y +

∂ p
∂s

∂s
∂ y*

� �

− 1
r

∂ p
∂s

2
6666664

3
7777775
 St =

DStx

DSty

DStz

2
664

3
775 (7)
Frontiers in Marine Science 03
In NHWAVE, the nonlinear turbulence model employs (Equation

8) to compute the turbulent eddy viscosity. The k-Є equations are

derived as shown in (Equations 9, 10). The empirical constants used in

the model are provided in (Equation 11), while the shear and buoyancy

production terms are given in (Equations 12, 13), respectively.

nt = Cm
k2

Є
(8)

∂Dk
∂ t

+ ∇ · (Duk) = ∇ · D n +
nt
sk

� �
∇k

� �
+ D(Ps + Pb − Є) (9)

∂DЄ
∂ t

+m · (DuЄ)

= ∇ · D n +
nt
sЄ

� �
∇Є

� �
+
Є

k
D ðC1Є(Ps + C3ЄPb) − C2ЄЄ) (10)

sk = 1:0, sЄ = 1:3, C1Є = 1:44, C2Є = 1:92, Cm

= 0:09 (11)

Ps = −u
0
iu

0
j
∂ ui
∂ x*j

(12)

Pb =
g

r0D
∂ rm
∂s

(13)

where, the Reynolds stress u
0
iu

0
j is calculated by a nonlinear

model proposed by Lin and Liu (1998a).

The numerical method applied in this model is a Godunov-type

method, which combines the finite volume method and the finite

difference method. The momentum equations are solved using a

second-order Godunov finite volume method, and the HLL Riemann

solver is employed to estimate fluxes at the faces of each computational

cell. This numerical model incorporates various numerical techniques

to precisely calculate fluid flow changes over time and space (Patankar,

1980). Boundary conditions can be set for inflow and outflow flux, wall

boundaries, and free surface conditions. A minimum water depth is

also defined to implement the wetting-drying treatment (Bradford,

2005). Detailed information on the governing equations and numerical

methods can be found in the numerical model’s manual (Ma et al.,

2014), and the model’s accuracy has been validated through multiple

research studies (Ma et al., 2012, 2013).
2.2 Setup of numerical domain

The bathymetry of the coastal area with the installed breakwater

was configured as follows to analyze wave height reduction and

shoreline response based on the dimensions of the submerged

breakwater and incident wave conditions. The study examined

behavioral characteristics by varying the offshore distance (lx)

from the shoreline and the vertical distance (sb) from the water

surface to the submerged structure crest. The flow pattern behind
frontiersin.org
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the submerged breakwater changed significantly depending on the

offshore distance, influencing shoreline variations. The vertical

distance from the water surface affected the occurrence and

intensity of breaking-induced currents on the breakwater crest,

leading to its selection as an experimental condition.

The offshore distances from the shoreline were lx = 8 m and lx = 13

m. In comparison, the vertical distances from the water surface to the

breakwater crest were set at sb = 0.10 m and sb = 0.15 m, resulting in

four bathymetry configurations. The submerged breakwater width was

2.0 m, and its length was 6.0 m (Figure 1). The s-coordinate system
was applied to the computational domain, with a grid size of 0.025 m

and three layers in the vertical direction. Since grid size and the number

of vertical layers significantly affect computation time, these parameters

were optimized to ensure numerical stability while avoiding excessive

computational resource usage. The grid resolution in this study was

determined based on the CFL condition, considering the characteristic

flow velocity and time step. For the vertical discretization, three to five

layers are typically employed, and the final configuration was selected

by taking into account both the characteristics of the study domain and

the limitations of available computational resources.
2.3 Numerical simulation conditions

As shown in Figure 1, the numerical simulation grid was

configured into four cases based on the distance from the
Frontiers in Marine Science 04
shoreline and water surface to the submerged break-water. The

incident wave conditions followed the regular wave heights and

periods in Table 1. This study focused on understanding the

characteristics of regular waves, with plans to extend the analysis

to irregular wave conditions in future research. Since long-duration

wave generation was unnecessary for regular waves, the wave

generation time was optimized to minimize the influence of

reflected waves.

Figure 2 presents the time series data of surface displacement

for a wave height of 0.150 m at different periods (Case 10-12),

showing the incident wave profile most accurately reproduced at the

center of the wave generation zone. The target waves were also

closely matched throughout the wave generation for other

experimental wave conditions. This confirms that the accuracy of

the incident waves was sufficiently ensured for analyzing the

physical characteristics of the submerged breakwater in the

coastal environment.

A numerical model was used to measure surface displacement

and velocity components around the submerged breakwater to

investigate flow patterns and shoreline response installed in the

coastal area. The mean surface displacements, wave heights, and

depth-averaged velocity distributions were computed based on

these measurements. The numerical simulation results were

analyzed by categorizing them according to the offshore distance

from the shoreline and the vertical distance from the water surface

to the breakwater crest. This analysis enabled the prediction of
FIGURE 1

Definition sketch of 3-D numerical wave basin. (a) the offshore distance 8 m from the shoreline and the vertical distance 0.10 m from the water
surface to the submerged structure crest (b) the offshore distance 8 m from the shoreline and the vertical distance 0.15 m from the water surface to
the submerged structure crest (c) the offshore distance 13 m from the shoreline and the vertical distance 0.10 m from the water surface to the
submerged structure crest (d) the offshore distance 13 m from the shoreline and the vertical distance 0.15 m from the water surface to the
submerged structure crest.
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shoreline response based on flow patterns around the breakwater.

Furthermore, the shoreline response due to the submerged

breakwater dimensions and experimental wave conditions was

compared with previous studies (Ranasinghe et al., 2010).
3 Results

Numerical simulation results were presented to investigate the

hydrodynamic behavior and flow patterns of a coastal region with a

submerged breakwater. To evaluate the wave attenuation effects of

the structure and its influence on shoreline response, mean surface

elevation, wave height distribution, and velocity distribution were

computed and analyzed under various experimental conditions.
Frontiers in Marine Science 05
3.1 Mean surface elevations

The mean surface elevation was calculated by time-averaging

the measured water surface variations at each grid point. The

physical mechanisms of wave transformation, transmission

through the submerged breakwater, and wave energy dissipation

were identified by analyzing the mean surface elevation across all

experimental conditions.

Figure 3 is a snapshot of the surface displacement

approximately 40 s after the start of wave generation under the

experimental condition where the submerged breakwater is

installed 13 m from the shoreline and 0.10 m from the water

surface(lx). As waves propagated over the breakwater, deformation

occurred on the leeward side of the structure, with variations

observed depending on the wave period under the same incident

wave height condition.

Figure 4 presents the mean surface elevation under Case 3 (H =

0.075 m, T = 3.0 s) at a distance of 13 m from the shoreline under

different water surface experimental conditions. Specifically,

Figure 4A corresponds to the sb is 0.10 m, while Figure 4B

represents the sb is 0.15 m. As the incident waves passed over the

breakwater crest, the mean surface level dropped sharply due to

wave breaking, and then a wave setup was experienced near the

shoreline. In particular, the greater vertical distance from the water

surface to the submerged breakwater crest resulted in a more

pronounced wave setup in the central region near the shoreline

compared to cases with a smaller vertical distance.

Figure 5 shows the mean surface elevation under the same

experimental conditions Case 8 (H = 0.125 m, T = 2.0 s) at the

distance of 0.10 m from the water surface(sb), varying by the

installation location of the submerged breakwater. When the

offshore distance from the shoreline was shorter, the setup

phenomenon was more pronounced, and an immediate increase

in mean surface elevation was observed on the leeward side. This

suggests that the offshore distance is one of the crucial factors

influencing the intensity of breaking-induced currents over the

submerged breakwater crest.
3.2 Wave height distributions

The wave height distribution was calculated using the zero-

crossing method based on the surface displacement results at each

grid point. The overall wave height distribution provides insight

into the wave energy transmission process, and in particular, it

confirms the wave attenuation effect as the submerged breakwater

reduces transmitted wave energy.

Figure 6 presents the wave height distribution under the

experimental condition. Before reaching the breakwater, the wave

height increased, but a sharp decrease was observed as the waves

passed over the breakwater. The wave attenuation effect was most

significant at the center of the breakwater, and differences in wave

height distribution on the front and rear sides of the structure were
FIGURE 2

Time series data of water surface elevation at the center of the wave
generation zone (H = 0.150 m, T = 1.0 s, 2.0 s, 3.0 s).
TABLE 1 Incident wave specifications for behavioral characteristics and
shoreline response.

Case No. T (s) H (m)

1 1.0 0.075

2 2.0 0.075

3 3.0 0.075

4 1.0 0.100

5 2.0 0.100

6 3.0 0.100

7 1.0 0.125

8 2.0 0.125

9 3.0 0.125

10 1.0 0.150

11 2.0 0.150

12 3.0 0.150
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observed depending on the vertical distance from the water surface

to the breakwater crest.

Figure 7 illustrates the wave height ratio in the cross-shore

direction at the center of the submerged breakwater under the

incident wave condition, which is the 2 s wave period, varying by lx
and sb. Here, Hi denotes the incident wave height, while Ho
Frontiers in Marine Science 06
represents the wave height obtained from numerical simulations.

The shaded region in the figure indicates the breakwater installation

zone. Across all experimental conditions, the wave height

consistently decreased as the waves propagated through the

submerged breakwater. Wave attenuation rates for all

experimental wave conditions were summarized as shown in
FIGURE 3

Snapshots of water level variations under H = 0.150 m of the incident wave conditions. (a) T = 1.0 s (b) T = 2.0 s (c) T = 3.0 s.
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Table 2. When lx = 8 m, the wave attenuation effect was

approximately 3%–5% greater compared to lx = 13 m.

Furthermore, under the same lx condition, the wave attenuation

effect was about 15%–18% higher when sb = 0.1 m. These findings

reaffirm the effectiveness of the breakwater in attenuation of waves

for coastal protection. Given that the attenuation effect is influenced

by breakwater design parameters, careful consideration is essential

during the design process.
3.3 Shoreline response

The installation of the submerged breakwater plays a significant

role in mitigating shoreline changes by reducing incoming wave

energy and altering nearshore current patterns. Under erosive

conditions, the breakwater diminishes wave height at the shore,

thereby reducing the potential for scouring and landward retreat of

the beach. In depositional or accretion conditions, it promotes

sediment stabilization by lowering hydrodynamic forcing in the lee

zone. As a result, the structure contributes to minimizing both

erosion and unintended excessive accretion, supporting a more

stable shoreline morphology. To investigate how these processes
Frontiers in Marine Science 07
influence actual shoreline responses, the flow patterns behind the

submerged breakwater were analyzed in detail.

The flow pattern behind the submerged breakwater was

analyzed to predict shoreline response. Ranasinghe et al. (2006)

reports that the flow patterns in the vicinity of a submerged

breakwater may be applied to categorize between erosion and

accretion conditions at the shoreline. As shown in Figure 8, if

four rotational flows with convergence at the shoreline are observed,

the shoreline response can be predicted as an accretion response. In

contrast, if two rotational flows with divergence at the shoreline

appear, the shoreline response is expected to be an erosion response,

as seen in Figure 9 (Ranasinghe et al., 2010).

To analyze the flow pattern in the coastal area with the

submerged breakwater based on numerical simulation results, the

average values of three vertical layers at the exact horizontal

location were used in a grid coordinate system composed of three

vertical layers. This approach accounts for the fact that shoreline

erosion and accretion are influenced not only by surface flow

patterns but also by the effects of nearshore currents, undertows,

and other flows occurring throughout the entire water column.

Therefore, depth-averaged velocity vectors were used to distinguish

the depth effects on these hydrodynamic behaviors.
FIGURE 4

Mean surface elevations under H = 0.075 m and T = 3.0 s at the
distance 13 m from the shoreline. (a) vertical distance 0.10 m from
the water surface to the submerged structure crest (b) vertical
distance 0.15 m from the water surface to the submerged
structure crest.
FIGURE 5

Mean surface elevations under H = 0.125 m and T = 2.0 s. (a) lx = 13
m (b) lx = 8 m.
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The flow pattern on the leeward side was analyzed based on the

incident wave conditions and breakwater dimensions to assess the

shoreline response. Overall, the installation location of the

submerged breakwater is the most essential factor in predicting

shoreline changes. Under the same experimental conditions, the

parameter of a distance from the water surface appears to influence

the intensity of breaking-induced currents. Strong breaking-

induced currents developed over the breakwater crest when the

submerged breakwater was installed closer to the shoreline, forming

two large flow patterns. On the other hand, breaking-induced

currents were not fully established when the breakwater was

positioned farther from the shoreline, with a greater vertical

distance between the crest and the water surface. Instead, four

smaller rotational flow patterns emerged, generated by vortices

forming at both ends of the breakwater.

When two large flow patterns are observed, an erosion response

is expected at the central region of the shoreline behind the

submerged breakwater. Conversely, when four smaller flow

patterns develop in the leeward of the breakwater, a deposition

response can be predicted at the central region of the shoreline

(Ranasinghe et al., 2010). The development and intensity of

breaking-induced currents passing over the breakwater crest are

the most critical factors in determining the flow patterns behind the
Frontiers in Marine Science 08
structure. These established flow patterns can be used to assess

shoreline response. Currently, shoreline response has been

predicted based on limited experimental conditions. To improve

the reliability of the prediction criteria, additional experimental

conditions are planned to be incorporated, and preliminary

hydraulic model experiments will be conducted.
4 Conclusions

This study employed the non-hydrostatic numerical model to

investigate wave attenuation and shoreline response predictions in a

submerged breakwater. The wave attenuation effect and shoreline

response varied depending on the submerged breakwater position

and vertical distance from the water surface. Overall, the

experimental wave conditions with extended periods exhibited a

more significant wave attenuation effect.

The flow patterns developing in the lee of the breakwater were

influenced by the intensity of breakinginduced currents forming

over the breakwater crest. Additionally, the offshore distance of the

breakwater and the vertical distance from the water surface to the

breakwater crest were closely related to the development of

breaking-induced currents. A shorter vertical distance resulted in
FIGURE 6

Wave height distributions as a function of incident wave conditions and submerged breakwater dimensions. (a) Case 6, lx = 13 m, sb = 0.10 m
(b) Case 6, lx = 13 m, sb = 0.15 m (c) Case 11, lx = 8 m, sb = 0.15 m (d) Case 11, lx = 13 m, sb = 0.15 m.
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stronger breakinginduced currents. The flow patterns behind the

breakwater are dominant in predicting shoreline response, either as

erosion or accretion. Specifically, two prominent flow patterns that

developed at both ends of the breakwater were closely associated

with an erosion response of the shoreline. Conversely, when two

additional flow patterns formed near the shoreline due to

interactions with the primary flow structures, the accretion

response of the shoreline was predicted. Although this study was

limited to regular wave conditions, it served as a necessary
Frontiers in Marine Science 09
preliminary step toward evaluating applicability under real-world

coastal environments. Prior to such application, it was essential to

investigate the influence of key parameters governing flow

dynamics and structural responses in the presence of submerged

coastal structures. Among these factors, the establishment of well-

controlled experimental conditions was considered fundamental to

ensuring the reliability and reproducibility of the results. Future

studies will further investigate irregular and extreme wave

conditions to enhance the accuracy of shoreline response

predictions, based on the numerical grid and incident wave

parameters established in this study. Furthermore, to numerically

simulate qualitative shoreline responses such as erosion and

accretion, a coupled hydrodynamic–sediment transport model

will be utilized to enable a quantitative evaluation of

morphodynamic behavior. This coupling aims to provide a more

comprehensive understanding of sediment transport behavior

under the influence of hydrodynamic forcing. Moreover,

comparisons with hydraulic experiments will be conducted to

validate the numerical accuracy and predictions.

This research seeks to evaluate the applicability of submerged

breakwaters in real coastal environments by providing critical

physical insights for the design and construction of coastal

protection structures. A comprehensive approach combining
FIGURE 7

Wave height ratio (T = 2.0 s) of incident wave height to calculated
wave height along the cross-shore distance from the shoreline.
(a) the offshore distance 13 m from the shoreline (b) the offshore
distance 8 m from the shoreline.
TABLE 2 Wave attenuation rate by experimental condition according to
lx and sb.

lx sb Mean (%) Std. Dev. (%)

8 0.10 58.4 9.9

8 0.15 40.8 17.8

13 0.10 53.2 11.3

13 0.15 37.9 17.5
FIGURE 8

Velocity vectors about shoreline accretion response. (a) accretion
flow pattern of lx = 13 m, sb = 0.15 m (b) accretion flow pattern of lx
= 13 m, sb = 0.10 m.
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numerical simulations and hydraulic experiments will be employed

to develop a precise shoreline response prediction framework,

ensuring its applicability in construction site assessment and

structural design.
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