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Causality-driven localization
method for improving ensemble-
based Kalman filters in strongly
coupled data assimilation system
Tian'ao Wang, Xuan Wang*, Lige Cao, Wei Li and Guijun Han

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and
Technology, Tianjin University, Tianjin, China
Strongly coupled data assimilation (SCDA) is a critical tool for improving Earth

system predictions by directly integrating observational data into coupled

numerical models that simulate interactions among atmospheric, oceanic, and

terrestrial components. However, SCDA faces significant challenges, including

high sensitivity to hyperparameters such as localization and difficulties in

diagnosing cross-component interactions. These challenges can arise in

ensemble-based Kalman filters, a primary category method used in SCDA, due

to limited ensemble sizes. This study introduces a novel causality-driven

localization method for SCDA utilizing the Liang-Kleeman (LK) information

flow. By transforming the empirical determination of localization parameters,

as done in the conventional Gaspari-Cohn (G-C) localization method, into a

quantitative assessment of causal dependence strength, the LK information flow

generates an anisotropic localization method that provides a physically

constrained framework for SCDA. Through twin experiments using the

Ensemble Adjustment Kalman Filter (EAKF) based on an intermediate

atmosphere-ocean-land coupled model, the LK-based SCDA is found to

outperform the G-C localization method. The LK method captures variable

heterogeneity, directional asymmetry, and spatial heterogeneity in component

interactions, leading to faster stabilization andmore accurate assimilation results,

with these improvements being particularly pronounced in small ensemble sizes.

These findings highlight the potential of causality-driven localization to enhance

the robustness and efficiency of SCDA, particularly in complex, multi-

component systems.
KEYWORDS

strongly coupled data assimilation, EAKF, localization, adaptive method, causal analysis
1 Introduction

The Earth system represents a complex network of interactions among atmospheric,

oceanic, and terrestrial components, functioning across various spatial and temporal scales.

To improve the accuracy of Earth system predictions, coupled data assimilation (CDA) has

emerged as a pivotal technology. It can integrate observational data into the coupled
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numerical models that simulate the interactions among different

components of the Earth system. Unlike conventional data

assimilation (DA) methods, which typically focus on a single

component (e.g., atmosphere or ocean), CDA explicitly considers

the instantaneous interactions and feedback between these

components, leading to more consistent and physically

balanced predictions.

Currently, CDA methodologies are broadly categorized into

two types: Weakly Coupled Data Assimilation (WCDA) and

Strongly Coupled Data Assimilation (SCDA). In WCDA,

observations are assimilated independently into individual

components, with the coupling between components managed

externally to the assimilation process. Conversely, SCDA directly

incorporates observations from one component to update the states

of other coupled components using the cross-covariance between

different components. Previous studies have highlighted the distinct

advantages possessed by both WCDA and SCDA (Han et al., 2013;

Lu et al., 2015; Goodliff and Penny, 2022). However, when

considering the physical processes of the real world, SCDA is

generally regarded as more advantageous (Sluka et al., 2016;

Penny et al., 2019; Frolov et al., 2023). Nevertheless, the

implementation of SCDA presents significant challenges,

including high computational costs due to the complexity of

coupled models and assimilation systems, as well as difficulties in

diagnosing and correcting errors within individual components.

Despite these challenges, advancements in computational power

and assimilation techniques have driven efforts to optimize SCDA

for application in coupled systems.

The Ensemble Kalman Filter (EnKF; Evensen, 1994; 1997; Burgers

et al., 1998) and its variants are widely employed in SCDA due to their

effective balance between computational feasibility and covariance

estimation accuracy. The Ensemble Adjustment Kalman Filter

(EAKF; Anderson, 2001; 2003) is a deterministic variant of the

EnKF. Unlike the EnKF that applies random perturbations to

observations, the EAKF adjusts the ensemble mean and

perturbations through linear transformation to ensure that the

analyzed ensemble satisfies the optimal estimation of the Kalman

filter, avoiding additional noise introduced by perturbed observations

(Anderson, 2001; 2003). To improve the computational efficiency of

EnKF and its variants, researchers attempted to reduce the required

ensemble size by enhancing error covariance estimation techniques.

However, smaller ensembles amplify sampling errors, leading to

spurious correlations, especially when quantifying cross-component

interactions (Anderson, 2007). To address this issue, techniques such as

the localization based on the Gaspari-Cohn (G-C) function, the

empirical localization function, and inflation have been widely

implemented, yielding favorable outcomes (Houtekamer and

Mitchell, 1998; Houtekamer et al., 2005; Houtekamer and Zhang,

2016; Gaspari and Cohn, 1999; Anderson, 2007; Anderson and Lei,

2013; Lei and Anderson, 2014a, 2014b). Despite their popularity, most

of thesemethods are static and empirically based, making it challenging

to achieve an objective analysis of interactions among different

components in complex systems. Although some empirical and

correlation-based localization methods have recently demonstrated
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effective results in SCDA (Yoshida and Kalnay, 2018; Chang and

Kalnay, 2022; Stanley et al., 2024), the sensitivity of SCDA to

hyperparameters—especially localization—becomes pronounced

under small ensembles (Miwa and Sawada, 2024). Consequently,

empirical debugging may compromise the reliability of these

methods, posing a significant challenge to further improving the

performance of SCDA.

To effectively estimate error covariance among different

components using small ensembles, it is essential to objectively

identify the multiscale interactions between various components.

Causality analysis, which is regarded as a more rigorous approach

than correlation for examining interactions among different

components (Pearl and Mackenzie, 2018), has been successfully

applied across diverse fields such as ecology, economics, and

climate science (Stips et al., 2016; Hagan et al., 2019; Lu et al.,

2023). Among the methods of causal analysis, the Liang-Kleeman

(LK) information flow method stands out as an innovative approach.

Derived from fundamental principles, the LK method effectively

distinguishes genuine physical interactions from spurious

covariations, providing a logical framework for inferring causality

in physical systems (Liang, 2014; Liang et al., 2021). Critically, this

causality-based approach is particularly well-suited for coupled

atmosphere-ocean systems, where cross-component influence is

strongly asymmetry. Due to fundamental differences in spatial

scales, adjustment timescales, and energy propagation mechanisms,

the influence footprint of ocean observations (e.g., SST) on the

atmosphere often extends over broader or differently shaped

regions than the influence of atmospheric observations on the

ocean. This inherent asymmetry provides a compelling physical

motivation for employing causality-informed, directionally sensitive

localization schemes like the one proposed. The LK method’s logical

and objective nature renders it a valuable tool for SCDA systems by

leveraging this directional causality. Specifically, by identifying

distinct causal regions for ocean-to-atmosphere versus atmosphere-

to-ocean influences, robust and physically consistent localization

areas can be determined. This effectively suppresses non-physical

correlations while preserving the essential asymmetric coupling

mechanisms. Its successful applications in atmosphere-ocean

analysis studies (Stips et al., 2016; Rong and Liang, 2022)

underscore its potential for estimating meaningful cross-component

covariance structures under these complex dynamical interactions.

To enhance the accuracy of the SCDA using an ensemble-based

Kalman filter, this study proposes a localization method based on

LK information flow for SCDA. To evaluate the proposed method,

we employ an intermediate atmosphere-ocean-land coupled model

and utilize the EAKF as a case study. The performance of the LK-

based method is assessed through twin experiments and compared

with the conventional G-C localization method.

In this study, Section 2 describes the methods involved, including

the EAKF, the G-C function, and the LK information flow-based

localization method. Section 3 presents the numerical model used for

testing and the design of the twin experiments. The results are

detailed in Section 4, followed by a discussion in Section 5, and

concluded in Section 6.
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2 Methodology

2.1 Description of EAKF and G-C function

The EAKF (Anderson, 2001, 2003), as a variant of the EnKF,

incorporates the observation error into the ensemble adjustment.

Under the assumption that observation errors are uncorrelated, the

EAKF can sequentially assimilate observations. The implementation

of the EAKF for observation yo can be summarized by the following

two steps:

First, the observational increment Dyi can be calculated using

Equation 1:

Dyi =
(s p

y )2

r2 + (s p
y )2

(yo − �yp) +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2 + (s p
y )2

s
− 1

 !
(ypi − �yp)  , (1)

where i represents the ensemble member; ypi denotes the ith

prior ensemble member of yo, which is usually computed by

interpolating the ith prior ensemble member of a state variable to

the observation location, �yp and s p
y represent the prior ensemble

mean and standard deviation of ypi , respectively, which can be

calculated from ypi , and r denotes the standard deviation of

observation error.

Second, the observational increment calculated above can be

projected to each model grid according to Equation 2:

Dxi,j =
covpj,y
(s p

y )2
Dyi  , (2)

where Dxi,j represents the state increment of jth  state variable

for the ith ensemble member, covpj,y is the prior error covariance

between xi and yo.

However, accurately estimating the correlation between state

variables and remote observations is challenging with a limited

ensemble size. To reduce the influence of spurious correlations

between observation and state variables, Gaspari and Cohn (1999)

employ the localization factor rj,y , Equation 2 can be updated as

follows:

Dxi,j = rj,y
covpj,y
(s p

y )2
Dyi  , (3)

where rj,y represents the localization factor between the state

variable xj and the observation yo, the factor is determined using the

G-C function as illustrated in Equation 4 (Gaspari and Cohn, 1999).
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3 (
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a )
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0,       b > 2a

8>><
>>:

(4)

where b represents the spatial distance between the state

variable xj and the observation yo, and a represents the maximum

radius within which an observation yo can affect. In this study, a is

also referred to as the optimal influence radius.
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2.2 LK information flow-based localization
method for SCDA

LK information flow, proposed by Liang and Kleeman (Liang

and Kleeman, 2005), is an information-theoretic method for causal

analysis. It investigates the potential information transfer processes

between components, quantifying their causality by calculating

information flow values to determine the strength of one

component’s causal influence on another. Unlike conventional

correlation analysis, the LK information flow is a method for

calculating causality. Liang (2014) strictly proved that causality

necessarily implies a correlation, but correlation does not

necessarily imply a causality. Therefore, the LK information flow

has the potential to remove spurious correlations.

To explore causality between two components, the information

flow between them can be calculated using their time series

according to Equation 5 (Liang, 2014).

T2→1 =
C11C12C1,d1 − C2

12C1,d1

C2
11C22 − C11C2

12
(5)

where T2→1 represents the flow of information from variable 2

to variable 1, C represents the covariance between the two variables,

and C1,d1 represents the covariance of the Eulerian priors of variable

1 with itself. If T2→1 is not equal to zero and it successfully passes

the significance test, then variable 2 can be considered a causal

factor of variable 1. For more details regarding the significance test,

please refer to Liang (2014).

As mentioned above, LK information flow quantifies the process

of information transmission, facilitating the determination of

causality between two variables and elucidating the direction of this

causality. This approach addresses the limitations of the G-C function

in applications related to SCDA and supports the development of

various localization methods tailored to different components. It

should be noted that the LK information flow used in this study is

calculated from sufficiently long time series prior to DA, and it is

assumed that the causal relationships derived from the LK

information flow remain unchanged during the DA process.

Therefore, the LK information flow-based localization method also

remains fixed throughout the entire assimilation. Specifically, the

steps involved in the LK information flow-based localization method

for a single ‘State variable (i)’ are shown in Figure 1. Initially, the

Equation 5 is used to sequentially calculate the LK information flow

from observations to ‘State variable (i)’, retaining only those

observations that meet the significance test criteria. Subsequently,

the maximum distance ‘a’ is derived, representing the furthest

distance between the grid point of state variable (i) and the

observation points that successfully pass the LK information flow

significance test. In this localization framework, distance ‘a’ signifies

the maximum range at which observations can influence the state

variable (i). Ultimately, this distance is utilized to assign weights to

these observations through the G-C function. By repeating this

process, the LK information flow-based localization method for any

state variable can be effectively implemented. The distinct
frontiersin.org
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information flow between observations and state variables can be

estimated for each ensemble result. Their intersection serves as the

foundation for defining the localization area. Consequently, Equation

3 can be reformulated as follows:

Dxi,j = IFj,irj,y
covpj,y
(s p

y )2
Dyi, IFj,i =

0,Tobs(i)→grid(j) = 0

1,Tobs(i)→grid(j) ≠ 0

(
(6)

where IFj,i, represents the information flow from the ith

observation to the jth model grid, which can be treated as a

binary filter.

The LK information flow is utilized in the SCDA to not only

identify the localization range but also quantify the maximum

distance ‘a’ where a causal link is formed. Through the

integration with G-C function, a non-empirical localization range

that inherently reflects causality can be identified based on

information flow analysis, and the corresponding adjusting

parameter ‘a’can provide adaptive weights based on the G-

C function.
3 Numerical model and twin
experiment

3.1 Intermediate atmosphere-ocean-land
coupled model

The intermediate atmosphere-ocean-land coupled model (Wu

et al., 2012) utilized in this study comprises three main components:

a global spectral barotropic atmospheric model, a 1.5-layer

baroclinic ocean model, and a simplified land model. These

components are interconnected through a specific coupling
Frontiers in Marine Science 04
method designed to simulate the interactions among the

atmosphere, ocean, and land. All three model components adopt

64 × 54 Gaussian grid.

The atmospheric component is represented by a global spectral

barotropic model as shown in Equation 7, which employs the

potential vorticity conservation equation, while accounting for the

nonlinear effects of vorticity advection.

∂ q
∂ t

+ J(y , q) =
l(To − my ) ocean surface

l(Tl − my ) land surface

(
(7)

where q = by +m2y , b = df
dy, f denotes the Coriolis parameter, y

represents the northward meridional distance from the equator, J( · )

represents the Jacobian operator, y represents the geostrophic

atmosphere stream-function, l is the flux coefficient from the

ocean (land) to the atmosphere, To and Tl denote sea surface

temperature (SST) and land surface temperature (LST) respectively,

and m is a scale factor that converts stream-function to temperature.

The ocean is represented by a 1.5-layer baroclinic ocean model

shown in Equation 8, which incorporates a slab mixed layer and

simulates upwelling through a stream-function equation.

∂
∂ t ( −

j
L20
) + b ∂

∂ x j = gm2 y − Kq m
2 j

∂To
∂ t + u ∂To

∂ x + v ∂To
∂ y − Khj = −KTTo + AT m2 To + s(t , t) + Co(To − my )

8<
:

(8)

where j is the oceanic stream-function, L20 =
g 0

f 2 h0 is the oceanic

deformation radius, g 0 is the reduced gravity and h0 is the mean

thermocline depth, g  is the momentum coupling coefficient

between the atmosphere and the ocean, Kq is the horizontal

diffusion coefficient of the oceanic stream-function, KT and AT

are the damping and horizontal diffusion coefficients of sea surface

temperature (SST), respectively, Kh = KT � k � f
g 0 represents the
FIGURE 1

LK information flow-based localization method for single ‘state variable (i)’.
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intensity of upwelling, k is the ratio of upwelling to damping, Co is

the flux coefficient from the atmosphere to the ocean s(t , t) is the
solar radiation forcing that introduces the seasonal cycle.

The land is modeled using a simple linear approach that

simulates the evolution of land surface temperature as illustrated

in Equation 9.

m
∂Tl

∂ t
= −KLTl + AL m

2 Tl + s(t , t) + Cl(Tl − my ) (9)

where m represents the ratio of heat capacity between the land

and the ocean mixed layer, KL and AL are damping and diffusive

coefficients, respectively, and Cl denotes the flux coefficient from the

atmosphere to the land.

The atmospheric model is coupled with the ocean model through

flux terms that represent exchanges at both oceanic and terrestrial

surfaces. These flux terms are integrated into the potential vorticity

conservation equation. The ocean model provides feedback to the

atmospheric model via its stream-function equation and heat flux

terms, which characterize energy and momentum exchanges between

the ocean and the atmosphere. Furthermore, the ocean model is

coupled with the land model through heat flux terms that describe

energy exchange between the ocean and the land. The land model,

represented by a simple linear equation, simulates the evolution of land

surface temperature and incorporates feedback from the land surface

to the atmospheric model by accounting for heat exchange between the

atmosphere and the land surface. All three model components-the

atmosphere, ocean, and land-utilize the same 64 × 54 Gaussian grid

and are solved using the Leapfrog time integration method with a half-

hour time step. An Asselin-Robert time filter is introduced to suppress

spurious computational modes that arise from the Leapfrog time

integration. Additional information regarding the coupled model,

including default parameter settings, can be found in Wu et al. (2012).
3.2 The twin experiment design

To validate the effectiveness of the proposed method, we

conducted twin experiments to ensure experimental stability and

mitigate performance evaluation errors arising from uncontrolled

data uncertainty.

The true model is first created to serve as the baseline system

and then used to generate a biased version and an observation

system. This true model is initialized with climatological averages

Z0 = (y 0,j0,T0
o ,T

0
l ), and executes a 55-year integration, with the

first 50 years serving as spin-up and the final 5-year outputs

constituting the true value. To evaluate the assimilation

performance, parameter biases (1.1 times the true values) are

introduced to establish the biased model. The model’s outputs

provide the prior estimates for subsequent analysis. In this

configuration, the systematic errors arise from perturbations in

model parameters. Same as the true model, the biased model is also

initialized with Z0 = (y 0,j0,T0
o ,T

0
l ), and executes a 50-year

integration as spin-up. Following previous studies (Wu et al.,

2012; Cao et al., 2024), Gaussian white noise with a standard
Frontiers in Marine Science 05
deviation of 106 m2s−1 for y, 102 m2s−1 for j and 1 K for To, and

Tl is added as observation errors on the 64×54 Gaussian grid to

generate ‘observations’ (Figure 2), where these error magnitudes are

set to 4% of the global mean natural variability. The sampling

frequencies are 6 hour for y and 1 day for j, To, and Tl fields, due to

distinct temporal scale of different components.

In this experimental framework, the EAKF is employed to

conduct a 5-year state estimation experiment, with the evaluation

of results based on the last 5 years of the biased model. As

summarized in Table 1, the assimilated variables include y, j, To,
and Tl. The assimilation processes for y, j , and To not only

leveraged their own respective observations but also integrated

cross-component observations from the other two variables. In

contrast, the Tl is solely assimilated using its own observations

because it is simulated through a relatively simple and semi-

independent structure, which results in weak coupling

interactions with other components. The biased model is

initialized for a 50-year period to generate the biased initial states

of Z1 = (y 1,j1,T1
o ,T

1
l ). The ensemble initial states of y are

produced by superimposing a Gaussian white noise (with a

standard deviation of 106 m2s−1) on  y 1, whilej, To, and Tl

remain unchanged. The inflation method adopts the adaptive

inflation algorithm proposed by Anderson (2007). To facilitate a

comparison with the localization method based on LK information

flow, the optimal local radii in conventional G-C for y and Tl are set

at 1,500 and 1,000 km, respectively. The optimal local radius for

both j and To is defined as 1,000 km × cos [min (latitude, 60)],

following the study outlined according to Cao et al. (2024). The

sensitivity of the LK method to ensemble size is evaluated using

configurations N = [5, 10, 20, 30, 40], with specific analysis focused

on the N=20 case.

The proposed LK information flow-based localization method

is tested within the twin experiment. To evaluate its effectiveness

and assess the differences between causal and correlational effects

on assimilation, the assimilation results are compared with those

based on the conventional G-C method in SCDA system. Since an

optimized localization can accurately reflect the complex

relationships between components and enhance the effectiveness

of SCDA, the localization results will thus be discussed first in the

next section.
4 Results

The localization results estimated using the LK information

flow are compared with the optimal localization radius obtained

from the G-C method, followed by an analysis of their

corresponding SCDA results. For the LK information flow

estimation, a time series consisting of 9600 output times is

selected to ensure both efficiency and effectiveness. This length is

chosen because a time series that is too short may not satisfy the

fundamental assumption of ergodicity, potentially leading to

inaccurate results, whereas an excessively long time series would

increase the consumption of computational resources.
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4.1 The localization results

The localization results based on LK information flow in SCDA

are calculated using Equation 5. Where Tobs(i)→grid(j) is estimated

based on the time series from the observation at the ith point to the

state at the jth point with a significance test conducted. Liang (2008)

pointed out that the values of LK information flow in this context

are not directly comparable. Therefore, this study focuses solely on

the existence of LK information flow.

Since constructing LK information flow-based localization

method requires utilizing the area of LK information flow shown

in Figure 3, this result was generated before the first DA cycle. In

Figure 3, two grid points were selected for demonstration. The first

point is located in the tropical Pacific Ocean, a region dominated by

El Niño–Southern Oscillation (ENSO) dynamics. The second point

resides in the South Pacific, an area influenced by the Antarctic

Circumpolar Current (ACC) and prevailing westerlies. While air–

sea interactions at both locations exhibit high activity and intrinsic

asymmetry, their underlying physical drivers differ significantly.

Figure 3a illustrates the existence range of LK information flow

from y to j, demonstrating the influence range of y on j. To
compare the influence of the same variable on other variables at the

same point, the existing range of LK information flow from y to To

is presented in Figure 3b. This indicates that the influence range of

LK information flow calculated from y to j at the same point differs
Frontiers in Marine Science 06
from that calculated from y to To. This finding underscores that the

influence range of one variable on each of the other variables varies

at the same point. The LK information flow effectively captures this

variable heterogeneity, highlighting the differing influence ranges of

a variable across multiple variables, which is particularly critical in

multi-component systems like SCDA.

To investigate the directional relationship between the two

variables, Figure 3c presents the estimated influence range based

on LK information flow from j to y at the same point. In contrast

to Figure 3a, the weights between the same variable pair y and j
exhibit a distinct pattern and range when considering the inherent

causal direction. This observation suggests that even for the same

pair of variables, accounting for the directionality of causal

interactions reveals asymmetric influence: the y at point A may

significantly drive the j at point B, whereas j at this point of B does

not necessarily exert an equivalent influence on y at A. If their

influences were symmetric, Figures 3a and c would depict identical

influence ranges—a phenomenon that is rarely observed in practice.

This directional asymmetry is often overlooked by conventional

correlation analysis, which assumes relationships to be undirected

and homogeneous. The same finding can also be observed in

Figure 3d, which illustrates the area and value of LK information

flow from To (sea surface temperature) to y (atmosphere stream-

function) at the same grid point as in Figure 3b.

To investigate whether the relationship between the same two

variables exhibits different variations across different points,

Figure 2 in supplementary plots the influence range estimated

based on LK information flow from y to j at another point. It

shows that the ranges to which y at two distinct points influence j
are drastically different. This indicates that the intrinsic relationship

between variables manifests uniquely at each point, exhibiting

spatial heterogeneity. This spatial heterogeneity underscores the

unique advantages of causal analysis.

As demonstrated by the results, the relationship between the

two components exhibits variable heterogeneity, directional
FIGURE 2

Location of observations, j/To (blue “+”), Tl (brown “+”), y (all “+”).
TABLE 1 The SCDA schemes.

State variables Observations

y (Atmosphere stream-function) y, j, and To

j (Oceanic stream-function) j, y, and To

To (Sea surface temperature) To, y, and j

Tl(Land surface temperature) Tl
frontiersin.org

https://doi.org/10.3389/fmars.2025.1600634
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1600634
asymmetry, and spatial heterogeneity—characteristics clearly

identified and analyzed through the LK information flow. This

demonstrates the strengths of causal analysis. Through a

comprehensive analysis of these relationships among components,

we facilitate an accurate estimation of the cross-component

localization parameter, which plays a crucial role in SCDA.

Based on the analysis of the causality between two components,

the observational information at a specific point can affect certain

aspects of the surrounding model state field. Considering its

application in the DA process for coupled systems, the

localization area and weights can be estimated based on the range

and corresponding magnitude of observations that influence the

update of a state variable at a computational grid point as calculated

according to Equation 6.

As with Figure 3, the two representative grid points shown in

Figure 4 are respectively situated in the ENSO-dominated tropical

Pacific Ocean, and the South Pacific region modulated by the ACC

and prevailing westerlies. Figure 4b illustrates the influence range

and corresponding weights from the observation of y to the state

variable To at this point, indicating the localization range for the

state variable. For comparison, the same localization results based

on G-C estimation at the same grid point are presented in Figure 4a.

As shown, the localization area in Figure 4a appears as a region with

a fixed radius. The G-C method determines the optimal localization

radius through empirical trials. In contrast, the localization results

estimated by LK information flow exhibit irregular variation (non-

isotropic). This indicates a discrepancy between the areas estimated

by the two methods. This means that in the assimilation process to

update the y at the target point, observations of To at certain points,

although utilized based on the G-C localization, are actually not

used according to LK information flow analysis. Because, according

to the judgment of LK information flow, the observations from

these points are not deemed to have a direct relationship with the y
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at the target point, and therefore cannot be employed to update the

state variables at this location. Moreover, some observations,

despite being distant and outside the optimal localization radius

of the G-C, are used to update the states at the target point due to

their direct causality with the variables requiring updates.

Similar findings can be observed between Figures 4c and d,

where the localization results for the observation of y used to

update the state variable j at the same point are presented. Notably,

for the same observation information of y, when the state variables

that require updating at this computational grid point change, the

corresponding localization range and weights also vary. This further

indicates that, when updating state variables at a specific point, the

observation area required for assimilation is not necessarily

identical for different state variables based on the same observed

information. In other words, each state variable in the assimilation

process, even when located at the same computational grid point,

necessitates distinct regions and weights of observational

information, reflecting the uniqueness of the variable. This

uniqueness is challenging to capture using the G-C method.

Conversely, the LK information flow-based localization method

effectively distinguishes the varying degrees of influence that the

same observation exerts on different state variables. This capability

is particularly crucial for coupled systems, such as atmosphere-

ocean-land models.

In comparison with Figures 4c and d, the impact of the

observation y on updating the state variable j at another

computational grid is illustrated in Figures 4e and f. The results

of the LK information flow analysis indicate that when identical

observations are employed to update the same state variable, both

the range of required observations and their corresponding weights

vary according to changes in the computational grid points. This

finding suggests that the LK information flow-based localization

method effectively differentiates the magnitude of influence exerted
FIGURE 3

An example of the area and value of LK information flow from (a) y (atmosphere stream-function) to j (oceanic stream-function), (b) y to To (sea
surface temperature), (c) j to y and (d) To to y. Where “C” (black) represents the model grid; The value of LK information in this figure has all
undergone logarithmic transformation.
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by observation data on the state variable at various locations. Such

spatial heterogeneity may reflect the distinct localized physical

environments and dynamic mechanisms surrounding each grid

point, which cannot be captured by the G-C method that enforces

uniform influence patterns across all grid points.

Overall, when updating a state variable, the LK information

flow method, in contrast to the G-C method which assumes

isotropic relationships between state variables and surrounding

observations, can identify and select the relevant range and

weight of correlated observations for each state variable at each

computational grid. As noted by Gaspari and Cohn (1999), the

correlations of geophysical fields rarely exhibit such special

symmetries. Thus, this anisotropy may align more closely with

physical laws and contribute to the advancement of SCDA.
4.2 Assimilation results with 20 ensembles

Based on the aforementioned localization estimation, the SCDA

was conducted, and the results were statistically assessed using the

spatially averaged root mean square error (RMSEs) as defined in

Equation 10, and the temporally averaged root mean square error
Frontiers in Marine Science 08
(RMSEi,j) over the last year, as defined in Equation 11.

RMSEs =
1
I*J
oI

i=1oJ
j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�yai,j,s − ytruei,j,s )

2
q

 ;  s = 1,…, 21600  , (10)

where I and J represent the number of rows and columns,

respectively, within the model grid, �yai,j,s and ytruei,j,s represent the

ensemble mean of the variables and true value at the (i,j) grid point

at time s, respectively.

RMSEi,j =
1
So

S
s=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�yai,j,s − ytruei,j,s )

2
q

,   i = 1,…, 64; j = 1,…54, (11)

where S represents the number of time steps.

The spatially averaged RMSE at each time step obtained from

the twin experiment based on localization of the LK information

flow localization method is depicted as the orange line in Figure 5.

Figures 5a–d illustrate the assimilation results for y, j, To, and Tl,

respectively. For comparison, the DA results based on G-C

localization are represented in the blue line. It can be observed

that the assimilation results based on G-C localization stabilize at

approximately 0.8 to 1 year. In contrast, when considering the LK

information flow for localization, the updated y, j, and To align

more closely with the true values, with the presented error
FIGURE 4

An example of the localization based on the G-C method (a, c, e) and LK information flow-based localization method (b, d, f), which use the
observation of y (atmosphere stream-function) to update state variables To (sea surface temperature) (a, b) and j (oceanic stream-function) (c–f).
Where “+” (black) represents the location of the state variable, (a–d) are the same model grid point, while (e, f) are another grid point.
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decreasing within half a year. Notably, for y, the assimilated result

based on the localization of LK information flow exhibits an error of

2.36×105 m2s−1, which is 5% lower than that obtained through G-C

localization. In the case of To, the error is further suppressed to

0.28 K, a 22% reduction relative to the G-C. j exhibits the most

pronounced enhancement: its error decreases from 61 m2s−1 under

G-C localization to 29 m2s−1 with the LK method, achieving a 51%

improvement. Regarding the assimilation results for Tl shown in

Figure 5d, both experiments yield consistent outcomes. As indicated

in Table 1, it is important to note that the state variable Tl is updated

solely by assimilating observations of Tl itself. Since only the

information from a single observed element is considered in

relation to the corresponding state variable at the assimilated grid

point. Consequently, the influence of surrounding observed

information on the assimilated point is likely to exhibit a

homogeneous variation concerning distance. Therefore, the two

localization methods are likely to yield similar results in estimating

their relationship, thus resulting in no significant differences in the

assimilation outcomes.

Overall, the observational information required for updating

each computational grid is typically inhomogeneous, both spatially

and in relation to specific variables, particularly when transferring

information across components. Consequently, the LK information

flow-based SCDA demonstrates faster stabilization and more

convincing performance.

To further illustrate the spatial variation of the assimilation

results, the RMSE averaged over the final year after the system

reaches a stable state is analyzed for the SCDA based on LK

information methods for y, j, and To are shown in Figures 6a, c

and e, respectively. As observed, the assimilated RMSE for y
exhibits higher values in land areas depicted in Figure 6a.

Figure 6c illustrates that the errors in the assimilation results for
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j demonstrate a decreasing trend from the equator to the poles. In

contrast, the RMSE of the assimilation results for To is more evenly

distributed globally. The spatial error patterns in the assimilation

results stem from the biased model used in this study. Specifically,

parameter perturbations introduced systematic biases, which vary

across variables and regions due to their differential sensitivity to

parameters (Wu et al., 2012). Furthermore, the geographical

sensitivity of the parameters leads to different magnitudes of bias

for the same variable across different regions. As a systematic bias

caused by parameter perturbations, it can only be corrected through

parameter optimization. The characteristics of the distributions

presented in the three plots of our experimental results are caused

by systematic bias and do not fall within the scope of correction in

this state field estimation test. Therefore, it is more valuable to focus

on the error differences in the assimilation results compared to

another G-C-based localization method.

The percentage error reduction achieved by the LK localization

relative to the G-C method (calculated as (e_LK – e_GC)/e_GC ×

100%) is illustrated in Figures 6b, d and f. It is evident that the

assimilation results derived from the LK information flow method

exhibit a significant reduction in error across this simulation region

when compared to those obtained from the G-C method. This

finding suggests that the LK information flow-based localization

method enhances the assimilation results, both under high-

resolution observational data in the polar regions and low-

resolution observational data in the equatorial region, thereby

demonstrating the universality of the LK method. Notably, the

assimilation results for j reveal a substantial decrease in error in the

Southern Ocean region following localization via the LK

information flow. This outcome indicates that the LK information

flow analysis effectively filters out spurious correlations between j
and other components in this region while preserving the
FIGURE 5

Spatially averaged RMSE time series based on LK information flow-based localization method and G-C method. Variables shown are the (a) y
(atmosphere stream-function, m2s−1), (b) j (oceanic stream-function, m2s−1), (c) To (sea surface temperature, K) and (d) Tl (land surface temperature, K).
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fundamental coupling mechanisms and integrating causally related

observational information into the assimilation process, resulting in

a marked improvement in assimilation effectiveness.
4.3 Ensemble size sensitivity test

Robustness evaluation of the LK localization method across

ensemble size variations was conducted via dedicated sensitivity

analysis, systematically testing configurations encompassing N = [5,

10, 20, 30, 40]. The results were statistically assessed using the

spatial-temporal average RMSE and associated standard deviation

over the last year, as defined in Equations 12 and 13.

RMSE =
1
So

S
s=1RMSEs  ,     s = 1,…, 21600  , (12)

z =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
So

S
s=1(RMSEs − RMSE)2

r
 ; (13)

Where, RMSEs represents spatially averaged RMSE, as defined

in Equation 10; z represents the standard deviation.

The result of the ensemble size sensitivity test is shown in

Figure 7. Figures 7a–c respectively display the Spatial-temporal

average RMSE and associated standard deviations for variables y,
j, and To using both localization methods across multiple ensemble

sizes. It is observed that errors for all variables decrease with
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increasing ensemble size under both localization schemes. The G-C

method exhibits greater sensitivity to ensemble size than the LK

method, demonstrating a more rapid error reduction. This occurs

because larger ensembles effectively mitigate the impact of spurious

correlations. However, the intrinsic ability of the LK method to

suppress spurious correlations attenuates the error-reducing effect of

increased ensemble size. Notably, even at larger ensemble sizes, the

G-C method yields higher errors than the LK method at equivalent

ensemble sizes, though the performance gap between the two

methods narrows as the ensemble size increases. Crucially, filter

divergence occurs when using the G-C method at an ensemble size of

5, while the LK method maintains stability—albeit with larger errors.

This indicates that although the LK method effectively reduces errors

for small ensemble sizes, its capability to suppress spurious

correlations is significantly diminished under extremely small

ensembles (e.g., N=5) due to severely limited information availability.
5 Discussion

Prior studies have highlighted both the significance and the

challenges associated with implementing SCDA. In this study, we

seek to diagnose and identify the inherent relationships between two

components to adjust the assimilation process in a coupled system. The

LK information flow analysis was employed to assess relationships not

only among various variables but also between observation and state
FIGURE 6

Temporally averaged RMSE (the final year) based on LK information flow-based localization method (a, c, e) and the percentage error reduction
achieved by the LK localization relative to the G-C method, calculated as (e_LK – e_GC)/e_GC × 100% (b, d, f). Variables shown are the (a, b) y
(atmosphere stream-function, m2s−1), (c, d) j (oceanic stream-function, m2s−1), (e, f) To (sea surface temperature, K).
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variables, as well as information across different geographic locations.

One interesting finding is that different state variables respond to

observed information in distinct and directional ways. Additionally, the

effect of observational information on a state variable is characterized

differently across geographic locations. These insights are revealed

through causality analysis using the LK information flow method,

which offers capabilities beyond conventional G-C optimization based

on correlation analysis. Critically, ensemble size sensitivity tests
Frontiers in Marine Science 11
demonstrate that the LK method’s advantages are particularly

pronounced in small ensembles (e.g., ensemble size of 5, 10, and 20).

When the G-C method optimizes the influence radius of observational

information, it assumes isotropic among internal components, often

neglecting variable–specific directional couplings and scale disparities

between components (as shown in Figure 3). In contrast, the LK

method not only utilizes observations beyond the empirical radius

defined by the G-C method but also eliminates non-causal statistical

noise within the G-C optimized range, thereby avoiding filter

divergence observed in G-C at N=5 (Figure 7) and resulting in LK

method-based SCDA stabilizing more quickly and achieving

greater accuracy.

These findings further confirm that one factor limiting the

improvement of SCDA performance is its high sensitivity to

hyperparameters, such as localization (Miwa and Sawada, 2024).

Specifically, when the ensemble size is small, SCDA’s performance

becomes more vulnerable to variations in hyperparameters. This

highlights the practical necessity of accurately estimating SCDA’s

hyperparameters to ensure better performance. Grounded in causal

analysis theory, the LK method reframes the empirical determination

of localization parameters as a quantitative assessment of causal

dependence strength. This establishes a physically constrained

framework for determining localization parameters, thereby

enhancing the robustness of SCDA.

Our study was conducted based on twin experiments of an ideal

model. Further research is needed to determine whether the LK

method can be extended to real-world assimilation systems. In

practice, for coupled assimilation systems, the primary challenges

arise from the larger number of components that must be managed,

the stronger nonlinear characteristics, and the more irregularity of

observational information. The LKmethod’s ability to identify causality

among components is particularly advantageous for filtering out

consistent information in complex coupled systems, thereby avoiding

interference among components. Regarding the irregular features that

may exist in observational data, such as resolution or uncertainty, the

LKmethod requires only the time series from the observation positions

with no specific resolution requirements. Noisy observations can also

be screened and eliminated. Furthermore, earlier studies have shown

that LK information flowmaintains its capacity to accurately determine

causality even within highly nonlinear systems (Liang, 2014) and

demonstrates strong robustness in high-noise environments (Zhou

et al., 2024). Therefore, we believe that the application of LK

information-based SCDA will also show stable and convincing

performance in practical trials.
6 Conclusions

This study proposes a causality-driven adaptive localizationmethod,

termed the LK information flow localization method, aimed at

enhancing SCDA by addressing critical challenges such as sensitivity

to hyperparameters and spurious correlations in cross-component

interactions. By leveraging causality analysis, the LK method offers a

physically constrained framework for localization, facilitating more

accurate and efficient assimilation of observational data across coupled
FIGURE 7

Spatial-temporal average RMSE and standard deviation of last 1 year
based on G-C and LK method. Variables shown are the (a) y
(atmosphere stream-function, m2s−1), (b) j (oceanic stream-

function, m2s−1), (c) To (sea surface temperature, K).
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systems. By integrating the LK information flow with the EAKF within

an intermediate atmosphere–ocean–land coupled model, our results

reveal that the LK-based SCDA effectively captures variable

heterogeneity, directional asymmetry, and spatial heterogeneity in

component interactions, which are often overlooked by conventional

correlation-based methods like conventional G-C localization. These

capabilities enable the LKmethod to filter out non-causal statistical noise

and utilize observations beyond the empirical radius of G-C, resulting in

faster stabilization and significantly improved assimilation accuracy.

While the LK method exhibits distinct advantages in small-

ensemble regimes due to its causality analysis, its capability to

achieve high absolute accuracy is still limited by the small ensemble

size. Specifically, the errors (e.g., RMSE) obtained with the LK

method using small ensembles are smaller than those of the G-C

method, but their absolute errors remain considerable. Moreover,

ensemble sensitivity tests confirm that the performance gap

between LK and G-C narrows rapidly beyond a threshold, with

diminishing returns on LK’s relative improvement as ensemble size

increases. This convergence indicates that LK’s distinctive value

may diminish in computational environments supporting larger

ensembles, where G-C’s isotropic localization benefits more directly

from inflated sampling. Although the computation of information

flow can be parallelized, the additional computational cost incurred

under high-resolution operating systems remains non-negligible.

When the LK method demonstrates comparable errors to the G-C

method under large-ensemble conditions, a trade-off between

computational cost and accuracy must be carefully considered.

The twin experiments conducted in this study highlight the

potential of the LK method to enhance SCDA performance,

particularly in systems characterized by small ensemble sizes and

complex interactions. However, the current work focuses on the

stable, large-scale dynamics between coupled components. The

performance of this static framework in capturing real-world

transient, small-scale dynamics remains to be validated. In

addition, future work should also explore the integration of flow-

dependent ensemble covariances within the LK framework to define

the information flow dynamically throughout the DA window. Such

development would allow the information pathways to adapt

instantaneously to the evolving atmospheric and oceanic states,

potentially capturing fast-changing interactions between the two

components more accurately. This dynamic framework could also

be applied to vertical localization. However, given that observation

devices below the sea surface are often mobile, obtaining long-term

measurements at a fixed position becomes challenging. In such

scenarios, how to implement the LK method will be a key focus of

our future work. Notwithstanding these challenges, the LK method

establishes a new approach to localization by replacing empirical

parameterization with causality, thereby positioning it to enhance

the accuracy and reliability of Earth system predictions.
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