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With the global wave of intelligence and automation, ship autopilot technology

has become the key to improving the efficiency of marine transportation,

reducing operating costs, and ensuring navigation safety. However, existing

reinforcement learning (RL)–based autopilot methods still face challenges such

as low learning efficiency, redundant invalid exploration, and limited obstacle

avoidance capability. To this end, this research proposes a GEPA model that

integrates prior knowledge and hierarchical reward and punishment

mechanisms to optimize the autopilot strategy for unmanned vessels based

on deep Q-network (DQN). The GEPA model introduces a priori knowledge to

guide the decision-making of the intelligent agent, reduces invalid

explorations, and accelerates the learning convergence, and combines with

hierarchical composite reward and punishment mechanisms to improve the

rationality and safety of autopilot by means of end-point incentives, path-

guided rewards, and irregular obstacle avoidance penalties. The experimental

results show that the GEPAmodel outperforms the existingmethods in terms of

navigating efficiency, training convergence speed, path smoothness, obstacle

avoidance ability and safety, with the number of training rounds to complete

the task reduced by 24.85%, the path length reduced by up to about 70 pixels,

the safety distance improved by 70.6%, and the number of collisions decreased

significantly. The research in this paper provides an effective reinforcement
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learning optimization strategy for efficient and safe autonomous navigating of

unmanned ships in complex marine environments, and can provide important

theoretical support and practical guidance for the development of future

intelligent ship technology.
KEYWORDS

deep reinforcement learning, unmanned ship, prior knowledge, hierarchical composite
reward and penalties, irregular obstacle
1 Introduction

With the rapid development of the global intelligent shipping

industry, the safety, operational efficiency and economic cost of

maritime transportation are facing serious challenges and

automation technology (Wang et al., 2023b), especially ship

autopilot technology, is becoming one of the key technologies to

enhance shipping efficiency, ensure navigation safety (Wang et al.,

2019). At present, ship navigating mainly relies on manual

operation, which is easily affected by human factors such as

inexperience and fatigue of crew members, leading to inefficient

navigation and even safety accidents (Wang et al., 2021a).

According to the research in 2023 (Transportation security), in

the collection of recent years, Zhejiang, Fujian and other domestic

marine accident investigation centers in recent years 306, the

United Kingdom, the United States, Japan and other offshore

marine accident investigation reports 198, in 504 marine accident

investigation report, which triggered the cause of accidents existed

in the human factor 466, accounting for as high as 92%. In order to

reduce the development of ship accidents worldwide and cater to

the global shipping market’s demand for efficient, safe, and low-cost

navigation, the application of ship autopilot technology has become

particularly urgent.

Reinforcement learning (RL), as a class of intelligent decision-

making methods with autonomous learning capability, shows great

potential in the field of autopilot. Its core advantage lies in the

ability of bits of intelligence to autonomously explore and optimize

decision-making strategies through dynamic interaction with the

environment. In the framework of RL, an intelligent agent

continuously obtains feedback from its interaction with the

environment, selects the optimal action and adjusts its behavioral

strategy based on the feedback signals (reward or punishment). The

process is trial-and-error interactive, and by evaluating the current

state, the intelligent agent chooses an optimal action at each

decision-making moment to maximize the long-term cumulative

reward. This trial-feedback-adjustment learning mechanism

enables reinforcement learning to adapt to complex dynamic

environments and gradually improve autonomous decision-

making capabilities. Especially in the unmanned ship autopilot

task, the RL method does not need to rely on preset rules, but

rather learns the optimal obstacle avoidance and navigation
02
strategies through a large number of interactions, thus improving

the adaptability of the ship in uncertain environments to realize the

autopilot task.

Therefore, ship autopilot technology, especially the ship

autopilot technology based on RL, is gradually becoming one of

the core technologies to realize this goal. RL -based ship autopilot

technology enables ship intelligent agent to learn and navigate

autonomously in complex environments. Through reinforcement

learning, the unmanned ship’s intelligent agent can choose the

optimal action (such as steering, acceleration or deceleration, etc.)

according to the current state (such as the ship’s position, speed,

heading angle and surrounding obstacles, etc.). However, the

unmanned ship intelligent agent is not able to make the optimal

decision at the beginning, but gradually optimizes the decision-

making process through continuous interaction and feedback.

Every time the unmanned ship intelligent agent makes an action,

the marine environment provides a reward signal that reflects the

effectiveness of the action. By maximizing this feedback reward, the

unmanned ship intelligent agent will eventually learn decision-

making strategies that can efficiently and safely complete the

autopilot task in the complex marine environment. However,

despite the theoretically powerful decision-making ability of the

RL -based unmanned ship piloting technology, the practical

application still faces many challenges, which restricts its further

development in the field of ship autopilot.

Currently, the unmanned ship autopilot technology based on

RL faces three core challenges: low learning efficiency and too much

ineffective exploration, a single reward and punishment

mechanism, which makes it difficult to effectively integrate

multiple reward and punishment information, and the traditional

way of modeling the marine environment is too regular and lacks

effective modeling of irregular obstacles.

RL-based unmanned ship learning is inefficient with too much

ineffective exploration. Since reinforcement learning relies on a

large number of trial-and-error processes, unmanned ship

intelligent agent needs to optimize its decision-making strategies

through constant interaction with the environment. However, at the

beginning of training, unmanned ship intelligent agent cannot

directly determine which actions are optimal, and need to obtain

rewarding or punishing feedback after many attempts, and then

adjust their decisions based on this feedback. This process
frontiersin.org
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consumes large computational resources and converges slowly,

especially in the absence of a clear environment model, the

intelligent agent often experiences a lot of ineffective exploration,

leading to inefficient learning.

In the reinforcement learning framework, the Q-table (state-

action value function table) is a crucial part of the learning process

of an intelligent agent, which stores the expected rewards for

performing various actions in different states and is constantly

updated by the rewards or punishments from the environmental

feedbacks in order to optimize the decision-making strategy. Under

the reinforcement learning model of Online Learning, the update of

the Q-table usually relies on the completion of the target state or the

completion of the task, which means that at the beginning of the

training period, the unmanned ship intelligent agents are unable to

efficiently assess the quality of the actions during the exploration

process, leading to a large number of ineffective explorations.

Especially in complex marine environments, since the unmanned

ship intelligent agent cannot obtain effective reward signals

in a timely manner, the Q-table update is limited, which

further prolongs the training time and makes the process

computationally more costly and less efficient. Just as in Figure 1,

the virtual channel environment is simulated in the figure, the x-

axis and y-axis are the lateral position and vertical position of the

channel, and the irregular objects in the figure simulate the irregular

obstacles in the virtual channel environment. The formula in

Figure 1 is the updating formula for Q-value, Q(s, a) is the Q-

value of the executed action in the current state, r is the reward, g is
the discount factor, and max Q(s’, a’) is the maximum Q-value of

the unmanned ship at the optimal action chosen in the next state.

Table 1 briefly exemplifies the changes in the Q-value of the

unmanned vessel during the training process, where Action is the

rudder angle d chosen by the unmanned vessel and State is
Frontiers in Marine Science 03
the current position (horizontal and vertical coordinates) of the

unmanned vessel in the channel environment. Figure 1 provides a

simplified illustration showing that, during the early stages of

training, the unmanned ship fails to update the Q-table effectively

due to repeated episodes of unsuccessful exploration. It is not until a

much later episode (e.g., Episode 1200) that the agent successfully

reaches the goal for the first time, thereby triggering the initial Q-

value update. The experimental results shown in Figure 1 and

Table 1 indicate that the Q-value of the intelligent agent did not

change in multiple rounds at the beginning of the training period

(episode 1 to episode 1199), all of which were 0, indicating that it

failed to obtain effective feedback from the environment. This is

because the reward value r and max(Q(s’, a’) are both 0 and other

values are equal, so the Q-value cannot be updated. And even in

episode 5, where the intelligent agent received a penalty for colliding

with an obstacle, it still failed to have a positive effect on the task

optimization, and instead made the strategy adjustment more

difficult. It was not until episode 1200, when the intelligent agent

chose a rudder angle of 0, and the intelligent agent successfully

reached the end point for the first time, that the Q-value could

be updated.

This lag in updating the Q-value significantly increases the

training cost and reduces the learning efficiency. It should be noted

that the values in the table are only examples to illustrate the

phenomenon of Q-table update lag, and do not represent the actual

values in the experiments.

To address this problem, we propose an optimization strategy

that incorporates a priori knowledge to reduce ineffective

exploration and speed up the training process. In the traditional

manual piloting process, the crew usually relies on navigational

experience to judge the environment and formulate navigation

strategies, which can be regarded as a priori knowledge. In our
FIGURE 1

Training convergence delay: Example of early-stage invalid trajectories.
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experimental findings, the paths planned based on paths are highly

similar to the optimal paths obtained from autonomous learning of

unmanned vessels and thus can be used for path guidance in

reinforcement learning training. For this reason, we propose to

introduce a priori knowledge in reinforcement learning training so

that the unmanned ship intelligent agents are equipped with

preliminary navigation experience and guided by a priori paths

during exploration, thus reducing the inefficient behaviors caused

by random exploration. In addition, since the a priori path provides

additional reward signals, the intelligent agent is able to update the

Q-table before it reaches the end point, thus accelerating the

strategy optimization and improving the convergence efficiency.

Although path planning algorithms can quickly generate

feasible routes, it is difficult to directly use them for real

navigation because their paths usually have large corners and lack

of smoothness. Therefore, in this study, the a priori knowledge

paths are mainly used as preliminary guidance paths for the

intelligent agent, while the final optimal navigation paths still

need to be generated by the unmanned intelligent agent ship to

adapt to the complex marine environment.

However, the introduction of a priori knowledge alone does not

sufficiently improve the adaptive ability of the unmanned vessel. The

reward function design of traditional reinforcement learningmethods

is usually simple, relying only on end point rewards or basic obstacle

avoidance penalties, failing to fully consider factors such as path

optimization, local obstacle avoidance, and task execution efficiency.

The limitation of this single reward and punishment mechanism not

only affects the training effect of the intelligence, but also may cause

the model to converge to a suboptimal solution in complex

environments, which reduces navigation stability and safety. For

this reason, this study further proposes a hierarchical composite

reward and punishment mechanism, which integrates the end-point

reward, the a priori knowledge path-guiding reward, and the

hierarchical punishment of irregular obstacles, in order to optimize

the navigating strategy of the unmanned ship intelligent agent. This

mechanism enables the intelligent agent to obtain positive rewards

when it is close to the a priori path during the training process,

encouraging it to follow the efficient path; meanwhile, it imposes

penalties when it is far away from the a priori path or close to the

obstacles, ensuring that it can actively optimize the navigation

strategy and improve the obstacle avoidance ability.
Frontiers in Marine Science 04
In addition, most of the traditional autopilot strategy methods

are based on regularized raster modeling, which simplifies obstacles

to circles or rectangles, but this is difficult to accurately simulate the

irregularities of the real marine environment. For example, ships

often need to cope with complex situations such as floating

obstacles, dynamic target vessels, and ocean current interference

in real navigation. To overcome this problem, this study introduces

irregular obstacle modeling into the training environment of

autopilot, so that the unmanned ship intelligent agent can adapt

to the complex marine environment and improve the autonomous

obstacle avoidance ability and decision-making stability. By

combining the hierarchical composite reward and punishment

mechanism, the modeling method not only optimizes the

reasonableness of path planning but also ensures that the

unmanned vessel takes into account the navigation efficiency and

safety in the complex environment.

Compared to the reinforcement learning-based unmanned ship

navigating method with completely random exploration, the GEPA

(Guided Exploration with Prior knowledge and Adaptive Penalty)

model proposed in this study, by combining prior knowledge,

hierarchical composite reward and punishment (HCRP) and

irregular obstacle modeling, reduces the number of invalid

explorations and accelerates the speed of the Q-axis while

reducing the number of obstacles. Ineffective exploration while

accelerating the update speed of Q-tables, which significantly

improves the efficiency of unmanned ship training based on

reinforcement learning. In addition, the Hierarchical Composite

Reward and Punishment (HCRP) mechanism combines end-point

incentives, a priori knowledge rewards and irregular obstacle

penalties, which not only optimizes the path planning and

obstacle avoidance strategies but also strengthens the

environmental adaptive capability of the unmanned ship

intelligent agent, enabling it to achieve efficient, smooth and safe

autonomous navigation in the face of the complex and uncertain

marine environment. At the same time, irregular obstacle modeling

further simulates the real marine environment, so that the

intelligent agent has more accurate obstacle avoidance decision-

making ability, and strengthens its robustness and autonomous

navigation abil i ty in the marine environment, which

comprehensively improves the decision-making efficiency and

adaptability of the autopilot system.
TABLE 1 Q-Table State-Action value mapping.

Q(s, a) Steering Operation-Take to the Helm (Rudder Angle)

-35 -30 -25 -20 -15 -10 5 0 5 10 15 20 25 30 35

State

statel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

state2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

··· 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

state n 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0
fro
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In this study, an autopilot strategy for irregular obstacle ships

based on prior knowledge and hierarchical penalization is

proposed, and the main contributions are as follows:
Fron
• This work incorporates prior trajectory information as a

guiding signal in the reinforcement learning process,

effectively improving training efficiency and reducing

redundant exploration in the early stages of learning.

• We propose a novel hierarchical reward and penalty design

that integrates goal-oriented incentives with obstacle-aware

punishment, fostering safer and more stable decision-

making under complex navigation constraints.

• The model integrates an irregular obstacle avoidance

strategy, significantly improving its adaptability and

enabling unmanned ships to operate reliably in complex

and uncertain maritime environments.
The remainder of this paper is structured as follows. Section 2

reviews recent advancements in reinforcement learning–based

autonomous navigation, classical path planning techniques, and

irregular obstacle avoidance strategies, highlighting the existing

challenges and motivating the proposed approach. Section 3

details the architecture of the proposed GEPA framework,

including the agent structure, virtual channel environment,

formal definition of prior knowledge, and the formulation of a

hierarchical composite reward and penalty mechanism. The section

also presents the reinforcement learning pipeline for training the

unmanned ship. Section 4 presents comprehensive experimental

evaluations encompassing the experimental configuration, virtual

scenario design, and quantitative analysis of navigation

performance, including training efficiency, path smoothness,

trajectory length, safety margin, and collision frequency. Finally,

Section 5 concludes the paper by summarizing the key

contributions and outlining future research directions,

particularly focusing on the extension of GEPA to dynamic

maritime environments.
2 Related works

The global maritime industry is facing increasing demands for

safety, operational efficiency, and cost control (Wang et al., 2020).

Unmanned ship autonomous navigating technology is regarded as a

key solution to these challenges, as it optimizes decision-making

processes and reduces human errors, thereby enhancing operational

safety and efficiency (Mnih et al., 2015). This section reviews the

research progress of reinforcement learning (RL) in the field of

autonomous ship navigating.

Deep Q-Network (DQN) have emerged as a powerful tool for

autonomous navigating, including applications in unmanned ship

autonomous control. DQN integrates Q-learning with deep neural

networks, enabling intelligent agents to make decisions in high-

dimensional state spaces, which is particularly beneficial in complex

maritime environments (Mnih et al., 2015). first introduced DQN

and achieved significant success in solving Atari game control tasks,
tiers in Marine Science 05
demonstrating the potential of deep reinforcement learning in

handling decision-making problems involving large-scale state

spaces (Wen et al., 2022). proposed a multi-agent deep

reinforcement learning (MADRL) approach to optimize dynamic

obstacle avoidance and task execution strategies for unmanned

surface vehicles (USVs) (Wang et al., 2022). applied artificial neural

networks (ANNs) to improve trajectory planning, enabling USVs to

autonomously adjust course in complex environments and achieve

efficient collision avoidance (Gao et al., 2023). further improved the

deep Q-learning algorithm, constructing an adaptive decision-

making model and validating the adaptability and effectiveness of

DQN under various marine conditions.

In the field of autonomous ship navigating, DQN has been

widely applied to trajectory optimization and obstacle avoidance.

For instance (Guo et al., 2020), proposed a DQN-based

autonomous decision-making approach, allowing unmanned

ships to dynamically adjust course and achieve real-time obstacle

avoidance. Compared to traditional trajectory planning algorithms,

DQN-based methods leverage reinforcement learning mechanisms,

enabling autonomous ships to dynamically adjust movements,

improving their ability to adapt to unpredictable environments.

Furthermore, DQN-based approaches have been extended to more

complex operational scenarios, such as crowded waters and

irregular obstacles. The study by (Guo et al., 2020) demonstrated

that DQN can derive navigating strategies directly from sensor data

without relying on predefined environmental models, making it

highly suitable for dynamic and uncertain marine environments

(Yang and Han, 2023). further extended DQN’s application to

collision avoidance in dynamic environments, introducing

optimized parameter tuning methods to enhance the system’s

capability to handle both static and moving obstacles.

The design of reward and penalty functions plays a crucial role

in reinforcement learning (RL), particularly in unmanned ship

autonomous navigating. Traditional reinforcement learning

models often rely on simplistic reward structures, which may be

insufficient for operating in complex marine environments. To

address this challenge, researchers have introduced hierarchical

and soft-constraint reward mechanisms to enhance learning

efficiency and decision-making capabilities (Singh et al., 2020).

proposed a multiagent reinforcement learning (MARL)

framework incorporating a multi-level reward structure, guiding

autonomous ships to optimize long-term decision-making

objectives while ensuring collision avoidance safety. Similarly

(Wang et al., 2023a), integrated prior knowledge-based

approximation representations into deep reinforcement learning

(DRL), improving decision-making capabilities in collision

avoidance. To better tackle real-world maritime challenges,

several studies have introduced hierarchical reward mechanisms

for collision avoidance and trajectory optimization (Yang and Han,

2023). enhanced DQN by incorporating a multi-stage reward

system, which assigns different penalty levels based on proximity

to obstacles and deviation from the optimal trajectory (Guo et al.,

2021). further refined the DQN reward function to better suit

coastal waters, ensuring smoother autonomous navigating (Jiang

et al., 2024). explores the effect of the reward function on ship (Li
frontiersin.org
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et al., 2025)introduces the Multi-Joint Adaptive Control Enhanced

Reinforcement Learning System that enhances the autonomous

stability of unmanned ship navigation in maritime settings.

Another key innovation involves integrating dynamic risk

assessment into reward mechanisms (Zhang et al., 2019).

proposed a scenario-based DRL model, classifying environments

into different risk levels and adjusting the reward system

accordingly (Shen et al., 2017). extended this approach by

designing a DQN-based autonomous collision avoidance strategy,

which dynamically adjusts penalties to ensure safe maneuvering in

congested waters (Chen et al., 2025). proposed a bi-directional

GRU-based reconstruction approach to recover missing AIS

trajectory data. This method demonstrated robust performance

and substantially increased the reliability of training datasets used

for autonomous navigation models (Wang et al., 2021b). introduced

a data-driven reinforcement learning control strategy tailored to

complex marine environments. This method transformed

constrained tracking errors into an unconstrained error stability

problem under unknown dynamic conditions, thereby improving

system adaptability (Liang et al., 2024). proposed a method

combining a Wasserstein GAN with gradient penalty (WGAN-

GP) and a trajectory encoder to detect abnormal vessel behaviors

without manual annotation (Zhang et al., 2020). developed a model

reference reinforcement learning approach incorporating classical

control methods, allowing USVs to flexibly adjust control strategies

based on strategic requirements in uncertain environments (Sun

et al., 2020). proposed a deep deterministic policy gradient

(DDPG)-based reinforcement learning algorithm for autonomous

underwater vehicles (AUVs), integrating six-degree-of-freedom

error accumulation to introduce soft penalty constraints, ensuring

stability and precision in intelligent control systems (Du et al.,

2022). designed a safe deep reinforcement learning adaptive control

scheme, incorporating soft tracking rewards and interception

reward constraints to optimize USV decision-making in

interception tasks.

Hierarchical reward functions also enhance the generalization

capability of reinforcement learning strategies. Rejaili and

(Figueiredo and Abou Rejaili, 2018) explored how deep

reinforcement learning algorithms can adapt to restricted waters

by modifying reward structures (Lin et al., 2023). introduced

distributed reinforcement learning to improve the robustness of

USV autonomous decision-making, where a hierarchical reward

mechanism helps the intelligent agent differentiate between short-

term and long-term objectives. Researchers have also applied

hierarchical reward mechanisms to energy efficiency optimization

(Etemad et al., 2020). used reward shaping techniques to optimize

fuel consumption while ensuring a smooth trajectory. Similarly

(Alam et al., 2023), proposed a DRL model that balances speed

control and trajectory efficiency, assigning different reward levels

based on operational priorities.

In unmanned ship trajectory optimization, Rapidly-Exploring

Random Tree (RRT) algorithms have been widely employed due to

their efficient path-searching capabilities. RRT is particularly useful

for operating in environments containing obstacles. For instance
Frontiers in Marine Science 06
(Hu et al., 2025), proposed a heuristic RRT algorithm to enhance

trajectory optimization in dynamic obstacle environments.

Similarly (Shen et al., 2017), developed an RRT-based adaptive

collision avoidance system, integrating deep reinforcement learning

to optimize trajectory-following strategies, demonstrating how

prior environmental knowledge can be utilized to avoid

unexpected obstacles (Liang et al., 2021). proposed an

unsupervised learning approach using a convolutional

autoencoder (CAE) to extract low-dimensional features from AIS

trajectory images, enabling fast and accurate similarity computation

(Wang et al., 2021c). brought up the importance of guidance

information for ships This method improves trajectory clustering

performance and offers valuable support for trajectory learning and

decision-making in RL-based autonomous ship navigation.

The collision avoidance strategy for irregular obstacles remains

one of the core challenges in autonomous ship navigating, as real-

world maritime environments often feature unpredictable and

dynamically evolving obstacles. Due to variations in the shape,

size, and movement patterns of obstacles, traditional reinforcement

learning (RL) methods encounter significant difficulties in achieving

effective obstacle avoidance.In recent years, researchers have

concentrated on enhancing Deep Q-Network (DQN) algorithms

and related RL models to improve the safety and maneuverability of

autonomous ships operating in complex marine conditions (Ly

et al., 2024). introduced Elastic Step DQN, a novel multi-step

algorithm designed to mitigate DQN’s overestimation problem

while enhancing its responsiveness to irregular obstacles. Similarly

(Sivaraj et al., 2022), applied a DQN-based ship heading control

method in both calm and turbulent waters, demonstrating that an

optimized reward structure significantly improved the vessel’s

obstacle avoidance capabilities in highly irregular maritime

conditions.Another critical approach focuses on modifying the

reward function to enhance adaptability in irregular obstacle

environments (Guo et al., 2021). introduced an optimized DQN-

based path-planning model with a customized reward function,

enabling the reinforcement learning agent to prioritize avoidance

strategies for obstacles of varying shapes.

Additionally, integrating reinforcement learning with prior

knowledge has proven to be an effective method for improving

obstacle avoidance capabilities in autonomous ships. For instance

(Gu et al., 2023), proposed an improved RRT algorithm that

leverages AIS prior information and DP compression, allowing

the system to more accurately predict and avoid irregular obstacles.

Likewise (Cao et al., 2022), developed an enhanced RRT-based

path-planning model for inland vessels, significantly improving

efficiency in ship identification and unexpected obstacle

avoidance.Furthermore, hybrid methodologies have been explored

to optimize autonomous ship trajectory planning (Xie and Li,

2020). combined RRT with a genetic algorithm (GA) to generate

an optimal path that effectively accounts for irregular obstacles,

offering a more adaptive approach to autonomous navigating (Li

et al., 2022). further investigated RRT-based unmanned ship

trajectory planning, ensuring enhanced adaptability in complex

real-world marine environments.
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In recent years, reinforcement learning has made significant

advancements in autonomous ship navigating. Algorithms such as

DQN have enabled intelligent agents to learn optimal decision-

making strategies within high-dimensional state spaces, thereby

enhancing environmental adaptability. However, current research

still faces limitations in training efficiency, reward function design,

and obstacle avoidance capabilities. Traditional reinforcement

learning approaches rely on random exploration, leading to slow

convergence and difficulties in meeting real-time operational

requirements. Additionally, existing reward mechanisms are often

simplistic, typically relying on terminal rewards or basic obstacle

avoidance penalties, failing to balance trajectory optimization, local

obstacle avoidance, and global task execution efficiency.

Furthermore, current reinforcement learning models lack effective

frameworks for modeling irregular obstacles, limiting collision

avoidance performance in real-world maritime environments.

To address these challenges, this study proposes the GEPA

(Guided Exploration with Prior Knowledge and Adaptive Penalty)

model, incorporating innovations in prior knowledge guidance,

hierarchical composite reward mechanisms, and irregular obstacle

modeling. By integrating RRT-generated trajectories as prior

knowledge, the GEPA model guides intelligent agents to reduce

ineffective exploration, accelerate reinforcement learning

convergence, and improve training efficiency. Compared to

existing approaches, the GEPA model achieves notable

improvements in reinforcement learning training efficiency,

trajectory optimization, and obstacle avoidance accuracy,

providing a more efficient and reliable solution for autonomous

ship navigating in complex environments.
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3 Model architecture

3.1 GEPA model architecture

The GEPA model proposed in this study, an unmanned ship

autonomous navigating training framework based on deep Q-

network (DQN) reinforcement learning, combines a first-order

Nomoto motion model, a hierarchical composite rewards and

penalties mechanism, and a virtual ocean environment, to

optimize the navigating strategy of an unmanned ship intelligent

agent, and to improve the efficiency of the training and the safety of

navigation. The model includes an Agent Module, Virtual Channel

Environment, and Hierarchical Composite Rewards and Penalties,

which work together to ensure that the unmanned ship intelligent

agent is able to the dules work together to ensure that the

unmanned ship intelligent agent can gradually learn the optimal

decision-making strategy in the complex environment, and the

model diagram is shown in Figure 2.

During the training process, the unmanned ship intelligent agent

(Agent Module) first initializes its state in the virtual channel

environment, obtaining its own position (x,y), heading angle y, speed
v, and information about the surrounding obstacles. Subsequently, the

intelligent agent selects the current action and updates the state under

the constraints of the first-order Nomoto motion model to simulate the

real navigation process of the ship. When the intelligent agent executes

the action, the environment feeds back the new state and calculates

immediate rewards based on the Hierarchical Composite Rewards and

Penalties (Hierarchical Composite Rewards and Penalties) mechanism.

Among them, the Hierarchical
FIGURE 2

The GEPA model architecture.
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Goal Convergence Incentive Reward encourages the unmanned

vessel to approach the goal point step by step to accelerate the

training convergence; the Prior Trajectory Guidance Reward

utilizes the a priori knowledge of the path and provides

additional rewards when the intelligent agent approaches the

path, thus reducing ineffective exploration and accelerating the Q-

table update speed; Hierarchical Irregular Obstacle Avoidance

Penalty (HIOAP) makes the unmanned ship approach the

curvature boundary of the irregular obstacle and applies

progressive penalties to motivate the intelligent agent to actively

avoid obstacles.

During the iterative optimization process of reinforcement

learning, the intelligent agent stores historical decision trajectories

through the experience playback mechanism and updates the Q-

table using the DQN neural network to improve policy stability and

generalization ability. After several rounds of training, the

intelligent agent gradually learns to efficiently plan navigation

paths in dynamic environments and has the ability to

autonomous obstacle avoidance against complex irregular

obstacles. Ultimately, the training framework enables the

unmanned vessel to drive autonomously in complex marine

environments, taking into account navigation efficiency, path

smoothness and safety.
3.2 Agent module

In this study, we build upon the research methodology of (Chen

et al., 2019) and utilize the firstorder Nomoto model to simulate the

dynamic characteristics of unmanned ship, providing support for

the reinforcement learning-based intelligent ship agent system. The

Nomoto model, known for its simplicity and effectiveness, has been

widely applied in maritime research, as it accurately characterizes

the maneuverability and dynamic behavior of ships, offering a

theoretical foundation for the development of autonomous ship

navigating systems.

Through this motion model, the intelligent agent can obtain real-

time dynamic information, such as position, heading, and velocity,

within a simulation environment and make optimized control

decisions based on this data. The model incorporates key

parameters, including spatial coordinates, velocity, heading angle,

rudder angle, yaw rate, turning ability, and lag factor, to replicate the

dynamic behavior of ships. By integrating these factors, the first-order

Nomoto model provides a simplified yet effective framework for

simulating ship dynamics in autonomous navigating applications.

To facilitate the description of the position of the unmanned

ship, an XOY coordinate system is established, where the X-axis

coordinates denote the transverse position of the unmanned ship,

the Y-axis coordinates denote the longitudinal position of the

unmanned ship, and the heading angle is denoted by y. In

addition, the rudder angle d denotes the steering rudder angle, as

shown in Figure 3.

According to the first-order NOMOTOmodel, the position and

heading of the unmanned vessel are updated using Equations 1, 2,

which are given as follows:
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xk+1 = xk + v · sin y · Dt

yk+1 = yk + v · cos y · Dt

(
(1)

Dj = Kdk(t − T · e−t=T ) (2)

where the position variables xk and yk denote the lateral and

vertical positions of the unmanned vessel at time k, respectively.

During the update process, the ship’s transverse position xk and

longitudinal position yk are used to compute the transverse position

xk+1 and longitudinal position yk+1 at the next moment based on the

current heading angle y , velocity v, and time step Dt. Meanwhile,

the rate of change of heading angle Dj is computed by the

NOMOTO equation, which combines the rudder angle dk with

the steering lag coefficient T and steering capacity coefficient K ,

describing the effect of rudder angle change on yaw rate and its

response lag. By multiplying the yaw rate with the time step Dt, it is
possible to estimate the ship’s displacement in both the transverse

and longitudinal directions, thus updating the ship’s position.
3.3 Virtual channel environment

In order to realize effective ship autopilot simulation, several

virtual channel environments are constructed, in which several

irregular obstacles are randomly distributed to simulate the

obstacles in real navigation such as islands and reefs. The virtual

environments developed using Tkinter can dynamically display the

interaction between the ship and the obstacles to further enhance

the decision-making ability of the intelligent agent in complex

environments. The real and virtual environments are shown

in Figure 4.
3.4 Definition of prior knowledge

Prior knowledge refers to pre-acquired environmental

information and expert experience (Du et al., 2005). During the
FIGURE 3

The first order Nomoto ship model.
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training process of unmanned ship, we utilize pre-generated paths

from path planning algorithms as prior knowledge for the

unmanned ship. This pre-established experience serves as

guidance in the early stages of training and as a reference, thereby

reducing ineffective exploration and accelerating the convergence of

reinforcement learning.

In this study, we utilize trajectories generated by the Rapidly-

Exploring Random Tree (RRT) algorithm as the source of prior

knowledge. RRT is particularly well-suited for this purpose due to

its ability to efficiently generate feasible and collision-free paths in

complex, constrained environments, making it an ideal choice for

generating initial reference paths in maritime scenarios. However, it

is important to clarify that the core objective of introducing prior

trajectories is not to emphasize the superiority of any specific path

planning algorithm. Rather, the primary role of the prior trajectory

is to serve as a form of experiential guidance, allowing the RL agent

to navigate more efficiently during the early stages of learning. This

guidance reduces random exploration, ultimately accelerating the

learning convergence process.

While we have chosen RRT for this study, it is worth noting that

other classical path planning algorithms—such as A* or Dijkstra—

can equally be used as sources of prior knowledge. As long as these

algorithms can generate reasonable and feasible trajectories, they

can effectively guide the early exploration phase of the RL agent,

providing the same benefits in terms of training efficiency.

It should also be noted that since RRT is inherently designed to

work with regular, well-defined obstacle geometries, we adopted a

rectangular simplification method to approximate irregular

obstacles during the RRT path generation process. Specifically,

the outermost points of each irregular obstacle were used to

enclose it within a bounding rectangle to facilitate compatibility

with RRT and ensure efficient path planning. However, this

simplification was applied only during the prior path generation

phase. In the actual training and navigation process governed by
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reinforcement learning, the agent interacts with and avoids the true,

irregular obstacle boundaries, thereby preserving the realism and

complexity of the simulated maritime environment.
3.5 Hierarchical composite rewards and
penalties

3.5.1 Hierarchical goal convergence incentive
and prior trajectory guidance reward

In autonomous ship navigating systems, efficiency is reflected

not only in the vessel’s ability to successfully complete tasks but also

in achieving them within the shortest time and with minimal

energy consumption.

Inspired by (Yu et al., 2023), this study designs the Hierarchical

Goal Convergence Incentive (HGCI) and Prior Trajectory

Guidance Reward (PTGR) to guide Unmanned ship intelligent

agent along optimal paths efficiently through well-structured

rewards. The reward function incorporates prior knowledge

paths, those generated by the RRT algorithm, enabling the

intelligent agent to rapidly identify and select the most reasonable

navigating trajectory. The reward function is designed as in

Equations 3–8, which are given as follows:

n =

a, L < H
3

b, H
3 ≤ L ≤ 2H

3

c, 2H
3 ≤ L ≤ H

d, L ≥ H

8>>>>><
>>>>>:

(3)

path = min 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − xpathj )

2 + (y − ypathj )
2

q
, j ∈ 1,…, Jf g

h i
(4)

Dht =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − xpath)

2 + (y − ypath)
2

q
(5)
FIGURE 4

Real and virtual environment.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1598380
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2025.1598380
L =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − xstar)

2 + (y − ystar)
2

q
(6)

H = ygoal − ystar (7)

Rt =
n

(Dht)2
(8)

In the reward function, x and y are the horizontal and vertical

positions of the ship, L is the Euclidean distance of the ship from the

end point, and H is the vertical distance from the end point to the

starting point of the ship. The path of prior knowledge is generated

by points, so there are many paths. xpath and ypath are the horizontal

and vertical coordinates of the points on the RRT path closest to the

ship. The reward function Rt is the Hierarchical Goal Convergence

Incentive and Prior Trajectory Guidance Reward that we propose.

In the reward function, x and y are the horizontal and vertical

positions of the ship, L is the Euclidean distance of the ship from the

end point, and H is the vertical distance from the end point to the

starting point of the ship, the path of prior knowledge is generated

by points, so there are many paths and are the horizontal and

vertical coordinates of the points on the RRT path closest to the

ship, and that is the ship is the Hierarchical Goal Convergence

Incentive and Prior Trajectory Guidance Reward that we propose.

Hierarchical Goal Convergence Incentive and Prior Trajectory

Guidance Reward.

3.5.2 Hierarchical irregular obstacle avoidance
penalty

Safety is a critical factor in autonomous ship navigating, as

ensuring collision avoidance with obstacles and channel boundaries

is paramount to achieving a safe and efficient voyage. To address

this fundamental safety requirement, we propose the Hierarchical

Irregular Obstacle Avoidance Penalty (HIOAP), a reinforcement

learning-based penalty mechanism designed to guide Unmanned

ship intelligent agent in making effective obstacle avoidance

decisions in irregular environments. By incorporating a refined

hierarchical penalty structure, this mechanism enables autonomous

vessels to navigate complex maritime conditions more safely and

reliably. The penalty function is formulated as in Equations 9, 10,

which are given as follows:

di = min 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − xie)

2 + (y − yie)
2

q� �
, i ∈ 1,…, if g (9)

rtc = −
N

(di)
2 (10)

where direpresents the Euclidean distance between the vessel

and the center of the nearest obstacle, N is a hyperparameter used to

adjust the penalty intensity, and i depends on the number

of obstacles.

Different from traditional collision avoidance methods based on

regular boundaries, this study adjusts the asymmetry and complex

boundary shape of irregular obstacles. When calculating collision

avoidance path, the unmanned ship agent not only considers the

center point distance of the nearest obstacle, but also senses the
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curvature and shape of the boundary of irregular obstacles in real

time, and avoids obstacles by combining the curvature boundary

characteristics of irregular obstacles.

The hierarchical collision avoidance strategy introduced in this

study employs a progressive penalty mechanism, in which the

penalty value increases non-linearly as the autonomous vessel

approaches an irregular obstacle. This mechanism allows the

Unmanned ship intelligent agent to autonomously adjust its

heading to prevent entering high-risk zones. Experimental results

demonstrate that this approach significantly improves the accuracy

of collision avoidance decision-making, thereby enhancing the

ability of unmanned vessels to avoid obstacles in complex marine

environments. Furthermore, in comparison to traditional methods

that assume regularized boundary conditions, this approach

demonstrates greater adaptability to irregular obstacles with

asymmetric and intricate morphologies, leading to improved

stability and maneuverability in autonomous ship navigating.

By integrating the Hierarchical Goal Convergence Incentive

(HGCI), Prior Trajectory Guidance Reward (PTGR), and the

Hierarchical Penalty Function for Irregular Obstacle Avoidance

(HIOAP), this study proposes a comprehensive hierarchical reward

and penalty mechanism aimed at optimizing reinforcement

learning-based autonomous ship navigating. This mechanism

establishes a balance between safety and efficiency, ensuring that

unmanned vessels are encouraged to follow optimal paths efficiently

while simultaneously being penalized for approaching obstacles.

Ultimately, this hierarchical composite reward and penalty

mechanism enables autonomous ships to make smarter decisions,

effectively adapt to varied complex environments, and enhance

their operational performance in real-world maritime applications.
3.6 Training of unmanned ship intelligent
agent based on reinforcement learning

The GEPAmodel proposed in this study, an unmanned training

framework based on deep Q-network (DQN) reinforcement

learning, combines a first-order Nomoto motion model, a

hierarchical composite rewards and penalties mechanism and a

virtual ocean environment to optimize the path planning and

obstacle avoidance strategies of the intelligent agent, and to

improve the efficiency of the training and navigation safety. The

model includes an Agent Module, a Virtual Channel Environment

Module and a Hierarchical Composite Rewards and Penalties

Module, which work together to enable the intelligent agent to

gradually learn the optimal decision-making strategy in a complex

marine environment. The modules work together to enable the

intelligent agent to gradually learn the optimal decision-making

strategy in the complex marine environment and realize efficient

and stable autonomous navigating.

Prior to training, a path planning algorithm is used to plan a

priori knowledge paths and a reward and penalty function is used to

assign rewards to a priori knowledge paths. Then, during training,

the unmanned ship intelligent agent (Agent Module) first initializes

its state in a virtual channel environment, obtaining information
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about its own position (x, y), heading angle (y), velocity (v), and

surrounding obstacles. The state of the surface boat is passed as

input information to the Deep Q Network (DQN). The DQN

network outputs a Q-value for each possible action based on the

current state, which reflects the expected cumulative reward for

selecting a particular action in that state. The intelligent agent

selects the action with the highest Q-value and chooses the optimal

rudder angle d as the execution action based on ∈-greedy.

Subsequently, the intelligent agent updates the position and

heading angle based on the first-order Nomoto motion model to

simulate the actual ship dynamic response and performs the sailing

opera t ion in the v i r tua l mar ine env i ronment , thus

realizing autopilot.

The training core of reinforcement learning lies in dynamic

optimization based on environmental feedback. After the intelligent

agent executes an action, the environment calculates an immediate

reward based on a hierarchical composite reward and punishment

mechanism, which includes an endpoint proximity reward, an a

priori path guidance reward, and an irregular obstacle avoidance

penalty. The end-point proximity reward guides the intelligent

agent to navigate efficiently toward the target point and is

enhanced as the distance to the target is shortened; the a priori

path-guided reward is based on the path generated by the rapid

exploration random tree (RRT), which enables the intelligent agent

to optimize its travel along the existing paths, reduces the ineffective

exploration, and speeds up the update of the Q-table; and the

irregular obstacle avoidance penalty not only performs obstacle

avoidance based on the distance of the intelligent agent from the

center of the obstacles but also combines The irregular obstacle

avoidance penalty is not only based on the distance between the

intelligent agent and the center of the obstacle but also combines

with the curvature information of the obstacle boundary to adjust

the obstacle avoidance strategy and impose progressive penalties, so

as to optimize the autonomous obstacle avoidance capability and

ensure navigation safety.

The strategy of the intelligent agent can be expressed as a

function p(s), where s is the current state of the environment. The

intelligent agent updates the strategy at each time step by

interacting with the environment, using the time difference (TD)

error and the Bellman equation to optimize the decision-making

process. The Bellman equation is Equation 11.

Q(s, a) = Q(s, a) + a½r + gmax Q(s0, a0) − Q(s, a)� (11)

where Q(s,a) represents the Q-value for state-action pair (s,a), r

is the immediate reward, g is the discount factor, s0 is the next state,
a0 is the next action, a is the learning rate.

During the training process, the DQN intelligent agent collect

state-action-reward-next-state experiences by interacting with the

virtual channel environment. These experiences are stored in the

experience playback buffer M, which facilitates the intelligentsia to

sample batches of experiences to update the network parameters.

The intelligent agent samples experience batches from the playback

buffer and use these experiences to update the network weights and

minimize the difference between the predicted Q-value and the

target value derived from the Bellman equation. During training,
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the target Q network is updated every C rounds to improve the

learning stability, while the exploration rate decay strategy (ϵ-decay)
is used to gradually reduce the random exploration behaviors so

that the intelligent agent is more inclined to select high-return

actions in the later stages of training and accelerate the convergence.

Through this training framework, the unmanned ship

intelligent agent of the GEPA model gradually learns the optimal

unmanned ship piloting strategy, which enables it to perform

autopilot efficiently in the virtual marine environment. The

unmanned ship intelligent agent can not only avoid collision with

obstacles, but also realize rapid navigation route planning and path

adjustment, improve task completion efficiency, and adapt to

different marine scenarios.

The GEPA model constructs an optimized training framework

for autonomous navigating of unmanned vessels for autopilot

control of unmanned vessels by integrating DQN reinforcement

learning, first-order Nomoto motion model, hierarchical composite

reward and punishment mechanism, and irregular obstacle

modeling. The method combines the powerful adaptability of

deep reinforcement learning with the high-precision simulation of

the ship dynamic model, which can provide solid theoretical

support and technical guarantee for the autonomous ship

navigating technology in practical applications. Eventually, the

unmanned ship will be able to navigate efficiently and safely in

real marine environments, which provides an important reference

and reference significance for the development and application of

future unmanned vessels. The pseudo-code is as follows during the

training process, the DQN intelligent agents collect state-action-

reward-next-state experiences by interacting with the virtual airway

environment. These experiences are stored in the experience

playback buffer M, which facilitates the intelligentsia to sample

batches of experiences to update the network parameters. The

intelligent agent samples experience batches from the playback

buffer and use these experiences to update the network weights

and minimize the difference between the predicted Q-value and the

target value derived from the Bellman equation. During training,

the target Q network is updated every C rounds to improve the

learning stability, while the exploration rate decay strategy (ϵ-decay)
is used to gradually reduce the random exploration behaviors so

that the intelligent agent is more inclined to select high-return

actions in the later stages of training and accelerate the convergence.

Through this training framework, the unmanned ship

intelligent agent of the GEPA model gradually learns the optimal

unmanned ship piloting strategy, which enables it to perform

autopilot efficiently in the virtual marine environment. The

unmanned ship intelligent agent can not only avoid collision with

obstacles, but also realize rapid navigation route planning and path

adjustment, improve task completion efficiency, and adapt to

different marine scenarios.

The GEPA model constructs an optimized training framework

for autonomous navigating of unmanned vessels for autopilot

control of unmanned vessels by integrating DQN reinforcement

learning, first-order Nomoto motion model, hierarchical composite

reward and punishment mechanism, and irregular obstacle

modeling. The method combines the powerful adaptability of
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deep reinforcement learning with the highprecision simulation of

the ship dynamic model, which can provide solid theoretical

support and technical guarantee for the autopilot surface boat

system in practical applications. Eventually, the system will be

able to navigate efficiently and safely in real marine

environments, which provides an important reference and

reference significance for the development and application of

future unmanned vessels. The pseudo-code of the proposed

GEPA model is illustrated in Algorithm 1.
4 Experimental analysis

4.1 Basic parameters of the experiment

In this section, we experimentally evaluate a ship irregular

obstacle autopilot model based on prior knowledge and

hierarchical punishment. We develop three models by combining

hierarchical composite reward and punishment functions with deep

Q-network: the primary model (GEPA) and the secondary models

(GEPA-HG, GEPA-HVG). As a comparative benchmark, we

replicated the ADF model proposed by (Chen et al., 2019), which

only considers collision penalties and rewards for reaching the end

point. In addition, to further validate the modeling capability, we

also replicated the CurrenT-Nav model by (Du et al., 2022).

Through comparative analysis, we provide insights into the

performance of each model in different environments, especially

the navigating ability and safety in complex and irregular

obstacle courses.

ADF (Baseline Model): As the most basic reinforcement

learning model for unmanned boats, this baseline model only

contains simple endpoint rewards and obstacle penalties, the

reward mechanism is relatively basic, and does not have a priori

knowledge or hierarchical reward structure.

CurrenT-Nav (Baseline Model): Compared with the ADF

model, CurrenT-Nav further introduces a dynamic composite

reward mechanism and optimizes the reward structure to

enhance the model’s adaptability in complex environments, and

serves as a baseline model for comparison experiments. However,

the dynamic reward value of this model is large and not in the same

order of magnitude as the rewards of the other models, so this study

only uses it for navigation ability assessment.

GEPA: (Our Model), this model carries a comprehensive set of

hierarchical composite reward and punishment mechanisms,

including Hierarchical Goal Convergence Incentive (HGCI), Prior

Trajectory Guidance Reward (PTGR), and Irregular Obstacle

Avoidance Hierarchical Punishment Function (HIOAP), in order

to optimize the autopilot and obstacle avoidance strategies, and to

improve the training efficiency and navigational safety of

unmanned vessels.

GEPA-HG (Our Model - Variant 1): Horizontal Hierarchical

Reward Model for Piloting Strategies with A Priori Knowledge, this

variant uses a priori trajectory-inspired rewards, whose reward

value is based on the horizontal distance of the unmanned vessel

from the path of the a priori knowledge, which is different from the
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hierarchical goal-convergent incentives based on the Euclidean

distance computation of the GEPA model (HGCI) and the a

priori trajectory-guided rewards (PTGR). The reward function is

designed as in Equations 12–14.

GEPA-HVG (Our Model - Variant 2): Horizontal Vertical

Hierarchical Reward Model for Navigating Strategies with Prior

Knowledge This variant carries both hierarchical goal incentive

rewards and a priori trajectory incentive rewards. In this variant, the

hierarchical target incentive is based on the vertical distance

between the target point and the starting point, instead of the

Euclidean distance calculation in the GEPA model. Meanwhile, the

a priori trajectory incentive reward is still calculated based on the

horizontal distance between the unmanned ship and the a priori

knowledge path. The incentive function is designed as in Equations

15–19. The GEPA-HG incentive function formula is as follows:
Input:

Replay Buffer M, action-value function Q with random

weights q, target action-value function Q̂ with weight

q−
t = qt, exploration rate e with decay rate edecay,

Discount factor g, Batch size B, target network update

frequency C, maximum training episodes Nepisodes, random

number generator function Random(), hierarchical

composite reward function (HGCI + PTGR + HIOAP), RRT-

generated prior trajectory PRRT, RRT path planning

function Generate_RRT()

Generate prior trajectory PRRT using Generate_RRT()

for episode = 1 to Nepisodes:

Initialize vessel state s

Set Flag = False

while Flag:

r = Random() # Generate a random number

if r ≤ e:

Randomly select rudder angle action a

else:

Select optimal action a = arg maxa Q(s, a;q)

end if

Execute action a, observe new state s0

//Compute hierarchical composite reward

Compute Hierarchical Goal Convergence Incentive

(HGCI): RHGCI = f(dgoal)

Compute Prior Trajectory Guidance Reward (PTGR):

RPTGR = f(dRRT)

Compute Hierarchical Irregular Obstacle Avoidance

Penalty (HIOAP): RHIOAP = f(dobstacles)

Compute Total Reward:

RGEPA = RHGCI + RPTGR + RHIOAP

// Check termination conditions

if s0 reaches the goal:

RGEPA = Rgoal + RHGCI + RPTGR + RHIOAP

Flag = False

else if s0 collides with obstacles:

RGEPA = Robstacle + RHGCI + RPTGR + RHIOAP

Flag = False

end if
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Fron
// Store experience in replay buffer

Store (s, a, RGEPA, s0) in M

Sample a random minbatch of (sB,aB ,RB ,s
0
B) from M

Compute target Q-values:

yB = RB + gmaxa0Q(s0,a0, q)

// Perform gradient descent update

L(q) = 1
BoB(yB − Q(sB,aB; q))

2

Update Q-network parameters:

q← q − a∇qL(q)
if episode mod C = 0:

Update target Q-network:

q− ← q

end if

Update exploration rate:

e ← edecay
State transitions: s ← s0

end while

end for

End training
Algorithm 1. RL-based GEPA model for autonomous ship navigation.

path = min  x − xpathj

� �
, j ∈ 1,…, Jf g

� �
(12)

Dht = x − xpath (13)

Rt =
b

(Dht)2
(14)

where x is the horizontal position of the ship, xpathj  is the

horizontal position of the point of the j-th path, the path is the point

with the closest prior knowledge to the horizontal position of the

ship, xpath is the horizontal distance between the ship and the point

of the path. The GEPA-HVG reward function is formulated as

follows:

m =

e, y < H
3

f , H
3 ≤ y ≤ 2H

3

g, 2H
3 ≤ y ≤ H

h, y ≥ H

8>>>>><
>>>>>:

(15)

path = min  x − xpathj

� �
, j ∈ 1,…, Jf g

� �
(16)

Dht = x − xpath (17)

H = ygoal − ystar (18)

Rt =
m

(Dht)2
(19)

where x is the horizontal position of the ship, xpathjis the

horizontal position of the point of the j-th path, the path is the

point with the closest prior knowledge to the horizontal position of

the ship, xpath is the horizontal distance between the ship and the
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point of the path, and H is denoted as the vertical distance from the

end point to the start point of the ship.

Table 2 demonstrates the parameter configurations used in all

model experiments, ensuring consistency and fairness across

models. In particular, the first-order NOMOTO model was used

for the ship model parameters, taking into account the

maneuverability and motion response of the ship.

Furthermore, all models were trained using identical

reinforcement learning parameter settings, including the learning

rate, discount factor, and batch size, to eliminate potential bias

introduced by parameter discrepancies and to ensure the objectivity

and comparability of the experimental results.

Table 3 shows the hyperparameters of the different models in

the experiment, the following hyperparameters are only taken for

this experiment, showing the hyperparameter settings of the

different models in the experiment, including the key parameters

of the Hierarchical Composite Reward and Punishment Mechanism

and their variants’ specific values. It should be noted that the

hyperparameters listed in the table are only the values taken for
TABLE 2 Parameter settings for RL -Based ship models.

Item Value

Ship basic parameters

Length 94.2m

Width 47.1m

Initial position of agent (300, 30)

NOMOTO model parameters

K (Maneuverability Index) 0.08

T (Tracking Index) 10.8

Action Space
(Rudder Angle)

[−35,−30,−25,−20,−15,
−10,−5,0,5,10,15,20,25,30,35]

t (time interval) 5

v (Navigation speed) 5

Environmental parameters

Collision Penalty -30

Arrival Reward 100

Map Scale 600 × 800 pixels

Pixel-to-Real-
World Mapping

1 pixel = 4.71m

Terminal center coordinate (300, 785)

RL parameters

a (Learning Rate) 0.01

g (Discount Factor) 0.9

e (Exploration Rate) 0.95

edecay 0.001

Batch Size 32
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the settings of this experiment, which are used to verify the

effectiveness of the GEPA model in reinforcement learning

training, and do not represent its optimal choice in all

application scenarios.
4.2 Design of virtual channel environments

As shown in Figure 5, for the complex and irregular natural and

man-made obstacle environments in the navigation area of the ship,

we comprehensively consider the many situations that may be

encountered in reality, as well as the avoidance measures that

should be taken by the ship in different situations, and carefully

plan four irregular obstacle channels with significant features,

aiming to comprehensively test the autonomous navigation and
TABLE 3 Hyperparameter configurations for GEPA model and
its variants.

Hierarchical
Composite
Rewards and
Penalties

Hyperparameter

Value

Automatic navigating
level compound

reward and
punishment

variant
hyperparameter

Value

a 8 b 8

b 6 e 8

c 4 f 6

d 2 g 4

N 80 h 2
FIGURE 5

Four types of irregular obstacle channel environments.
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obstacle avoidance capabilities of unmanned ships in response to

irregular obstacles, namely Six-obstacle navigation channel

(Channel-1), the zigzag sharp turn six-obstacle channel (Channel-

2), the starboard restricted channel (Channel-3), and the port

restricted channel (Channel-4).

They have distinctive features: Channel-1, this channel is

specially designed with six obstacles of irregular shapes, sizes and

distributions to simulate the complex and changeable obstacle

environments in the real world, mainly for the unmanned ship to

be able to make simple twisting avoidance when encountering the

obstacles, and pass straight through after dodging an irregular

obstacle; Channel-2, this channel not only contains tightly

arranged irregular obstacles, but also sets up several large arc

curves and sharp turns at the end, to test the unmanned ship’s

ability of path planning, sharp turn avoidance, and dynamic

adjustment in emergency situations under extreme conditions.

Channel-3 and Channel-4, by concentrating the obstacles on one
Frontiers in Marine Science 15
side, the unmanned ship is tested to see if it will yaw and avoid

the obstacles.
4.3 Assessment of smart ship navigation
capabilities

This experiment evaluates the autonomous navigation

performance of the GEPA model compared to the traditional

model (ADF) and the comparison model (CurrenT-Nav), while

also referencing the path generated by the traditional path planning

algorithm (RRT). The experimental data is derived from the

autonomous navigation paths after 2000 training iterations, as

shown in Figure 6.

In Channel-2, the ADF model exhibited two sharp turns, which

pose significant risks in real-world ship navigation, potentially

causing severe oscillations or loss of directional stability. In
FIGURE 6

Ship navigating capability.
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Channel-3, the ADF model selected a more winding path with

dense obstacles, increasing the risk of collision. In contrast, the

GEPA model demonstrated smoother rudder adjustments, actively

choosing safer routes away from obstacles, thereby enhancing

stability and navigational safety. However, due to the impact of

the hierarchical composite reward and penalty mechanism, the

intelligent agent might sometimes over-avoid obstacles, leading to

slight deviations from the optimal path. The introduction of prior

knowledge mitigates this issue, allowing the intelligent agent to

optimize the navigation route while ensuring safety and

maintaining accurate positioning.

A comparison between the GEPA model and the RRT-generated

path reveals that GEPA produces smoother and more stable routes,

whereas RRT paths exhibit a higher degree of randomness, often

resulting in excessively winding trajectories, thereby increasing

navigation risks. Particularly in complex environments, the GEPA

model demonstrates superior path stability and operability compared

to traditional pathfinding algorithms.

In Channel-1, the ADF model navigates dangerously close to

obstacles, maintaining a shorter and less secure clearance distance.

The CurrenT-Nav model, compared to ADF, maintains a greater

safety margin, while the GEPA model actively selects safer routes,

further enhancing navigation stability. In Channel-2, where the

path involves dense obstacles and sharp turns, the GEPA model

successfully plans ahead for obstacle avoidance, ensuring shorter

and safer navigation routes, thereby exhibiting strong robustness. In

Channel-3 and Channel-4, where ships are required to make

significant rudder adjustments early on to avoid obstacles, the

GEPA model effectively anticipates the need for avoidance

maneuvers, selecting safe and efficient routes for navigation.

In Channel-1, the GEPA model demonstrates superior

navigating performance and a more optimized fitted path,

maintaining a greater clearance from obstacles. It also proactively

avoids the first encountered obstacle, ensuring higher safety levels.

In Channel-2, which features dense obstacles and requires sharp

turns near the end, the GEPA model maintains its robustness,

preemptively avoiding obstacles while keeping a safe distance and

selecting shorter, efficient routes. In Channel-3 and Channel-4,

where early-stage large rudder angle adjustments are necessary to

avoid obstacles, the GEPA model successfully executes preemptive

avoidance strategies and selects secure navigation routes, further

enhancing its autonomous navigation capability.
4.4 Evaluation of autonomous ship
navigating paths

To evaluate the impact of the hierarchical composite reward

and penalty mechanism on the path fitting performance of the

autonomous ship navigating model, this experiment tested three

different hierarchical composite reward models on various channels

and compared their generated paths with the prior knowledge path

(RRT path).

To further validate the impact of the hierarchical composite

reward and penalty mechanism on the effectiveness of path planning,
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we applied three hierarchical composite reward and penalty models

in different waterways and compared their performance against a

priori knowledge-based paths (RRTgenerated paths). As illustrated in

Figure 7, the experimental results indicate that the paths generated by

all three models closely resemble the a priori knowledge paths.

Moreover, they exhibit greater smoothness and reduced path

lengths compared to the original a priori paths. By manually

adjusting the safety distance of the a priori paths, we ensured that

the planned trajectories maintained a reasonable separation from

obstacles, thereby enhancing both the safety and maneuverability of

the generated paths.
4.5 Analysis of the first episode to reach
the destination for intelligent ships

After conducting exhaustive data analysis and comparative

evaluation, we performed a systematic experimental assessment of

the GEPA model, its two variants, and the ADF model. The

experimental results, presented in Figure 8, visualize the number

of training rounds required to reach the endpoint for the first time

and the corresponding variance across different fairways.

The experimental findings indicate that the GEPAmodel and its

variants, which incorporate prior knowledge guidance, required

fewer training rounds to reach the endpoint compared to the ADF

model. This result suggests that these models achieved faster

convergence toward the target point, with the GEPA model

demonstrating superior performance over the other models.

Specifically, in Channel 1, the GEPA model required only 36.3

rounds to reach the endpoint, representing a 27.8% reduction in

training rounds compared to the ADF model. This finding

highlights the ability of GEPA-trained agents to converge more

efficiently toward the optimal path. Similarly, in Channel 3, the

GEPA model exhibited a substantial efficiency improvement,

reducing the number of training rounds by 87.4% compared to

the ADF model, thereby significantly accelerating task completion

speed. These results validate the effectiveness of integrating prior

knowledge with reinforcement learning and demonstrate that the

introduction of a hierarchical composite reward and penalty

mechanism can further enhance training efficiency in unmanned

vessel autonomous navigating.

As illustrated in Figure 9, the average number of training

rounds required to reach the endpoint for the GEPA model was

36.3, 233.2, 143.7, and 95.0 across different fairways. The results

confirm that the GEPA model and its variants, when guided by

prior knowledge, required fewer training rounds than the ADF

model, with improvements of 14%, 35.5%, and 27.2%, respectively.

On average, the efficiency gains reached 22.7%, demonstrating that,

compared to traditional autonomous navigating strategies, ships

employing the GEPA model exhibited greater efficiency in target

point localization and significantly outperformed the traditional

ADF method in path planning performance. Furthermore, vessels

driven by the GEPAmodel achieved faster convergence to the target

point, enhancing overall autonomous navigating efficiency, while

the GEPA model outperformed its variant models.
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FIGURE 7

Ship navigation path results.
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Taken together, the experimental results confirm that all models

incorporating prior knowledge outperformed the original ADF

model in terms of efficiency. However, under the influence of a

more refined reward and penalty function, the GEPA model

demonstrated superior performance compared to its variants,

highlighting its enhanced effectiveness in optimizing.
4.6 Intelligent ship navigating path length
analysis

After conducting extensive experiments and performing

statistical analysis of the data, a line graph (Figure 9) was

generated, illustrating the average path lengths of different

pathfinding models across various waterways, thereby providing a

comparative analysis of efficiency performance.

The path optimization capability of the GEPA model was found

to be significantly superior to that of the other models across all test

channels. Its average path length remained the shortest in every

scenario, highlighting its high efficiency. Compared to the ADF

model, the GEPA model achieved path length reductions of 23.3,

69.63, 55.4, and 14.98 pixels across the four shipping lanes. This

outcome indicates that the GEPA model was able to plan

autonomous navigating paths more efficiently, thereby

minimizing unnecessary detours. Moreover, in comparison with

GEPA-HG and GEPA-HVG, the GEPA model demonstrated

superior path lengths in most cases, underscoring the effectiveness
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of its improved reward and punishment functions in optimizing

autonomous path planning.

This outstanding performance can be primarily attributed to the

GEPA model’s adoption of an advanced hierarchical composite

reward and penalty mechanism. This mechanism reinforces the

influence of prior knowledge paths, allowing the reinforcement

learning agent to converge toward efficient routes more rapidly,

while the progressive penalty mechanism effectively mitigates

unwanted path deviations. Furthermore, the traditional RRT

model, due to its high degree of randomness, frequently exhibits

significant distortions and irregularities in its generated paths,

leading to substantially longer path lengths than those produced

by other methods. These limitations make RRT-generated paths less

suitable for direct application in autonomous navigating tasks. By

contrast, the GEPA model successfully integrates prior knowledge

with reinforcement learning, optimizing path planning to not only

improve training efficiency but also enhance trajectory smoothness

and energy efficiency in unmanned ship autonomous navigating.
4.7 Safety performance evaluation of
autonomous ships in obstacle avoidance

In the safety performance analysis, the data presented in violin plot

(Figure 10) illustrates that the GEPA model consistently maintains a

significant safety margin from irregular obstacles across various

waterways, reflecting its exceptional safety performance. Under the
FIGURE 8

The first episode to reach the destination for intelligent ship.
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influence of the hierarchical obstacle penalty function, the GEPA

model successfully sustained a minimum safe distance of 15 pixels.

This result outperformed all other models, particularly the ADFmodel,

which maintained a safe distance of only 11 pixels. This finding

indicates that the ADF model’s navigating frequently brings it

dangerously close to obstacles, posing a substantial collision risk. The

outstanding performance of the GEPA model underscores its superior

safety in complex environments, as it effectively mitigates close

encounters with obstacles, thereby providing a reliable safety

guarantee for unmanned ship navigating.
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The core objective of this analysis was to assess whether

reinforcement learning-based unmanned ship intelligent agent could

effectively achieve collision-free autonomous navigating after

implementing the hierarchical penalty mechanism, thereby ensuring

higher safety standards. The data presented in Figure 10 further

reinforces this conclusion, showing that the GEPA model maintained

a safe distance of at least 17 pixels, whereas the ADFmodel’s minimum

safety distance was only 5 pixels. The GEPA model outperformed the

ADF model by 70.6% in maintaining a safe distance, further

highlighting its superior collision avoidance capabilities.
FIGURE 9

Ship navigating path length results.
FIGURE 10

Ship safety distance evaluation.
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The results of the ADF model indicate that its autonomous

navigating strategy frequently led to paths in close proximity to

obstacles, increasing the likelihood of collision risk. In contrast, the

GEPA model consistently maintained a significant safety distance

from irregular obstacles across various navigating scenarios,

demonstrating its robust safety performance. These findings

further confirm that the GEPA model enhances safety in complex

environments by effectively avoiding close encounters with

obstacles, ultimately providing a more reliable and secure

autonomous navigating solution.
4.8 Collision frequency assessment within
intelligent ship safety performance analysis

In Figure 11, we compare the number of obstacle collisions per

20 rounds over 2000 training iterations between the ADF and

GEPA models to evaluate their obstacle avoidance capabilities and
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overall safety performance in a complex marine environment. The

statistical results indicate that the ADF model exhibited a

significantly higher number of collisions than the GEPA model,

highlighting inherent limitations in its obstacle avoidance strategy,

which failed to effectively mitigate collisions in challenging

maritime conditions. Moreover, although both models exhibited a

certain degree offluctuation in collision frequency, the GEPAmodel

consistently maintained a lower collision rate, demonstrating its

superior robustness and adaptability in response to varied

environmental challenges.

Notably, the GEPA model fully integrates dynamic obstacle

avoidance considerations into its reinforcement learning strategy

through the implementation of a hierarchical composite reward and

penalty mechanism. This mechanism enables the intelligent agent

to anticipate and react to obstacles at an earlier stage, thereby

significantly reducing unnecessary collisions. In contrast, the ADF

model fails to effectively leverage environmental information,

resulting in a higher risk of collision under more complex
FIGURE 11

Evaluation of ship collision frequency.
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waterway conditions. The experimental findings further validate

that a well-designed reward and penalty mechanism not only

substantially reduces the collision probability of autonomous

agents but also optimizes path planning and enhances the safety

and stability of autonomous ship navigating. This research provides

critical theoretical insights and practical contributions to the safety

optimization of reinforcement learning applications in the field of

unmanned ship autonomous navigating.
5 Summary and future prospects

In this study, a reinforcement learning-based autonomous ship

navigating strategy that integrates prior knowledge with a

hierarchical reward and penalty mechanism is proposed to

enhance the maneuverability and obstacle avoidance performance

of unmanned ships operating in complex marine environments.

This approach directly addresses the safety and efficiency challenges

currently faced by the global smart shipping industry. Experimental

results demonstrate that the proposed GEPA model exhibits

remarkable training efficiency and superior autonomous

navigating stability across multiple test environments. By

incorporating prior knowledge, reinforcement learning agents are

able to minimize ineffective explorations and accelerate Q-value

updates in the early training phase, thereby significantly enhancing

the convergence efficiency of the learning process. Comparative

experiments reveal that, relative to traditional methods, the GEPA

model reduces the number of training rounds required for task

completion by 24.85%, improves path planning efficiency, and

enhances trajectory smoothness by mitigating unnecessary

heading fluctuations, ultimately leading to improved autonomous

navigating stability.

Furthermore, the hierarchical reward and penalty mechanism

embedded in the GEPA model effectively optimizes the

reinforcement learning-based obstacle avoidance strategy, enabling

unmanned ship intelligent agent to make more precise navigational

decisions in complex maritime environments. Experimental data

indicate that this mechanism improves the safety distance of the

unmanned vessel by 70.6% and significantly reduces collision

occurrences, validating the robustness and reliability of the model

in complex maritime settings. Additionally, this study incorporates

irregular obstacle modeling, which more accurately simulates real-

world maritime conditions and enhances the autonomous decision-

making capabilities of unmanned vessels. This advancement enables

ships to adjust their navigating strategies, thereby enhancing

autonomous obstacle avoidance capabilities when confronted with

obstacles of complex morphology.

Despite these notable achievements, it is important to

acknowledge that the present study primarily addresses static

environmental conditions and does not yet account for dynamic

maritime challenges such as mobile obstacles, ocean currents, or

stochastic environmental disturbances. To improve the model’s
Frontiers in Marine Science 21
real-world applicability, future work should aim to extend the

GEPA framework to dynamic scenarios. Structurally, the

framework is amenable to such extensions. For example, real-time

path replanning algorithms—such as Time-Variant RRT (TV-

RRT), D*-Lite, or Model Predictive Control (MPC)—could be

integrated to allow continuous adaptation to changing

environmental stimuli. Moreover, dynamic reward shaping

mechanisms can be introduced to account for predicted obstacle

trajectories, velocity fields, and evolving goal positions, thereby

enhancing the agent’s temporal responsiveness.

Additionally, the incorporation of real-time environmental data—

such as wind speed, ocean current vectors, and marine traffic density—

would enhance the situational awareness and generalization capacity of

the learning agent. This could be further supported by online

reinforcement learning techniques, which would enable continual

policy adaptation under dynamic conditions. Future research may

also consider incorporating dynamic environmental modeling

components, including current fields, vessel interactions, and multi-

agent cooperation strategies. These developments will collectively

enable the GEPA framework to transition from simulation-based

scenarios to real-world maritime applications, ultimately providing a

robust, intelligent, and safety-assured navigation solution in highly

uncertain oceanic environments (Alam et al., 2023).
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