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Introduction: Sea surface salinity (SSS) is a critical parameter for understanding

ocean circulation, marine ecosystem processes, and climate change. Despite

advancements in satellite-based radiometry such as NASA’s Soil Moisture Active

Passive (SMAP), significant challenges persist in coastal SSS retrieval due to radio

frequency interference (RFI), land-sea contamination, and complex interactions

of nearshore dynamic processes.

Method: This study proposes a deep neural network (DNN) framework that

integrates SMAP L-band brightness temperature data with ancillary

oceanographic and geographic parameters such as sea surface temperature,

the shortest distance to the coastline (dis) to enhance SSS estimation accuracy in

the Yellow and East China Seas. The framework leverages machine learning

interpretability tools (Shapley Additive Explanations, SHAP) to optimize input

feature selection and employs a grid search strategy for hyperparameter tuning.

Results and discussion: Systematic validation against independent in-situ

measurements demonstrates that the baseline DNN model constructed for the

entire region and time period outperforms conventional algorithms including K-

Nearest Neighbors, Random Forest, and XGBoost and the standard SMAP SSS

product, achieving a reduction of 36.0%, 33.4%, 40.1%, and 23.2%, respectively in

root mean square error (RMSE). Compared with SMAP SSS products, the baseline

DNN demonstrates a reduction of 33.8% and 7.3% in RMSE in nearshore (dis ≤ 50

km) and offshore regions (50 km<dis ≤ 200 km), respectively. The specificmodels

constructed for nearshore and offshore areas, as well as for the four seasons,

further improves salinity retrieval accuracy, especially in nearshore regions,

highlighting the effectiveness of regional and seasonal optimization strategies

in complex coastal environments. The DNN framework significantly mitigates

coastal salinity biases caused by RFI and land contamination, providing a robust

tool for applications such as coastal hydrological monitoring and marine

resource management.
KEYWORDS

deep neural network (DNN), SMAP satellite, sea surface salinity, coastal region,
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1 Introduction

Accurate measurement of sea surface salinity (SSS) is essential

for understanding and modeling oceanic processes, as it directly

influences ocean circulation, marine ecosystem, and climate change

(Schmitt, 2008; Stammer et al., 2021; Gould and Cunningham,

2021; Olmedo et al., 2022). In coastal regions, SSS plays a

particularly critical role in monitoring river runoff, coastal

dynamics, and their impact on marine aquaculture and coastal

military operations (Miller and Payne, 2000; Kalu et al., 2021;

Zhang et al., 2023). However, obtaining high-precision salinity

measurements in these areas from space remains a significant

challenge due to the complex interactions of environmental

processes and the limitations of current measurement techniques

(Reul et al., 2020).

Current satellite-based SSS measurement methods, such as

those employed by the Soil Moisture Active Passive (SMAP), Soil

Moisture and Ocean Salinity (SMOS), and Aquarius missions, rely

on using physical retrieval algorithms to estimate salinity from

microwave radiometer observations (Entekhabi et al., 2010; Font

et al., 2012; Meissner et al., 2018; Kerr et al., 2010) These methods

perform well in open oceans but exhibit notable limitations in

coastal regions (Tang et al., 2017; Bao et al., 2019; Dinnat et al.,

2019; Menezes, 2020; Dossa et al., 2021). Challenges include

relatively poor spatial resolution, limited temporal coverage,

susceptibility to radio frequency interference (RFI), and land-sea

contamination. Although SMAP SSS is less affected by terrestrial

factors compared to SMOS, there is still significant uncertainty in its

coastal products (Tang et al., 2017; Reul et al., 2020; Zhang et al.,

2023). These constraints hinder the accurate capture of salinity

variations induced by river discharge and coastal dynamics, leaving

significant gaps in our understanding of coastal processes.

The emergence of machine learning (ML) and deep learning

(DL) techniques has opened new avenues for improving the

inversion of physical ocean parameters (Ammar et al., 2006; Lary

et al., 2016; Rajabi-Kiasari and Hasanlou, 2019; Wang and Li, 2024).

Recent studies have demonstrated the potential of ML in enhancing

SSS retrieval. For instance, Jang et al. (2022) explored various ML

methods, such as the K-Nearest Neighbor (KNN), Support Vector

Regression (SVR), Artificial Neural Network (ANN), Random

Forest (RF), and Extreme Gradient Boosting (XGBoost), to

improve global ocean SSS retrieval performance. Zhang et al.

(2022) developed a machine learning model in Changjiang

Estuary and Adjoining Sea Area, achieving improved accuracy

compared to SMAP products. Kesavakumar et al. (2022) utilized

the RF method to enhance SSS retrieval in the Bay of Bengal and

Arabian Sea, demonstrating significant improvements over SMAP

SSS products. These studies highlight the potential of data-driven

approaches to address the limitations of physical algorithms.

Despite these advancements, high observation errors in coastal

regions due to RFI and other factors remain unresolved (Tang et al.,

2022). Existing ML or DL based approaches have primarily focused

on global or open ocean applications, with limited attention to the
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unique challenges of coastal SSS retrieval (Zhang et al., 2022, 2023).

This work aims to address these gaps by developing a deep neural

network (DNN) based framework specifically targeting the coastal

regions of the Yellow and East China Seas. By integrating SMAP

brightness temperature data and various ocean parameters that may

affect salinity changes, this study seeks to improve the accuracy of

SSS retrieval in coastal areas and further explore the potential of

deep learning methods in addressing the challenges of coastal ocean

observation. Through optimized input parameter selection using

the Shapley Additive Explanations (SHAP) technique and a

systematic grid search strategy for hyperparameter tuning, the

DNN framework adapts to the complexity of coastal ocean

dynamics. The regional and seasonal modeling strategy further

improves the performance of the model in capturing the

spatiotemporal variation characteristics of salinity, particularly in

nearshore areas very close to the coastline where conventional

retrieval methods struggle due to strong land contamination and

fluctuating environmental conditions.

The structure of this paper is as follows: Section 2 describes the

composition of the datasets and the preprocessing steps. Section 3

describes the experimental setup for selections of network

hyperparameters and optimal input parameters. Section 4 analyzes

the performance of the DNN model constructed for the entire region

and time period (hereafter called baseline model) and its advantages

over other machine learning models or SMAP products. Section 5

discusses the adaptability of the optimal baseline model to dynamic

environmental conditions and proposes regional and seasonal models

to further improve salinity retrieval accuracy. Section 6 concludes

the study.
2 Data and methods

In this study, a DNN framework was employed to retrieve SSS,

leveraging its ability to capture complex nonlinear relationships

among salinity and diverse oceanographic, meteorological, and

geospatial variables. The model initially integrated 14 features as

inputs to ensure a comprehensive representation of the

spatiotemporal characteristics of SSS and impacts of the

environment on it. In order to optimize feature selection and

minimize data redundancy, the SHAP method was used to

analyze parameter importance, and the optimal input parameter

combination was selected based on sensitivity experiments.

Considering the significant impact of RFI in SMAP nearshore

areas, in addition to the SMAP observations including horizontally-

polarized (H-pol) Brightness Temperature (Tb) (Tbh), vertically-

polarized (V-pol) Tb (Tbv), Tb ratio (v/h=Tbv/Tbh), and Tb

difference (v-h=Tbv-Tbh), the SSS estimation model incorporates

the latitude (lat), longitude (lon), and the distance from the shore

(dis) to account for land influence. Besides, environmental factors

that may affect SSS, such as sea surface temperature (SST), wind

speed (ws), wind direction (wdir), and rainfall (rain), were also

considered as optional model inputs. To further reflect the impact
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of the temporal dimension and capture seasonal variations, this

study introduces a temporal influence factor (theta). This factor is

used to quantify the periodic changes observed at different time

points. Therefore, the initial model inputs include 14 parameters:

Tbv, Tbh, v/h, v-h, lat, lon, dis, SST, ws, wdir, zonal and meridional

components of wind (U, V), rain, as well as temporal influence

factor (theta), which was calculated by Equation 1:

theta =  cos(2p� DOY=365:25) (1)

where DOY represents the day of the year. This formula utilizes

the cosine function of time to model seasonal cycles in a periodic

manner (Stolwijk et al., 1999).

The label data for training and validating the SSS estimation

model are from Hybrid Coordinate Ocean Model (HYCOM)

reanalysis. Independent validation datasets include in-situ

measurements from the National Institute of Fisheries Science

(NIFS) Serial Oceanographic observations (NSO) program and

Array for real-time geostrophic oceanography (Argo) float networks.
2.1 SMAP data

In this study, two sets of SMAP satellite data were utilized,

namely daily L3 Tb data and daily SSS product. The L3 Tb data

include microwave brightness temperature at both H-pol and V-

pol, with a spatial resolution of 36 km. The daily SSS product has a

spatial resolution of 40 km, represented as an 8-day running

average, which helps to smooth out short-term variability and

offers a more consistent dataset for analysis (Meissner et al.,

2018). Specific variables of the SMAP data used in this study are

H-pol Tb (Tbh), V-pol Tb (Tbv) and SSS in the Yellow and East

China Seas (25°N to 37°N and 119°E to 130°E) from January 1, 2016

to December 31, 2020. The Tb data can be publicly accessed from

the National Snow and Ice Data Center (NSIDC) at https://

nsidc.org/data/spl3smp/versions/8, and the SSS product can be

downloaded from the website: https://www.remss.com/missions/

smap/salinity/.
2.2 Ocean reanalysis salinity data

The HYCOM reanalysis dataset serves as a reliable reference for

SSS retrieval in this study. HYCOM is a data-assimilated hybrid

isobaric-sigma-pressure (generalized) coordinate ocean model

(Cummings and Smedstad, 2014). It integrates observational data

with numerical models to generate high-resolution (1/12°×1/12°)

simulations of ocean dynamic processes. The reanalysis dataset has

been proven to capture fine-scale features and temporal variations

of salinity fields in different ocean regions, making it widely applied

in oceanographic research (Ning et al., 2019; Song et al., 2024).

Recently, Sam-Khaniani (2022) compared HYCOM SSS with buoy

measurements in coastal regions and obtained an average root

mean square error (RMSE) of 0.57. This high level of accuracy

further confirms that HYCOM reanalysis data is a reliable reference
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is available through the HYCOM data server at ftp://ftp.hycom.org/.
2.3 Environmental data

The environmental data utilized in this study include Cross-

Calibrated Multi-Platform (CCMP) Level 4 (L4) Version 3.0 (V3.0)

wind speed data, the Group for High-Resolution Sea Surface

Temperature (GHRSST) L4 SST data, and the NOAA Climate

Data Record (CDR) of the CPC Morphing Technique

(CMORPH) high-resolution global precipitation data.

The CCMP L4 wind dataset provides information on global sea

surface wind speed and direction at a 10-meter altitude above sea

surface, generated by fusing data from multiple satellite platforms

(e.g., QuikSCAT, MetOp) with long-term time series (Mears et al.,

2022). The dataset has a spatial resolution of 0.25°×0.25°, and is

available at: https://www.remss.com/measurements/ccmp/.

The GHRSST Level 4 product is a SST analysis produced by

NASA’s Physical Oceanography Distributed Active Archive Center

(PO.DAAC) using wavelets as a basis function and optimal

interpolation on a global 0.01°×0.01° grid (Reynolds et al., 2007).

The product uses SST data from various instruments including

Advanced Microwave Scanning Radiometer for Earth Observing

System (AMSR-E), Advanced Microwave Scanning Radiometer 2

(AMSR-2), Moderate Resolution Imaging Spectroradiometer

(MODIS), WindSat, Advanced Very High Resolution Radiometer

(AVHRR), and in-situ SST data (Canadian Meteorological Centre,

2017). This dataset can be downloaded from: https://

www.ncei.noaa.gov/data/oceans/ghrsst/L4/.

The CMORPH CDR consists of satellite precipitation estimates

that are bias-corrected and reprocessed using the Center for Climate

Prediction’s Morphing Technology to form a global precipitation

analysis. In this paper, we use the daily CMORPH data with a

spatial resolution of 0.25°×0.25° (Xie et al., 2019). The dataset is

available at: https://www.ncei.noaa.gov/data/cmorph-high-

resolution-global-precipitation-estimates/access/daily/0.25deg/.
2.4 In situ salinity measurements

The in-situ data includes salinity measurements from NSO and

Argo float observations. The NSO data, collected in the waters

around Korea, features a comprehensive measurement framework

with 207 stations, 14 standardized vertical layers, and 25 lines.

Measurements of 17 parameters, including water temperature,

salinity, meteorological factors, etc., are conducted six times

annually (February, April, June, August, October, and December).

These data are accessible through the National Ocean Data Center

of Korea (https://www.nifs.go.kr/kodc/).

Since its inception in 2000, the Argo program has deployed over

15,000 automated profiling floats globally, accumulating more than

2.15 million temperature and salinity profiles, with some profiles

also including biogeochemical parameters. In this study, we use
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Global Ocean Argo Dataset (V3.0) (Li et al., 2019). The Argo data

can be obtained from ftp://ftp.argo.org.cn/pub/ARGO/global/.

As shown in Figure 1, the integration of NSO and Argo

observations helps to capture salinity variations in both coastal

and open oceans. In total, approximately 6,000 in-situ data points

were acquired. These in-situ datasets, spanning from January 1,

2016, to December 31, 2020, enables an independent evaluation of

the performance of the deep learning model, particularly in

addressing the challenges of coastal salinity retrieval.
2.5 Data preprocessing

To develop the DNN SSS retrieval model, the following

preprocessing was performed on all types of gridded data within

the study area from 2016 to 2020. (1) Eliminate outliers in the SMAP

Tb dataset affected by sea ice and sea spray based on the quality flags

of L3 data. (2) Considering the different spatial resolutions of datasets

from multiple sources, all datasets were spatiotemporally matched

and then resampled onto a unified 0.25° grid using bilinear

interpolation, enabling direct comparisons and analysis. (3) Grid

points with an instantaneous rainfall rate exceeding 0.15 mm/h were

excluded, since heavy rainfall significantly influences the brightness

temperature observed by microwave radiometers. (4) Calculate the

shortest offshore distance of grid points based on latitude and

longitude. (5) Remove all NaN values. (6) Normalize the input

values including Tb and environmental data to standardize the

feature range by transforming the data to have a mean of 0 and a

standard deviation of 1, which is a critical step in ensuring
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biases caused by varying input feature scales.

Finally, we obtained a total of 996,063 data samples. These data

were divided into two parts: the data from 2016 to 2019 were

utilized for training and validation, and that in 2020 were used as

independent test set. To further evaluate the performance of the

DNN framework, in-situ measurements were collocated with the

model retrieval results and SMAP SSS products using strict

temporal and spatial criteria. Specifically, we used a 12 h time

window and a 25 km spatial search radius. This matching process

results in a total of 1,540 collocated samples.
3 DNN based salinity retrieval model

3.1 Architecture of the deep neural
network

The architecture of the DNN model (Yuan et al., 2020) for SSS

retrieval is depicted in Figure 2, which consists of an input layer,

three hidden layers, and an output layer. The performance of a

DNN is significantly influenced by several factors, including the

number of hidden layers, the number of neurons in each hidden

layer, the learning rate, the choice of optimizer, and the activation

function (Liu et al., 2017; Zhang et al., 2023). To identify the

optimal set of network parameters, a series of sensitivity

experiments were conducted by evaluating the model

performance under various configurations: 1) The number of

neurons in the three hidden layers was tested within the ranges of

64 to 1024, 32 to 256, and 32 to 128, for the first, second and third
FIGURE 1

Locations of in-situ SSS measurements. NSO: orange points, Argo: blue points.
frontiersin.org

ftp://ftp.argo.org.cn/pub/ARGO/global/
https://doi.org/10.3389/fmars.2025.1596325
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2025.1596325
layers, respectively. 2) The batch size varied between 256 and 2048.

3) The learning rate was randomly sampled between 0.0001 and

0.01. 4) The dropout rate was set between 0 and 0.3. 5) The

optimizers tested include SGD, RMSprop, and Adam, both with

and without batch normalization.

The network architecture uses the ReLU activation function and

mean squared error (MSE) loss function. The remaining

hyperparameters are optimized using a combination of grid

search and random search. A total of 100 grid searches were

performed, with an epoch setting of 500. The use of random

search is specifically designed to efficiently explore the continuous

hyperparameter space, particularly for parameters such as the

learning rate by sampling values within a predefined interval

rather than testing every discrete option in great detail through

grid search. This approach, in combination with grid search, allows

us to reduce computational costs while ensuring a comprehensive

search for high-performance configurations. The results reveal that

the optimal network parameters consist of 1024, 32, and 32

neurons, and dropout rates of 0.3, 0, and 0 for the three hidden

layers, respectively, a batch size of 512, a learning rate of 0.008, and

the Adam optimizer without batch normalization. Meanwhile, the

DNN model was trained using K-Fold Cross Validation (Nti et al.,

2021) to enhance its generalization ability.
3.2 Experimental design

During the development of the DNN model, the SHAP method

(Lundberg and Lee, 2017) was employed to evaluate the relative

importance of input parameters in SSS estimation. By calculating the

Shapley value for each parameter, this approach effectively addresses the
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on linear assumptions. Specifically, the SHAP method is capable of

accurately capturing the nonlinear interactions and coupling effects

among multidimensional parameters.

We first conducted SHAP analysis for the entire study area and

time period. As illustrated in Figure 3, the importance scores

provide a clear representation of the contribution of each input

parameter to the model performance. The significance of Tbv is

evident, as it plays a pivotal role in revealing sea surface emissivity

changes driven by salinity (Entekhabi et al., 2010). While the overall

importance of Tbh is relatively low, possibly because it is generally

less sensitive to SSS-induced emissivity changes than Tbv (Song and

Wang, 2017). This may also explain why v-h ranks between Tbv and

Tbh. But further analysis in different regions and seasons (Section 5)

shows that the contribution of Tbh is more significant in offshore

areas (50 km<dis ≤ 200 km) or in summer and autumn. Lat and lon

rank among the top four, reflecting the spatial pattern in SSS,

especially its more pronounced meridional gradient (Reul et al.,

2014a). Theta also contributes a lot, which reflects the temporal

variations of SSS to some extent. The overall importance of distance

(dis) is relatively low, possibly because lat/lon features already

implicitly contains distance information, thereby reducing the

model’s need for explicit distance-based corrections. But it still

shows greater impact in nearshore areas (dis<50 km) (Figure 4a),

where freshwater input and land-sea interactions strongly affect

salinity patterns. As for the environmental factors, the SHAP

analysis results reveals the substantial contribution of SST,

reflecting the thermodynamic interactions between temperature

and salinity (Alory et al., 2012; Hernandez et al., 2014; Reul et al.,

2014b; Umbert et al., 2015). However, the effects of wind speed and

direction are much weaker, possibly because the linear combination
FIGURE 2

The architecture of the DNN framework for SSS retrieval.
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of vertical and horizontal polarization brightness temperatures

(v-h) introduced in this study already implies a relatively strong

wind direction signal, and thus reduces the importance of wind-

related information (Han and Hong, 2023; Soisuvarn et al., 2007).

Rainfall exhibits a negligible effect, which should be due to the data

preprocessing step excluding rain-contaminated data to mitigate

the influence of RFI (Ouyang et al., 2023).

Incorporating all parameters into DNN may lead to increased

training time. Moreover, the inclusion of redundant information

may potentially reduce the model performance. Based on the results

of the SHAP analysis, this study designed a series of feature

combination experiments to evaluate the cumulative effects of

parameter contributions and identify the optimal set of input

parameters. All sensitivity experiments were conducted

throughout the entire study area and time period, using

consistent three-layer DNN architecture based on the previously

optimized network configuration, which ensures that any variations

in performance could be attributed to differences in

input parameters.

As presented in Table 1, the first stage involves the construction

of four DNN models: 1) Model 1 (one parameter) uses only the

primary feature Tbv as the control group. 2) Model 2 (two

parameters) examines the impact of incorporating the marine

environment factor, SST. 3) Model 3 (three parameters) assesses

the spatial representation capability of geographic coordinates (lat

and lon). 4) Model 4A or 4B (four parameters) further quantifies the

combined effects of geographic coordinates and SST or dis,

respectively. In the subsequent stages, from Model 5 to Model 9,

the next most important parameter identified by the SHAP analysis

was sequentially incorporated. This approach allows for a detailed

evaluation of the incremental contributions of each parameter to

model performance.

The performance of the DNN model was evaluated using three

key metrics: the RMSE, bias, and Pearson’s correlation coefficient
Frontiers in Marine Science 06
(CORR). Additionally, to highlight the advantages of the DNN

model, we further conducted comparative analysis with three other

machine learning models, namely K-Nearest Neighbors (KNN)

(Taunk et al., 2019), Random Forest (RF) (Breiman, 2001), and

Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016).
4 Results

4.1 Determination of optimal model input
parameters

Figure 5 illustrates the performance of each baseline DNN

model listed in Table 1. The RMSE between model estimations

and HYCOM values is 1.27 when using only Tbv as input in Model

1, indicating that the radiation signal from SMAP contains

important information on sea surface salinity. Additional

inclusion of SST in Model 2 improves model accuracy, albeit to a

limited extent. However, the incorporation of latitude and longitude

in Model 3 significantly reduces the RMSE by 33% and increases the

CORR to 0.87. Comparing Models 4A and 4B with Model 3, further

adding SST or dis exhibits a small contribution to model

performance. This suggests that geographic information

effectively reflects the inherent regional characteristic of SSS.

As the number of input parameters continues to increase, the

accuracy of salinity estimation gradually improves. Model 7, which

combines the first seven most important input parameters-Tbv, lat,

SST, lon, theta, v-h, and dis, achieves the highest accuracy, with

RMSE of 0.69, bias of -0.11 and CORR of 0.91. Further inclusion of

wind speed (ws) information or Tbh in Models 8 and 9 produces

salinity estimation results comparable to Model 7, indicating that

high-accuracy SSS estimation can be achieved without inputting

these parameters. This minimizes data redundancy while retaining

the essential physical factors. The results also confirm the SHAP
FIGURE 3

SHAP importance scores of input parameters in the baseline DNN model.
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analysis findings that the contribution of wind or Tbh to the

baseline DNN model is not significant. Consequently, the seven

parameters in Model 7 were selected as the optimal input set. When

comparing DNN with other machine learning models in the next

section, all models use the same set of input parameters.
4.2 Overall performance of the DNN model

Table 2 shows the RMSE, bias and CORR values between

HYCOM reanalysis and sea surface salinity derived from the

baseline DNN, KNN, RF, and XGBoost models. To ensure

optimal performance of each model, all models underwent

hyperparameter optimization using grid search, with parameter

spaces customized for each algorithm. Specifically, for RF and

XGBoost, key parameters such as tree depths, feature selection
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accuracy. For KNN, the number of neighbors, search algorithms,

distance weighting method, and leaf size were optimized to ensure

robust retrieval while balancing model complexity. In general, the

independent validation using HYCOM data from 2021

demonstrates that RF, XGBoost, and DNN achieve comparable

levels of high accuracy. These models significantly outperform

KNN with RMSE approximately 17% lower.

To further investigate the robustness of the models, we

compared model estimations against in-situ measurements. The

accuracy of SMAP salinity product was also evaluated based on the

same dataset. As shown in Table 3 and Figure 6, when compared

with in-situ observations, the tree-based models (RF and XGBoost)

exhibit degraded performance and is inferior to that of the SMAP

products, with the maximum RMSE value exceeding 1.05 and

minimum CORR value dropping to 0.55. In contrast, the DNN
TABLE 1 Input parameter settings of the baseline DNN models.

Model ID
Input parameter

Tbv lat SST lon theta v-h dis ws Tbh U V

1 ✓

2 ✓ ✓

3 ✓ ✓ ✓

4A ✓ ✓ ✓ ✓

4B ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fron
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The parameters listed from left to right are arranged in descending order of importance.
FIGURE 4

SHAP importance scores of input parameters in DNN-nearshore (a) and DNN-offshore (b) models.
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model remains high performance. The RMSE is 0.78, which is

38.6% lower than that of XGBoost and also the lowest among all

evaluated models. Compared to the SMAP products, the RMSE has

decreased by 25.7%, further highlighting its superior performance.

The DNN model’s enhanced performance can be attributed to

its ability to learn hierarchical representations from SMAP

brightness temperature and ancillary parameters, effectively

capturing the non-linear interactions between oceanographic or

geographic factors and salinity changes. Additionally, the DNN

model achieves a CORR value of 0.78, slightly higher than that of

the SMAP products, indicating a strong linear relationship with in-
Frontiers in Marine Science 08
situ measurements. This reveals the high ability and robustness of

the DNN model to learn complex feature interactions.
5 Discussion

Based on the above findings, we focused on discussing the

performance of the optimal baseline DNN model in time and space

in this section. All analyses were based on comparisons with

independent in-situ measurements to further demonstrate the

robustness of the model.
FIGURE 5

Performance of the DNN models 1–9 with different input parameters.
TABLE 2 Statistical errors between sea surface salinity derived from different machine learning models and HYCOM reanalysis data from 2021.

Statistical error
Model

KNN RF XGBoost DNN

RMSE 0.79 0.69 0.69 0.68

Bias 0.14 0.12 -0.12 -0.11

CORR 0.89 0.92 0.91 0.92
TABLE 3 Statistical errors between sea surface salinity derived from different machine learning models or SMAP products and in-situ measurements.

Statistical error
Model & product

SMAP products RF XGBoost DNN

RMSE 0.99 1.15 1.27 0.76

Bias -0.46 0.69 0.63 0.20

CORR 0.74 0.63 0.55 0.78
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5.1 Model performance in nearshore and
offshore regions

Table 4 compares DNN model estimation results and SMAP

salinity products with in-situ measurements in the nearshore region

less than 50 km away from land and offshore region 50 km to 200 km

away from land, respectively. Obviously, the baseline DNN exhibits

varying performance in different regions. In the nearshore region,

compared to the SMAP products, the RMSE (0.88) of DNN derived

SSS has significantly decreased by 33.8%. This indicates that the DNN

model is more effective in capturing coastal salinity changes, where

factors such as coastal processes and river runoff significantly affect

the magnitude and spatiotemporal distribution of salinity. In this

region, the relatively low accuracy of SMAP products is likely due to

noise and interference from land-based sources.

In offshore areas, the accuracy of both DNN estimation and

SMAP products has been greatly improved. Especially for the

SMAP products, the RMSE has decreased from 1.33 in coastal

areas to 0.73. On the one hand, the impact of RFI is much smaller

here. On the other hand, the salinity patterns of offshore waters

become more stable and consistent. Compared with the SMAP

products, the DNN estimation still maintains slightly higher

accuracy, which is likely due to its superior ability to learn and

generalize complex patterns and relationships in data more

effectively than traditional methods.

Due to the different characteristics of SSS in nearshore and

nearshore regions, can we further improve the accuracy of salinity

retrieval by establishing separate regional models? To address this

issue, input parameter importance analysis and sensitivity

experiments described in Section 3.2 were conducted in each
Frontiers in Marine Science 09
region. As shown in the SHAP analysis results in Figure 4, key

factors such as Tbv and geographic coordinates still maintain high

importance scores in both regions, although their rankings are

slightly different. Compared with Figure 3, the role of the distance

is more prominent in nearshore areas, which may reflect the more

significant impact of coastal processes on salinity and the complex

interactions between land and sea. In offshore regions, its impact is

greatly reduced, but subsequent sensitivity experiments show that

incorporating it into the model input can substantially reduce salinity

retrieval errors. In addition, Tbh emerges as an important factor in

offshore areas. Based on these findings, optimal input parameters

were determined through sensitivity assessment of nearshore and

offshore DNN models. For DNN-nearshore, the optimal input

parameters are the same as the baseline DNN model, i.e., Lon, Lat,

Tbv, dis, v-h, SST and theta. When considering Tbh additionally,

DNN-offshore demonstrates the best performance.

Figures 7, 8 compare the performance of the baseline DNN,

DNN-nearshore and DNN-offshore models, as well as the quality of

SMAP products in different regions. Overall, both two regional

models outperform the baseline DNN in terms of RMSE and

correlation coefficient. In the nearshore region, DNN-nearshore

derived RMSE is reduced to 0.81, about 8.0% lower than that of

baseline DNN, and the correlation coefficient increases by

approximately 12.5% from 0.72 to 0.81. In offshore areas, DNN-

nearshore achieves a RMSE of 0.64, 5.9% smaller than that of

baseline DNN, and the correlation coefficient is as high as 0.90. On

the contrary, the bias of the two regional models has increased, but

still less than 0.3. These results demonstrate that regional modeling

helps to further improve the accuracy of salinity retrieval. This may

be attributed to the fact that the regional sample data more
FIGURE 6

Scatter density plot of SMAP products (a) and model estimations (b-d) compared with in-situ sea surface salinity measurements. (b-d) denote RF,
XGBoost and baseline DNN model results, respectively.
TABLE 4 Statistical errors of baseline DNN derived sea surface salinity and SMAP products against in-situ measurements in different regions.

Region
Number
of data

RMSE Bias CORR

SMAP
products

DNN
SMAP

products
DNN

SMAP
products

DNN

Nearshore (<50 km) 556 1.33 0.88 -0.53 0.20 0.67 0.72

Offshore (50–200 km) 934 0.73 0.68 -0.42 0.11 0.95 0.86
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FIGURE 7

RMSE (a), bias (b) and CORR (c) of baseline DNN, DNN-nearshore and DNN-offshore derived SSS, and SMAP products against in-situ measurements.
FIGURE 8

Comparison between DNN-nearshore and DNN-offshore derived salinity (a, b) and SMAP products (c, d) with in-situ measurements in the nearshore
(left) and offshore regions (right).
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accurately reflect the spatiotemporal distribution characteristics of

salinity in each area, allowing the model to focus more specifically

on the unique data features.
5.2 Model performance in different seasons

This section further evaluates the robustness of two regional

models by analyzing their performances in different seasons. As

shown in Figure 9, the RMSE of both models and SMAP products

show some seasonal variation, but the magnitude of change is much

smaller in the offshore region, which may be related to the relatively
Frontiers in Marine Science 11
more stable distribution of salinity in this area. In nearshore areas,

compared to SMAP salinity products, DNN-nearshore significantly

reduces salinity estimation error in each season, especially in spring

and winter, with the RMSE 60.3% and 53.6% lower than that of

SMAP products, respectively. In offshore, the model error shows a

more stable seasonal variation trend, with values ranging from 0.5

and 0.7, also much smaller than that of SMAP products in spring

and winter. This indicates that the regional salinity retrieval models

can accurately capture changes in coastal salinity over time.

Considering that the performance of DNN-nearshore is slightly

lower than that of DNN-offshore, and nearshore salinity often

exhibits more pronounced seasonal variations due to the
FIGURE 9

Seasonal variation of DNN-nearshore (a) and DNN-offshore (b) derived RMSE and SMAP products against in-situ measurements.
FIGURE 10

RMSE of DNN-nearshore and DNN-nearshore-season derived SSS, and SMAP products against in-situ measurements in the nearshore region.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1596325
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2025.1596325
influence of dynamic processes or estuarine runoff. In nearshore

areas, we attempt to investigate whether seasonal adaptive models

can further improve salinity retrieval accuracy. SHAP analysis

reveals that the top ten input parameters remain consistent across

all four seasons, although their rankings vary slightly. Among them,

Tbv and geographic information (lat and lon) consistently rank in

the top four, highlighting their fundamental role in salinity retrieval,

and dis remains a key parameter, reflecting its crucial impact on the

spatial variation of nearshore salinity caused by land-sea

interactions. In summer and autumn, the importance of Tbh

rises, indicating an increased correlation with salinity during

these periods, which may be due to seasonal fluctuations in ocean

thermal characteristics and radiation signals. Sensitivity

experiments further determine the optimal input parameters for

each seasonal model (DNN-nearshore-season). During spring and

winter, the selected input parameters align with those of DNN-

nearshore or baseline DNN. In summer and autumn, the seasonal

models incorporate one additional parameter Tbh.

Figure 10 compares the performance between four seasonal

DNN models (DNN-nearshore-season) and the non-seasonal

nearshore model (DNN-nearshore). The results reveal that

accounting for seasonal variations significantly enhances salinity

retrieval accuracy across all seasons. Compared to the non-seasonal

DNN-nearshore model, the average RMSE is reduced by 12.3%

from 0.81 to 0.71, and the most substantial improvements in

accuracy appear in summer and autumn, with RMSE decreasing

by 13% and 18%, respectively. This suggests that the seasonal

modeling approach effectively captures temporal variations in the

relationship between input parameters and nearshore salinity. By

dynamically adjusting the weights of input features across different

seasons, the DNN-nearshore-season models achieve superior

performance, highlighting the importance of incorporating

seasonal dynamics in salinity estimation.
6 Conclusion

In this study, we utilized DNN to construct sea surface salinity

retrieval model in the Yellow and East China Seas based on HYCOM

reanalysis data. This architecture established a standardized salinity

retrieval framework characterized by operational simplicity and broad

applicability across diverse marine environments. The results

demonstrate that the DNN model exhibits remarkable robustness,

primarily attributable to its capacity to extract useful information from

extensive datasets and effectively incorporate multi-dimensional

oceanographic and geographic variables.

SHAP analysis was employed to investigate contributions of

various parameters (including SMAP observations, geographic and

temporal information, and ocean and atmospheric variables) to

model performance, followed by a series of sensitivity experiments

to determine the optimal combination of input parameters and

network configuration. It turns out that a combination of seven
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input parameters, including Tbv, lat, SST, lon, theta, v-h, dis, yielded

the best performance for the baseline DNN model constructed for

the entire study area and time period. Comparative analysis based

on both HYCOM data and independent in-situ measurements

shows that the optimal baseline DNN model has significant

superiority over other machine learning methods such as KNN,

XGBoost and RF models. Meanwhile, compared with SMAP

salinity products, the baseline DNN also performs much better,

with RMSE reductions of 33.8% and 7.3% in nearshore and offshore

areas, respectively.

More importantly, our findings quantitatively reveal the necessity

of implementing regional and seasonal modelling strategies for salinity

estimation. Compared with the baseline DNN model, the accuracy of

the regional DNN model was improved to varying degrees in both

nearshore and nearshore areas. The seasonal DNN models in

nearshore areas further improve the accuracy of salinity retrieval,

particularly in summer and autumn, with RMSE decreased by 13%

and 18%, respectively, compared to non-seasonal models. This

indicates that spatiotemporal modeling method can effectively

capture complex salinity variation patterns, particularly in

challenging nearshore areas where traditional methods such as

SMAP products exhibit larger errors.

Overall, this study demonstrates the significant advantages

of the DNN framework in SSS retrieval tasks, especially in

dynamically complex ocean environments. These findings

indicate the potential of DNN in providing more accurate

and reliable salinity measurements, which is of great

significance for the study of oceanographic processes. Future

research can explore the impacts of more environmental variables

such as river runoff on salinity changes in coastal waters based on

more higher-quality data, thereby further enhancing the

performance and applicability of deep learning based salinity

retrieval models.
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