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Cell division method for
numerical simulation of wetting
and drying in hydrodynamic
models with unstructured grids
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1School of Marine Sciences, Sun Yat-sen University, Guangzhou, China, 2Southern Marine Science and
Engineering Guangdong Laboratory, Zhuhai, China, 3Guangdong Provincial Key Laboratory of Marine
Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China
Periodic wetting and drying occur extensively in many shallow water systems

such as coastal wetlands. Proper description of the wetting and drying front

(WDF) is a challenge for hydrodynamic models of these systems and yet it is

essential for accurate simulations of flow and transport processes within them. In

this study, we developed a wetting and drying algorithmwith cell divisionmethod

to track the WDF on three-dimensional unstructured grids of a finite volume-

based hydrodynamic model. An inundation function was introduced to

determine intersections of the moving WDF with sides of elements at the

boundary. These front-associated, partially wetted elements were simulated

simultaneously with fully wetted elements with full consideration of the WDF’s

movement and its influence on local mass and momentum balance so as to

guarantee the overall flow continuity and mass conservation. Test simulations

with benchmark cases were conducted to compare the performances of the

new algorithm and a traditional method. The results demonstrated the

improvement achieved by the improved method in terms of mass

conservation, and proper simulations of the WDF and bed friction effects in

near-front areas. The improved method exhibits superiority in dealing with high-

order nonlinear flow and transport processes in coastal salt marsh system

because it solves momentum equations in partially wetted cells. Although it

was implemented within a finite-volume model, the improved algorithm, in

principle, can be applied to hydrodynamic models based on other

numerical methods.
KEYWORDS

wetting and drying, hydrodynamic modelling, moving boundary, coastal wetland,
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1 Introduction

Wetting and drying is a common phenomenon in many shallow

water systems (Sobey, 2009; Lu et al., 2024). For example, large areas

of a coastal wetland typically undergo periodic submergence

(wetting) and emergence (drying) as the tides rise and fall (Barros

et al., 2020). The flow domain in such a system, with a moving

boundary at the wetting and drying front (WDF), contracts

considerably from high to low tide stages and expands as the tide

rises again. The impact of the moving boundary on flow and mass

transport within the system is significant, especially when there are

questions focused on the neighborhood of the WDF. Simulation of

the WDF is, therefore, a key element of hydrodynamic models for

shallow-water bodies subjected to periodic water level oscillations.

Although considerable progress has been made over the past 20

years in hydrodynamic modelling of shallow water systems, proper

representation of the moving boundary caused by wetting and

drying remains a challenge. Lynch and Gray (Lynch and Gray,

1980) suggested that many shallow water problems could only be

formulated correctly by specifying zero depth along the moving

boundary that evolves according to flow characteristics. However,

such a boundary condition is non-linear and extremely difficult to

deal with.

In general there are two approaches to numerical modelling of

the moving boundary: one based on a moving mesh and the other

on a fixed grid. The moving mesh approach adapts the numerical

grid at each time step to follow the continuously deforming fluid

boundary. This approach conforms to the physical theory better

than the second one and tends to give more accurate predictions

(Poussel et al., 2025). Ghazizadeh et al (Ghazizadeh et al., 2020;

Liang and Borthwick, 2008) presented a Godunov-type shallow

water flow solver based on adaptive quadtree grids which aimed at

simulating flood flows over natural terrains. The model was used to
Frontiers in Marine Science 02
simulate the propagation of a flood generated by a dam break over

an initially dry floodplain. Such an approach is computationally

very expensive because the model grid is re-generated with the

moving boundary at every time step.

The second approach based on fixed grids can be further divided

into two subcategories according to their different methods of

treating dry cells or elements: (a) the porosity method and (b) the

turn off/on method. Using the porosity approach, all the dry (and

wet) cells are included in the computation by introducing “porous

flow” in dry cells, where the local water level falls below the bed level.

The “slot method” is one such porosity approach (Johnsgard, 1999).

Since free surface flow equations are used in the artificial porous

medium, numerical oscillations often occur at the moving boundary,

especially if the porosity value is set too low. Nielsen and Apelt

(Nielsen and Apelt, 2003) found that the selection of the artificial

porous medium parameters values can have a serious impact on the

accuracy of the model prediction. They pointed out that satisfactory

results can be achieved only if suitable values of the artificial porosity

and hydraulic conductivity are used; however, how to determine

these values remains an unresolved question.

The turn off/on model uses a small positive depth, h0, to define

the wet-dry threshold. Nodes with water depths below h0 are

identified and assumed to be dry. Elements/cells having all dry

nodes are taken as fully dry elements and removed from the active

grid for the current time-step computation. Usually, the modeller

has two choices for dealing with partially wet cells (not all nodes

dry; Figure 1A) using standard numerical techniques: either to

include or exclude them from the computational domain

(Figures 1B, C) (Bates, 2000; Sehili et al., 2014). The exclusion

approach is to simply mask out these partially wet elements. While

this ensure that all nodes still involved in the computation are wet, it

leads to an unrealistic representation of the motion of the wetting

and drying front, which is forced to move by one element at a time
FIGURE 1

Representation of a continuous free surface in a finite-volume model based on a fixed grid: (A) partially wet (dry) element; (B) partially wet element
excluded in the computation; (C) partially wet element included in the computation as approximated by previous methods; and (D) the discrete
form of the region within the computational domain. Note that dp2 is the water depth of the wet node; dpe1 and dpe2 are the water depths of the
partially wet and the fully wet elements, respectively.
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as the dry area mask is updated. Boundary conditions applied at

such a moving front can also cause problems such as violation of

mass conservation and under-predictions of energy dissipation in

the shallow water (Horritt, 2002; Choudhary et al., 2025). Moreover,

this approach can suffer serious numerical instabilities. The

alternative approach is to include partially wet elements in the

computation (Figure 1C). Despite improvements, existing methods

based on this approach still cannot avoid problems with mass

conservation and dramatic, irregular changes of boundaries as a

result of small water depth variations (Bates, 2000). In addition,

setting water level of dry nodes to the local bed level, as done in

many existing methods, causes a spurious free surface slope that

affects the accuracy of the numerical solution (Figure 1D). The

determination of h0 is empirical. To ensure the stable operation of

the model, a relatively large value of h0 is generally chosen. For

example, in coastal ocean models, a typical value of 0.05 m is often

employed (Lu et al., 2020). Nevertheless, an excessively large h0
value will result in cumulative volume errors. For the precise

resolution of the wetting - drying front, h0 should be set as small

as possible, Wu and Lin (Wu and Lin, 2015) used a value of 0.02 m.

However, an extremely small h0 value can give rise to issues such as

the appearance of a spurious surface slope, slow boundary

movement, and boundary irregularities.

Many studies have been conducted to improve the method by

addressing the above-mentioned problems. Detailed comparisons

between different fixed grid methods can be found in Balzano

(Vacondio et al., 2014) and Horitt (Jafarzadegan et al., 2023).

Sabbagh-Yazdi and Zounemat-Kermani (Sabbagh-Yazdi and

Zounemat-Kermani, 2009; Yoshioka et al., 2014) added an

artificial viscosity to the formulation to damp out the numerical

oscillations caused by wetting and drying. Falconer and Chen

(Falconer and Chen, 1991)improved the method by considering

the direction of the flow velocity when determining whether or not

a dry cell is becoming flooded. Liang and Marche (Liang and

Marche, 2009) developed a 1D flow solver for simulating

frictional flows over complex domains involving wetting and

drying by ensuring the positivity of water depth and deriving

additional source terms to balance spurious fluxes. Brufau et al.

(Brufau et al., 2004) modified the wetting and drying condition by

including the normal velocity to the cell edge to achieve high

accuracy in mass conservation. Bunya et al. (Bunya et al., 2009)

proposed an operator to keep the water depth positive to prevent

numerical instability due to excessive drying. Bates and Hervouet

(Bates and Hervouet, 1999; Bates, 2000) improved the method by

rescaling the continuity equation on the basis of the sub-grid

topography, identifying partially wetted elements on the basis of a

simple analysis of water surface slopes and removing spurious

water-surface slope terms in the momentum equation. Defina

(Defina, 2000) defined a function to describe the wet area fraction

of a partially wetted element. Based on this function, new

momentum and mass balance equations were developed with

consideration of local topographic variations to allow a realistic

description of small water depth flows. Another class of fixed grid

model, different from including or excluding partially wet cells from

the computational domain, has got considerable success recently,
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which solve continuity (and scalar mass conservation) equations in

all cells on a fixed grid, but only solve momentum equations in fully

wetted cells (Bradford and Sanders, 2002; Begnudelli and Sanders,

2006). Bradford and Sanders (Bradford and Sanders, 2002) explored

the benefits of extrapolating the velocity in to partially wetted cells

which proved helpful in highly dynamic wave runup and rundown

problems. This scheme was the basis of a more general purpose 2D

flow and transport model which proved to be excellent for tracking

sharp fronts in tidal wetlands (Begnudelli and Sanders, 2006). The

Volume-Freesurface Reconstruction (VFR) method by Begnudelli

and Sanders (Begnudelli and Sanders, 2006) distinguished between

the volume in a cell and the free surface height in a cell, which

allowed for a physically reasonable filling and draining of partially

wetted cells and improved variable reconstruction at cell edges in

support of mass and momentum flux calculations. Despite these

developments, accurate simulations of moving WDF remains a

difficulty in modelling shallow water systems, especially coastal

wetlands where large areas undergo periodic wetting and drying

under the influence of tides.

In this paper, we present a new algorithm for accurately and

efficiently simulating the WDF as it moves along the sides of the

partially wetted elements. The method tracks the WDF defined by

zero water depth and flux. The movement of the WDF results in

changes of the flow domain’s boundary as discussed above. Such

changes occur within the partially wetted elements, where the wet

area is partly bounded by the wetting and drying front. As the front

moves, the attributes of these elements vary, including the wet

fractions of sides (which intersect with the WDF) and area, and

representative water depth. These quantities, computed every time

step, are incorporated in the solution to reflect the influence of the

moving WDF on the flow. In essence, this algorithm treats the

partially wet cells as special fully wet cells by cell division method

and solve momentum and continuity equations in both partially wet

and fully wet cells. The rest of the paper is organized as follows:

section 2 presents the mathematical model together with details of

the numerical strategy and improved WDF tracking algorithm.

Section 3 presents test cases. Finally, conclusions are made in

section 4.
2 Mathematical model and numerical
solution

2.1 Hydrodynamic model ELCIRC

A three-dimensional hydrodynamic model, ELCIRC (Zhang

et al., 2004), was selected for studying the wetting and drying

problem and implementing the new WDF algorithm. ELCIRC uses

a finite-volume/finite-difference Eulerian-Lagrangian method to

solve the shallow water equations. It has been used to simulate a

wide range of physical processes in shallow water systems driven by

atmospheric, ocean and river forces (Baptista et al., 2005; Zhang and

Baptista, 2004; Gong et al., 2009; Wang et al., 2008). The numerical

method is volume-conservative, stable and computationally

efficient. The model incorporates the wetting and drying
frontiersin.org
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condition based on a traditional fixed grid method. In our study, we

examined the suitability of ELCIRC for simulations of flow and

transport in salt marsh systems. Salt marshes are important coastal

wetlands where extensive areas are subjected to periodic wetting

and drying as tides rise and fall. The existing wetting and drying

algorithm within the ELCIRC model were found to be inadequate

for proper simulations of the moving boundary due to wetting and

drying, and its effects on flow and transport processes in these tidal

wetland systems.

The detailed mathematical model of ELCIRC can be found in

(Zhang et al., 2004). For the purpose of simplicity and clarity, here

we take two-dimensional non-linear shallow water Equations 1–4 as

the governing equations to illustrate the improved wetting and

drying algorithm:

∂ u
∂ x

+
∂ v
∂ y

+
∂w
∂ z

= 0 : (1)

∂h
∂ t

+
∂

∂ x

Z HR+h

HR−h
udz +

∂

∂ y

Z HR+h

HR−h
vdz = 0, (2)

du
dt

=
∂

∂ x
gh +

Pa
r0

� �
−

g
r0

Z HR+h

z

∂ r
∂ x

dz +
∂

∂ z
Kmv

∂ u
∂ z

� �
, (3)

dv
dt

= −
∂

∂ y
gh +

Pa
r0

� �
−

g
r0

Z HR+h

z

∂ r
∂ y

dz +
∂

∂ z
Kmv

∂ v
∂ z

� �
, (4)

where x, y are the horizontal Cartesian coordinates and z is the

vertical coordinate [L]; t is the time [T] and HR is the z-coordinate

of a reference level [L] (e.g., mean sea level zMSL [L]); h is the free

surface elevation [L] and h(x, y) is the bathymetric depth [L]; u, v

and w are the water velocities in the x, y and z direction, respectively

[L/T]; g is the magnitude of the gravitational acceleration [L2/T]; r
is the fluid density [M/L3], r0 is the base density [M/L3] Kmv is the

vertical eddy viscosity [L2/T]; Ksv is the vertical eddy diffusivity for
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solute [L2/T]; Pa is the atmospheric pressure at the free surface [M/

LT2]. Note that wind stress and Coriolis force although not

presented in the above governing equations for the purpose of

simplicity, are integrated in the ELCIRC model.

For the bottom boundary, ELCIRC assumes a balance between

the internal Reynolds stress (Equation 5) and the bottom frictional

stress (Equation 6), i.e.,

r0Kmv
∂ u
∂ z

,
∂ v
∂ z

� �
b
= (tbx , tby), at z = HR − h (5)

with the bottom shear stress tbx [M/L1T2] and tby [M/L1T2]

defined as follows,

(tbx , tby) = r0CDb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2b + v2b

q
(ub, vb) (6)

where ub [L/T] and vb [L/T] are the velocities at the bottom; and

CDb [-] is the bottom drag coefficient calculated according to Cd =

gn2=h1=3 with n being the Manning coefficient [4].
2.2 Numerical solution with the existing
wetting and drying algorithm

In ELCIRC, the computational domain is discretized into a

combination of triangular and/or quadrangular elements in the

horizontal plane. We suppose that in total, the mesh has Np nodes,

Ne elements and Ns sides. Topography is defined by the still water

depth (dp) specified at each node (x,y), i.e., (xi, yi, dpi), i =

1,…,Np. Organization of the neighborhood of elements, nodes

and sides within the mesh is critical for unstructured grid-based

models. Integer mapping arrays are used to define the

neighborhood of nodes, sides and elements surrounding each

other’s, as shown in Figure 2.

Nodes surrounding node pi are mapped by ppi,k and surrounding

elements by pei,k, where i = 1,…,Np and k = 1,…, kmax; kmax is the
FIGURE 2

Schematic diagrams of the grid showing the neighborhood mapping for (A) node (indicated by circles), (B) side, and (C) element. The symbol
indicates the object under consideration. The superscript indicates the nature of the neighbouring object – whether it is a node (p), side (s) or
element (e). The subscript indicates the relationship between the object and its neighbouring objects.
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number of the nodes and elements that surround each node,

typically in the range of 4-10. Similar notations apply to the

mapping related to the side si, including spi,m (for surrounding

nodes) and sei,m (for surrounding elements), where i = 1,…,Ns

and m = 1, 2. Note that li represents the length of the side and di
is the distance between the orthocentres of two elements that share

side i. Considering the ith element ei, the surrounding nodes and

sides are epi,j and e
s
i,j, where i = 1,…,Ne and j = 1,…, i3-4 (i3-4 = 3 or 4,

depending on whether the element is triangular or quadrangular).

Ai is the area of the element.

The existing wetting and drying algorithm used in ELCIRC is

based on a traditional turn off/on method, which excludes partially

wet elements from the computational domain. At the beginning of

each time step, the wet/dry status of each node, side and element is

determined. The mass conservation equation is solved for wet

elements using the finite-volume method to obtain elementwise

water levels (for the element orthocentre). The momentum

conservation equations are solved for wet sides with the Eulerian-

Lagrangian algorithm to obtain sidewise velocities (for the side’s

midpoint). Then nodewise water level is calculated by interpolation.

At a node (i) where all surrounding elements are wet, the nodewise

water level is computed as an area-weighted average of the

elementwise water levels (Equation 7), i.e.,

hp
i = o

kmax

k=1

Ak

 !−1

o
kmax

k=1

Akh
e
i,k, (7)

where kmax is the number of wet elements surrounding the node

and he
i,k is the elementwise water level for kth wet element around the

node. At a node surrounded by both wet and dry elements, its water

level is computed based on a simple arithmetic average (Equation 8)

hp
i = kmax,w

� �−1 okmax,w

k=1

he
i,k, (8)
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where kmax,w is the number of wet elements surrounding the

node. Subsequently, the wet or dry status of each node is determined

based on its water depth (h = h - Hs) relative to the threshold h0: wet if

h ≥ h0 and dry if h<0. The status of the element is then updated

according to its surrounding nodes. An element is wet only when all

the surrounding nodes are wet. Similarly only sides with both end

nodes wet are updated as wet sides. As mentioned in the introduction,

this approach leads to an unrealistic representation of the motion of

the wetting and drying front and causes problems such as violation of

the mass conservation principle. Also it tends to be seriously affected

by numerical oscillations.
2.3 Numerical solution with the improved
wetting and drying algorithm

Studies have been conducted to examine how partially wet

elements may be retained in the computational domain in order to

improve the numerical solution. In dealing with the partially wet

elements, previous methods re-distributed the water volume over

the whole element area while maintaining the geometry of the

elements (Horritt, 2002; Begnudelli and Sanders, 2006). In

contrast, the present improved algorithm considers directly the

movement of the WDF across the partially wet elements. As the

WDF moves, the wet parts of sides and area of a partially wet

element expand or contract. Such changes are tracked and their

effects on the flow are incorporated in the numerical solution with

the improved method.

Following previous studies (Horritt, 2002; Heniche et al., 2000;

Begnudelli and Sanders, 2006; Lu et al., 2024), an inundation

function f is defined for a region W with area A. The inundation

function f takes the value of 1 for wet areas or wet sections of sides

and 0 for dry areas or dry sections of sides (Figure 3A). Then the wet

fraction of area for a partially wet element is defined as Equation 9:
FIGURE 3

Schematic diagrams illustrating concepts and treatments used by the improved method: (A) a computational region W bounded by the segment G
with normal unit vector n. The function f is the inundation function with value unity for wetted parts and zero for dry parts. Its gradient is
perpendicular to the WDF; (B) discretization in the horizontal plane (x-y) with circles highlighting the intersections of the WDF with partially wet
sides, a cross showing the midpoint of the wet part of a partially wet side and a triangle indicating the orthocentre of the wet part of a partially wet
element; and (C) discretization in the vertical plane (x - z) with h1

s indicating the water depth at the midpoint of the wet part of a partially wet side,
which is used in computing the solution.
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je = A−1
Z
A
fdA : (9)

The wet fraction of side length is given by Equation 10:

js = l−1
Z
G
fdG , (10)

where l is the length of the side.

Equation 8 is used to calculate the nodewise water level with

kmax,w being the total number of wet and partially wet elements

surrounding the node. Based on the computed nodewise water

levels, the status of nodes, elements and sides can then determine by

Equations 9, 10. To locate the WDF, its intersection with a partially

wet side, of zero water depth, is calculated by linear interpolation of

water depth between the wet and dry nodes of the side. The WDF

intersection points together with wet nodes form a wet triangle or

quadrangle in a partially wet element, i.e., the wet part of the

element. The partially wet element can then be treated as a wet

element with new geometric parameters based on the wet part of the

element (Figures 3B, C), including the element orthocentre and

midpoints of sides.

A semi-implicit finite-volume approach is used to discretize the

continuity equation. Following Casulli and Waters (Casulli and

Walters, 2000) and Zhang et al. (Zhang et al., 2004), we constructed

a local coordinate system based on an element side with the x-axis

pointing outside of the element from the center of the side.

Correspondingly, u and v represent normal and tangential

velocities in the discretized equations. For element i, the

discretized continuity equation is given by:

je
i Ai(h

e,m+1
i − he,m

i ) + qDt o
i−34(i)

j=1
di,jj

s
i,jli,ju

m+1
i,j hm+1

i,j + (1 − q)Dt

o
i−34(i)

j=1
di,jj

s
i,jli,ju

m
i,jh

m
i,j , i = 1,…,Ne

(11)

where superscripts m and m + 1 denote the time steps, Dt is
time step, and q is the weighting between time levels for the

temporal discretization. The function d assumes a value of 1 or -1

depending on whether the unit vector normal to the kth side of the

element points outward or inward, respectively. Equation 11 applies

to both wet and partially wet elements. Compared with previous

numerical solutions, this equation includes two additional

parameters to deal with partially wet elements: the wet fraction

coefficients of element area (je
i ) and sides (js

i,j). Both coefficient

values range between zero (completely dry) and unity (completely

wet). When computing the flux terms in Equation 11 for a partially

wet side, one must consider only the wet section of the side, i.e., u

(local normal velocity) and h (local water depth), both based on the

midpoint of the wet section. This approach is derived from

considering continuity for a partially wet element only within the

wet part of the element. Note that the flux across the totally dry side

(part of the WDF) is zero because of the zero-water depth even

though the calculated flow velocity at the side is non-zero.

The Eulerian-Lagrangian method is adopted to treat the

convection terms of the momentum equations. Thus the

discretized momentum equations are:
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um+1
i − u∗i
Dt

= −
g
di
½q(he,m+1

i,1 − he,m+1
i,2 ) + (1 − q)(he,m

i,1 − he,m
i,2 )�

−
gn2um+1

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
umi + vmi

p
h4=3i

,  i = 1,…,Ns,

(12)

vm+1
i − v∗i
Dt

= −
g
js
i li

½q(hp,m+1
i,1 − hp,m+1

i,2 ) + (1 − q)(hp,m
i,1 − hp,m

i,2 )�

−
gn2vm+1

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
umi + vmi

p
h4=3i

,  i = 1,…,Ns,

(13)

where u∗ and v∗ are the backtracked values obtained using the

Lagrange reverse-tracing method (Casulli and Walters, 2000). Again

when applied to partially wet elements, these equations are evaluated

based on the wet parts of the elements. To solve the side-based

discretized normal momentum equation, the distance between the

orthocentres of two adjacent elements needs to be calculated; if a

partially element is involved, its orthocentre is based on the wet part of

the element. The tangential momentum Equation 12, applied to a side,

involves the length of the side and the water surface elevations of its two

end nodes for approximating the water surface slope (second term on

the RHS of Equation 13). For a partially wet side, the side length is

based on the wet section of the side, i.e., (jsili). This wet section has a

dry node as given by the intersection with the WDF, where the water

surface elevation equals the bed elevation. This allows more accurate

predictions of the water surface slope in the partially wet element.

The WDF algorithm is summarized as follows:
1. Determine the status of nodes, sides and elements based on

current nodewise water levels;

2. Determine the locations of WDF (intersections with

partially wet sides) and wet parts of partially elements;

3. Update the geometric parameter values for partially wet

elements (orthocentres of the wet part of the element) and

sides (midpoint of the wet section of the side);

4. Calculate je and js for partially wet elements and sides;

5. Solve mass and momentum conservation equations for wet

and partially wet elements to get elementwise water levels

and sidewise velocities;

6. Interpolate computed elementwise water levels to get

nodewise water levels;

7. Go back to the first step to start computation for next

time step.
Compared with the existing wetting and drying algorithm used in

ELCIRC, the improved algorithm presented here incorporates the

partially wet elements in the computation. In particular, the current

method tracks the movement of the WDF within these partially wet

elements and deals with the wet parts of the elements, which evolve

with moving WDF. In contrast to previous methods, this algorithm

solves the continuity and momentum equations specifically for the wet

parts of partially wet elements rather than seeking whole element-based

solutions by approximations of water re-distribution in the elements

(Defina, 2000). The method of decomposing physical processes is

conducive to proposing approaches to solving complex problems (Gao

et al., 2023, Gao et al., 2024).
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3 Numerical tests

3.1 Comparisons with the traditional
method originally used in ELCIRC

To compare the performance of the improved method with that

of the traditional method, we applied both methods to simulate a

simple case of flows on a tidal beach. The computation domain had

a plan dimension of 6000 m × 2000 m with a bed slope 0.0005

(Figures 4A, B). Slip conditions were invoked at the lateral

boundaries (y = -1000 and 1000 m). A still water with an

elevation of 0 m was assumed as the initial condition; all the

simulations were run for a sufficiently long period of time for the

system to reach a quasi-steady state (i.e., periodic solution with the

effect of initial condition diminished). An inflow boundary was

imposed at the left-hand side (LHS) of the domain, where the time-

varying water depth mimicking the tide was specified as:

h(t) = cos 2p
t
T

� �
− 1:0, (14)
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where T = 12 h is the period of the tidal cycle. The right-hand

side (RHS) of the domain was assumed to be an impermeable

boundary (no flux). The quasi-steady results from the test

simulations are discussed below.

With the fixed-grid approach, setting a proper value for the critical

water depth h0 (threshold for the wet-dry separation) is important and

yet often arbitrary. Ideally the simulation results should be insensitive

to h0 once it is set in a small-value range as required by the convergence

of the solution. The first test was on such insensitivity. We compared

the movements of the WDF predicted by the traditional and improved

method in Figure 4B. The results show that the predictions by the

traditional method varied significantly with h0. The predicted WDF

moved more slowly when the threshold was set smaller. This is a

numerical artefact that has been observed in previous numerical studies

(Schubert et al., 2008). In contrast, the improved method gave

predictions that were more or less independent of the threshold once

its value was set small enough (Figure 4D).

We also tested how the improved method performs with

different Manning coeddicent values. Figure 4E shows the

comparison of the WDFs predicted by the traditional method and
FIGURE 4

Topography (A) and mesh grid (B) for the first test case; Comparison of the wetting and drying fronts predicted by the traditional method (C) and the
improved method (D) with different thresholds (h0) used in the simulations; Comparison of the wetting and drying fronts predicted by the traditional
method and the improved method with different Manning coefficient (n) values used in the simulations (E).
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improved method with different bottom drag coefficient (Manning

coefficient) values. When the Manning coefficient was small, the

difference between the results given by these two methods is minor.

However, their predictions started to deviate significantly as the

Manning coefficient increased, especially during the falling tide.

The reason which causes the difference is that the traditional

method distributes the fluid volume all over the area of partially

wet cell. When a partially wet cell will be dried soon, water only

occupied a small part of its area. Using the whole area to divide fluid

volume to get water depth is unreasonable and smaller than reality.

As Equations 12 and 13 show, the last term contains water depth

and Manning coefficient. The bigger Manning coefficient is, the

more important the term including the water depth is in Equations

12 and 13, then the bigger error caused with the traditional method,

the more difference the two methods show.

To further examine the performances of both methods, we

calculated the accumulated mass errors of the simulations as given

by the sum of differences between total water volume change in the

domain and the net flux across the seaward boundary for the falling

and rising tide periods (Table 1). These errors are associated with the

artificial water loss (negative error) and gain (positive error) due to

drying and wetting, respectively. It is important to point out that the

errors for the two different tidal phases do not cancel each other and

are likely to affect significantly the simulation of solute transport in

the system (if it were considered), causing long-term mass imbalance

problems. The comparison shows that the accumulated mass error in

the prediction by the improved method is significantly smaller than

that given by the traditional method. It is also evident from the results

that smaller threshold h0 helps to reduce the mass error in both cases.

However, such a reduction can only be achieved meaningfully with

the improved method because changes in h0 with the traditional

method will lead to incorrect simulations of the WDF’s movement

and flow in the adjacent, shallow water area as discussed above.
3.2 Moving shorelines over a frictional
parabolic topography

Sampson (2006), Liang and Marche (2009) derived an analytical

solution of the non-linear shallow water equations for perturbed flow

in a container with a frictional bed of parabolic topography. This

solution serves as a benchmark test for validating the wetting and

drying procedure in the numerical model. The bed profile of the

domain is defined by:

zb = H0(x=a)
2, (15)
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where H0 and a are constants. The analytical solution depends

on a bed friction parameter t (related to the bed friction coefficient

according to Cd = ht=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p
) and a hump amplitude parameter

P =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8gH0=a2

p
,

zs(x, t) = H0 +
B2

4g exp ( − t t) a2

2gh0
½−st sin (2st) + ( t

2

4 − s2) cos (2st)� − 1
n o

− exp − t t
2

� �
x
g

tB
2 sin (st) + Bs cos (st)
	 


,

(16)

where zs is the water surface elevation above the bed’s lowest

point (datum), B is a constant that corresponds to a specified initial

condition and s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − t2

p
=2. As t → ∞, zs(t) → H0, being the

still water elevation above the datum. The projection of the WDF

(two parallel straight lines on the x − y plane) is given by

x =
a2B
2gH0

exp −
t t
2

� �
s cos (st) +

t
2
sin (st)

h i
± a (17)

As t → ∞, x → ±a, indicating that the oscillatory flow is

completely damped by bed friction.

In the numerical simulation, the computational domain had plan

dimensions of 10000 m (x)� 1000 m (y). Slip conditions were invoked

at the lateral walls. The following parameter values in Equation 15 were

used: a = 3 km, H0 = 10 m, t = 0:001s−1 and B = 5 m=s. The

numerical simulation lasted for 6000 s. Figure 5 shows the

comparisons between the numerical predictions and analytical

solutions of the free water surface profile at various times throughout

the simulation. The movingWDFs on both sides and the water surface

were well reproduced by the improved method at all times. This is in

contrast with the rather poor performance by the traditional method.

At t = 6000s, the WDFs predicted by the improved method coincide

with the analytical solution (Equation 17). In contrast, due to volume

loss, the WDFs obtained by the traditional method are lower. The

improvement by the current method is further demonstrated in

Figure 6 where the time-varying surface elevation at two locations

and Figure 5 where the time-varying WDF at the left side are shown.

Figure 6 shows that both the amplitude of local water level oscillations

and the asymptotic water level have been under-predicted by the

traditional method. The current method improved the numerical

simulation in both aspects. Error curves (Figure 6C) are computed to

qualify the accuracy of the numerical predicts. The error is defined as

err = oi hi − zsij j
oizsi

where hi and zsi are the predicted and analytical water surface

elevation at cell i. Figure 6C presents the error time history of error

for the simulations on the grid with 100 cells. With same grid and
TABLE 1 Comparison of accumulated mass errors in the simulation results given by the traditional method and the improved method with different
thresholds used in the simulations.

Tidal process
Mass error (×102 m3) (Traditional method) Mass error (×102 m3) (Improved method)

H0 = 0.03m H0 = 0.01m H0 = 0.03m H0 = 0.01m H0 = 0.001m

During ebb tide 8.2 6.8 4.0 1.4 0.8

During flood tide -1.8 -1.0 -1.2 -0.8 -0.6
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time step, the error is found about 0.005 with current mothed and

0.06 with traditional method. Figure 5 shows that the predicted

WDF with current method matches considerate well with analytical

solution while with traditional method, error is more and more

serious with time going on. When a point becomes dry, the speed of

the flow at the point is as same as the speed of WDF at that time.
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The speed of the WDF of this case could be computed from

Equation 16. Then we choose two points to compare their speeds

predicted by traditional method, current method and analytical

solution. Figures 6A, B present that better results, no matter about

the transient time when the points dried or the speed during the

points drying, could be got by current method.
FIGURE 5

Sloshing motions in a vessel with a parabolic bottom topography (Equation 15), as predicted by the analytical solution (Equation 16) and numerical
simulations at (A) t=0 s, (B) t=2000 s, (C) t=4000 s and (D) t=6000 s.
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3.3 Tidal flow on a beach with variable slope

A further test was conducted to examine predictions of the

WDF movement driven by tides on a beach with a non-uniform

slope. The computational domain was set to be 500 m long in the x
Frontiers in Marine Science 10
direction. The bed elevation was defined by Equation 18:

d =

−0:001x if  x ≤ 100 m;

−0:1 − 0:01(x − 100) if  100 m  < x ≤ 200 m :

−1:1 − 0:001(x − 200) if  x > 200 m,

8>><
>>: (18)
FIGURE 6

Water surface elevation varying with time at (A) point (-1500, 0) and (B) point (1000, 0), as predicted by the analytical solution (Equation 16) and
numerical simulations, and (C) the error time history with the traditional method and current improved method.
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A still water level with an elevation of 0.35 m was used as the

initial condition. The inflow boundary was imposed at the RHS of

the domain, where the time-varying water depth driving the tidal

cycle was specified as Equation 19:

h(t) = 0:75cos(2p
t
T
) − 0:4, (19)

where T = 60 min is the period of the simulated tide. The LHS

of the domain was assumed to be an impermeable boundary. A

constant Manning coefficient of 0.03 was used throughout the

domain. The predicted water surfaces by both the traditional

method and the improved method at four different times are

compared in Figure 7. As the tide receded, the water surface

elevation decreased gradually across the simulation domain. A

very shallow water depth first occurred at t = 12min (Figure 7A)

around x = 100 m where the bed slope changed from -0.001 to

-0.01. It appeared that two flow regimes developed around the slope

break point. Upstream of this point, the water was moving more

slowly due to the gentle bed slope while the flow downstream

retreated more rapidly because of the steeper bed slope. In principle,
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these two parts should not be separated totally. The slowly moving

water upstream would continue to flow downstream. However, the

result predicted by the traditional method t = 24 min (Figure 7B)

exhibited flow separation, which was confirmed by the results of

active elements shown in Figure 8B. In contrast, the improved

method predicted a single connected water body with a gradually

falling water surface and WDF, as physically expected (Figures 7A,

B, 8A). While disconnected flows can occur in reality due to

topographic depressions, the flow separation predicted by the

traditional method in this case was a numerical artefact, which

would further affect the mass transport if it was also simulated.

From t = 36 min (Figure 7C), the shoreline moved up on the

sloping beach slowly until the whole domain was submerged. The

results predicted by the improved method for the rising tide

stages agree closely with those reported in literature (Heniche

et al., 2000), where a different numerical scheme was used. In

particular, the problem with the slow movement of the WDF

predicted by the traditional method, which caused over-

steepening of the front (at t = 54 mins) (Figure 7D), was avoided

by the improved method.
FIGURE 7

Tidal propagation on a beach with varying slopes defined by Equation 18: free surface elevation at four different times: (A) t=12 min, (B) t=24, (C)
t=36 min, (D) t=36 min. Surface elevation at 500m is defined by Equation 19.
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3.4 Application to a salt marsh system

In an estuarine channel or a salt marsh creek, the tidal flow

asymmetry, sediment transport and morphology are interconnected.

When the tide from deep water enters a shallow water body,

transformations occur in its amplitude and shape. These

transformations introduce distortions in the tidal wave form, both

in the elevation and velocity time series. The interaction of tide with

the bed and resulting transformations can be explained based on the

nonlinear terms in the conservation equations of mass and

momentum (Lanzoni and Seminara, 1998; Sivakholundu et al.,

2009). Tidal fluctuations play a key role in plant zonation through

alteration of soil aeration and salt transport, and drive the export of

significant fluxes of carbon and nutrients to coastal water (Xin et al.,

2022). We applied the improved method to study the different

behaviors of residual sediment transport caused by different forms

of tidal signals. The results explained to some extent why salt marsh

systems tend to have diverse topographic structures.

For the purpose of computational efficiency, we first computed

the propagation of tides in a tidal channel and subsequently used

predicted local tidal signals of different forms at different locations

to simulate their further propagation through the adjacent wetland

systems such as salt marshes. The simulated channel had plan

dimensions of 50 km (x)� 500 m (y), a bottom slope of 0.0002 with

a Manning coefficient of 0.02 (Figure 9B). The initial water level in

the domain was set to be 1 m above the averaged mean sea level and

the tidal forcing was specified at the origin of the x coordinate. The

time series of water surface elevation and flow velocity became

periodic after 4 tidal periods. Figure 10A displays the simulated

temporal variations of water surface elevation at four different

locations (P1 to P4) as shown in Figure 9A. The shape and phase

of the tidal wave changed gradually from P1 to P4. Since our focus
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was on the shape of the driving tidal signal, the simulated tides at

P2, P3 and P4 were shifted and rescaled to have the same phase and

amplitude of oscillations, and phase-averaged value as those of the

tide at P1 (Figure 10B) prior to their applications to the sub-scale

(local-scale) models (Figure 9B).

The modified tidal oscillations at P1-P4 were used as inputs for

four local-scale salt marsh models to examine how four different

forms of tides influence the tidal water flows and sediment transport

in the wetland system associated with the tidal channel. The

computational domain of the local-scale model was composed of

a salt marsh platform of 250 m × 100 m in plan dimensions, and

with a bottom slope of 0.001 and a Manning coefficient of 0.05. A

tidal channel was assumed to border the marsh platform with a tidal

flat of 60 m × 100 m in plan dimensions, a bottom slope of 0.05 and

a Manning coefficient of 0.025. The tidal flat intersected the marsh

platform at y = 0 where both bed elevations were zero. A

meandering creek was embedded in the salt marsh from y = 0 m

to y = 200 m. The centerline of the creek followed a curve defined

by the function x = 20  sin 2t
200 y
� �

. Along this centerline, the bed

elevation of the creek varied from -1 m to 0 m linearly. The creek’s

cross-section was assumed to be a trapezoid with the bottom side

length equal to 2 m and the top side length 12 m. At the upper end

of the creek, a bevel side was assumed with the same slope as that of

the bevel side of the cross section. The Manning coefficient for the

creek bed was assumed to be the same as that of the tidal channel

bed, 0.025. Three observation points (C1, C2 and C3) were set along

the creek’s centerline with y equal to 0, 50 and 100 m, respectively.

Two other groups of observation points were also included in

analyzing the simulation results: eight points with the same y

coordinates as those of C2 and C3, and located symmetrically on

both sides of the creek with distances of 5 m and 30 m away from

the creek’s centerline (i.e., C2L1, C2R1, C2L2, C2R2, C3L1, C3R1,
FIGURE 8

Tidal propagation on a beach with varying slopes: wet elements at t = 24 min (other areas of the domain are dry elements) with (A) improved
method and (B) traditional method.
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C3L2 and C3R2 shown in Figure 9B). The computational domain

was discretized into a combination of triangular and quadrangular

elements with the smallest length of the sides equal to 3

m (Figure 9C).

For the purpose of comparison, the first case (using the tidal

signal at P1 as the driving force) was also simulated using the

traditional method. Figure 11B shows that the wetting and drying

front predicted by the traditional method was rather irregular.

There were pockets of dry elements surrounded by wet elements

at the creek bank and marsh platform. This phenomenon again is a

numerical artefact as discussed in section 3.3. In contrast, these

irregularities and artefact did not occur in the simulation using the

improved method (Figure 11A). The improvement made by the

improved method was further demonstrated by the results shown in
Frontiers in Marine Science 13
Figure 11C which plots the speed of local tidal current at C2L1

during the drying period on a falling tide. The traditional method

predicted a prolonged drying process during the falling tide due to

the method’s over-prediction of the bed friction effect in the shallow

water area near theWDF as discussed previously. The simulation by

the traditional method further suffered large numerical oscillations

associated with the drying process. The improved method clearly

has resolved these problems and provides a feasible means for

conducting the following analysis.

Salt marsh systems embedded with meandering creeks are

complex systems involving many hydrodynamic processes. Here

we illustrate this using a simplified model of sediment transport.

The sediment transport rate (q) due to water current (neglecting

threshold velocity for initiation of particle movement) may be
FIGURE 9

(A) Schematic diagram of the hybrid model consisting a large-scale tidal channel sub-model and four local-scale salt marsh models at points 1, 2, 3
and 4 along the channel (P1 is the origin of the x coordinate, P2, P3, P4 are 12.5 km, 25 km and 37.5 km inland of P1); (B) Schematic diagram of the
local-scale salt marsh model with a meandering creek. The contours show the bed elevations in m; (C) Computational grid. High grid densities are
needed near the creek to resolve the rapid topography changes.
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FIGURE 11

Comparison of the magnitude of the velocity (m/s) and the WDF predicted by the improved method (A) and the traditional method (B) for case 1;
Comparison of the velocity of the tidal flow during the drying period during the falling tide at point C2L1 predicted by the improved method and the
traditional method for case 1 (C).
FIGURE 10

(A) Time serials of local water surface elevations at P1-P4; (B) Shifted and re-scaled tidal signals with the same phase, oscillation range and averaged
elevation.
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expressed by q = fua , where f is a function representing sediment

grain size, bed slope characteristics, etc.; u is current velocity; and a
varies between 2 and 5. We defined a net flux quantity over a tidal

cycle, which might be related to the net (residual) sediment

transport rate (Ip et al., 1998),

S =
1
T

Z T

0
Uj j2Udt : (20)
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The divergence of this pseudo residual sediment flux ∇ · S =
dS
dx +

dS
dy was calculated to illustrate how the topography might change

under different tidal signals (Figure 12). A positive divergence of the

residual sediment flux indicates local erosion and a negative value is

linked to local accretion. Figure 12 shows three trends of topographic

variations as the tidal signal changed from P1 to P4: (1) the condition of

the salt marsh platform changed from mainly stable to being accreted;

(2) around the edge of the salt marsh platform and tidal channel,
FIGURE 12

Spatial variations of divergence of pseudo residual sediment transport flux (m2/s3) for cases 1 (A), 2 (B), 3 (C) and 4 (D). The pseudo residual sediment
transport flux is defined by Equation 20.
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FIGURE 13

Temporal variations of flow velocity at different locations for case 1 (A) and case 4 (B). The ordinate of Figure (B) is identical to that of Figure (A).
Circles highlight flows at locations near the tidal creek at the beginning of flooding and the end of drainage of the marsh platform with directions
being predominantly perpendicular to the creek.
FIGURE 14

Pseudo residual sediment transport flux (q) near the creek mouth for cases 1 (A), 2 (B), 3 (C) and 4 (D).
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conditions changed from being accreted to being eroded; and (3)

overall the creek remained eroded and the bank of the creek being

accreted to different extents under all tidal signals.

The topographic variations among the four cases were essentially

due to the differences in the shapes of the tidal signals used to drive

the models. Figure 13 shows the temporal variations of velocity at the

observation points for case 1 and case 4. It is evident that the lengths

of the flooding and ebbing tide periods differed between these two

cases. The ebb tide in case 4 lasted much longer than that in case 1.

Although local tidal signals of water surface elevation had the same

amplitude in both cases (Figure 10B), the amplitudes of local velocity

oscillations were different (Figure 13). Furthermore, the effect of

topography on the flow velocity was significant, especially around the

locations near the tidal creek. Flow directions at locations near

the tidal creek varied from being predominantly perpendicular to

the creek at the beginning of flooding and the end of drainage of the

marsh platform, to being largely parallel to the creek for the rest of the

rising and ebbing tide periods, respectively. The effects of topography

on flow velocity and hence sediment transport rate is further shown

in Figure 14. The spatial distribution of the residual sediment flux

varied significantly with topography. Large spatial gradients of q

typically occurred at locations with rapid topographic changes, which

would lead to large modifications of the local topography. Such flow-

topography interactions underpin the evolution of the salt marsh and

present a great challenge for numerical modelling. The challenge is

two-fold: (1) in such a tidally influenced system, the residual flow and

transport properties, which control the system’s long-term behavior,

are likely to be controlled by higher-order processes, thus requiring

highly accurate numerical solutions; and (2) topography variations,

while representing a key driving factor of the system, exacerbate the

problem with the WDF, hindering accurate simulations of the

moving boundary.

The application case presented above has demonstrated the

advancement made by the improved method in resolving these

challenges, which will improve the capacity of hydrodynamic models

for simulating complex flow and transport processes in coastal

wetlands. The results suggested that (1) the numerical problems with

the WDF encountered by the traditional method have been largely

resolved by the improved method; and (2) particularly with the

removal of numerical oscillations suffered by the traditional method,

the improved method may be used to simulate and analyze high-order

processes and quantities such as residual sediment transport flux,

which control the evolution of coastal wetlands.
4 Conclusions

We have developed an improved wetting and drying algorithm

for a hydrodynamic model based on unstructured grids. The

algorithm combines an inundation function, wet fraction of area

and wet fraction of side length to describe the changes of geometric

parameters of partially wet elements with the moving WDF. These

changes are fully incorporated in the numerical solution. The

discretized continuity equation and momentum equations are

solved for partially wet elements and sides with full consideration
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of the WDF movement to guarantee that local water surface slope,

flux volume and bed friction are modelled accurately.

The test and application cases demonstrated the improvement

achieved by the improved method in terms of mass conservation, and

proper simulations of theWDF and bed friction effects in the near-front

area. Moreover, the improved method has been shown to be capable of

simulating high-order processes in a tidally influenced wetland system.

Such simulations would not be possible with the traditional method,

affected by numerical oscillations caused by the WDF movement.

Although it was implemented within a finite-volume model, the

improved algorithm, in principle, can be applied to hydrodynamic

models based on other numerical methods. The capability of this

method will enable applications of numerical models to examine

key processes that control the evolutions of coastal wetlands such as

salt marshes.
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