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Ever more often, opportunity vessels are used to provide in-situ sea surface

temperature and salinity data. In particular, sailing vessels participating in oceanic

races are often utilized, as they usually cover remote areas not reached by

commercial vessels, such as the southern oceans. The received signal from

temperature and salinity sensors -especially the latter- is often disturbed either

by bubbles, due to strong turbulent flows, or by non-renewal of the water in

contact with the sensor. Until now, only manual methods have been successfully

used to filter this data, since no automated procedure has been developed. In this

paper, we present (i) a sensor housing to be placed on the keel, designed to

reduce the aforementioned physical issues, and (ii) an automatic filtering method

to override the manual procedure. The physical system was mounted on the

historic sailboat Pen Duick VI and has served to collect data along the Ocean

Globe Race route (2023-2024). This initiative was a collaboration between the

crew of the boat, the Institute of Marine Sciences (ICM-CSIC) in Barcelona, and

the Laboratoire d’Océanographie Physique et Spatiale (Ifremer). The housing for

sensors consisted of a 3D-printed hydrodynamic support, designed to reduce

drag. The automated filtering approach was based on wavelet denoising

techniques and simple moving averages. The results are presented in an open

dataset and show that procedure yielded good performance in identifying and

rejecting outliers, while operating with far greater speed than manual filtering.

The method is intended to become a standard procedure for similar in-situ

datasets, and an open-source software is provided for this purpose. This work is a

step forward in oceanographic data processing and aims to provide a tool with a

wide range of applications.
KEYWORDS

sea surface temperature, sea surface salinity, vessels of opportunity, ocean racing,
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1 Introduction

On 8 September 1973, 17 yachts and 167 crew members

departed from Portsmouth, United Kingdom, to complete what

was about to become the first-ever round-the-world sailing race: the

Whitbread Round the World Race. Since that historic edition, the

race has been held every three or four years, evolving under different

names, including the Volvo Ocean Race (2001-2018) and currently,

The Ocean Race. These regattas have always pushed the limits of

human and technological endurance, serving as a testing ground for

innovation in boat design, engineering, and navigation.

While technological advancements have led to the development

of increasingly sophisticated and efficient sailing vessels, some boats

from the early editions remain highly capable of undertaking global

voyages. Recognizing their enduring value was conceived the Ocean

Globe Race (OGR), to allow these classic yachts to sail around the

world once again. Its first edition commenced in September 2023,

and a second edition is planned for 2027.

From an oceanographic perspective, these long-distance sailing

races represent unique opportunities for collecting in-situ data in some

of the most remote and least-sampled areas of the world’s oceans,

particularly the Southern Ocean Chapman et al. (2020). The high-

latitude regions covered by these regattas are crucial for understanding

ocean-climate interactions, yet they remain severely undersampled

due to access difficulties and harsh conditions. In-situ measurements

collected by vessels participating in these long-distance sailing races

contribute to valuable datasets for validating satellite observations,

improving climate models, and enhancing our understanding of ocean

dynamics in these extreme and remote environments Behncke et al.

(2024); Landschützer et al. (2023); Tanhua et al. (2020).

The use of racing yachts as vessels of opportunity in

oceanography involves significant challenges regarding data

quality control and processing. Measurements of sea surface

temperature (SST) and sea surface salinity (SSS) collected from

these platforms are frequently affected by instrumental noise arising

from two primary issues: (i) the formation of air bubbles due to

high-speed turbulent flows around the sensor, and (ii) the lack of

continuous renewal of water in contact with the sensor, leading to

stagnation induced errors. Until now, manual filtering techniques

have been the primary method for correcting such disturbances,

limiting the scalability and efficiency of data processing. During the

2010s, efforts have been made to use automatic denoising

techniques (Gourrion et al. (2020) and references therein).

Building on previous oceanographic initiatives in global sailing

races, the present study integrates lessons learned from over a decade

of experience in equipping regatta vessels with oceanographic sensors.

The first successful deployment of scientific instrumentation on a

competitive sailing yacht occurred in 2011 through a collaboration

between the Barcelona World Race (BWR-2011) organizers, the

Institute of Marine Sciences (ICM-CSIC), and the Maritime Catalan

Forum (FMC). A MicroCAT (SBE-37) temperature and conductivity

sensor, alongside an XCAT transmitter, enabled real-time

transmission of sea surface data, demonstrating that scientific

measurements could be collected without interfering with navigation

or race performance Salat et al. (2013). This success led to continued
Frontiers in Marine Science 02
sensor deployments in subsequent races, including the Barcelona

World Race 2014-2015 (BWR-2015) and the Vendée Globe Race

2020-2021 (VGR-2020/2021) Umbert et al. (2022). All these

experiences provided valuable high-resolution in-situ SST and SSS

datasets along remote oceanic routes and served to validate satellite

products in the Southern Ocean. Recent work by Hernani et al. (2025)

highlighted the ability of regatta sailboats to collect high-resolution

SST and SSS data across the Southern Ocean during the last decade,

identifying significant interannual variability and linking observed

changes to major climate drivers such as the El Nino–Southern˜

Oscillation (ENSO) and the Southern Annular Mode (SAM).

The present study describes two key innovations to address the

above mentioned challenges: (i) the development of a sensor housing

system to be mounted on the keel of the vessel, designed to minimize

bubble formation and water stagnation effects, and (ii) the

implementation of a fully automated filtering method to replace

manual data processing. The newly designed hydrodynamic sensor

housing was deployed on the historic sailing vessel Pen Duick VI

during the Ocean Globe Race 2023-2024, in collaboration with the

Institute of Marine Sciences (ICM-CSIC) in Barcelona and the French

Institute for Research and Exploitation of the Sea (IFREMER).

2 Data

2.1 Course of the 2023 Ocean Globe Race

SST and SSS data were collected along the race course followed

by Pen Duick VI in the 2023 Ocean Globe Race, starting in

Southampton (UK) on September 10, 2023, and ending on April

16, 2024, at the same harbor. The race consisted of four legs around

the globe, from which only legs 2, 3, and 4 have been considered in

the present data collection, as no water samples were collected in the

first leg to check for possible salinity drifts (see Figure 1). On these

three legs, the sensor took one measure per minute, resulting in

215,343 pairs of raw temperature and salinity (see Table 1).
2.2 Sensor

Data collection was conducted using an NKE STPS300 data

logger, which measures temperature, conductivity, and pressure.

This instrument has a range of optimal performance for depths up

to 300 m and is powered by an internal battery. It operates within a

temperature range of -5 to 35 °C with an accuracy of 0.05 °C. The

conductivity sensor has a measurement range of 0 to 70 mS/cm and

an accuracy of 0.05 mS/cm, which gives an accuracy of 0.10 in

practical salinity. Calibration of the sensor is conducted following

each battery replacement, to maintain measurement accuracy. The

most recent battery replacement and associated calibration were

performed in January 2021. Water samples were collected during

the race course to allow posterior salinity data correction. The

sensor was installed on the keel of Pen Duick VI in September 2023.

Geospatial data were provided by the onboard external GPS. Data

collection was performed at a sampling frequency of one sample

per minute.
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2.3 Samples for salinity corrections

To assess possible biases in salinity data, along the course of

Legs 2, 3, and 4, seawater samples were collected at specific control

points. Their locations were meant to be regularly distributed over

distance. However the exact locations mainly depended on the

possibilities of the crew in a racing context. Furthermore, the

number of sampling points was limited by the storage space

available on board.

At each control point, three 250 ml plastic flasks of seawater

were collected and stored for post-cruise salinity analysis at the

Laboratoire d’Océanographie Physique et Spatiale - UMR 6523

IFREMER, using a Portasal LOPS-E salinometer. Given that plastic

containers are not standard in high-precision oceanographic

sampling protocols, several precautions were taken to preserve

sample quality: each flask was thoroughly rinsed with sample

water prior to collection and then filled carefully to minimize

headspace. The bottles were sealed with their original caps and

additionally secured using Teflon tape and electrical tape to

enhance hermetic sealing. Samples were stored in the coolest,

darkest available location on board to minimize temperature

fluctuations and evaporation. This being said, given our target

accuracy of 0.1 in practical salinity in the context of this global-

scale study, any potential impact from contamination or

evaporation is considered negligible. In Table 2, the average value
Frontiers in Marine Science 03
from every triple measure (Sref) and the corresponding standard

deviation (STD) are shown. These triple measure values are taken as

S reference for the control points.
2.4 Sensor housing

Previous studies involving in-situmeasurements of temperature

and salinity commonly installed the sensors inside the hull of the

ship, in the box housing the articulation of the swing keel. Although

this box was open and below the waterline, ensuring good renewal

of the water, it was exposed to bubbles in rough weather and may

remain even dry in heeling or upwind sailing situations Umbert

et al. (2022). Since the renewal of water in contact with the sensor is

a critical factor, in the present work, the sensor is placed on top of

the keel bulb, therefore outside the hull and in direct contact with

the seawater (Figure 2). This configuration avoids issues related to

the water intake system and ensures continuous water renewal.

For this purpose, the new sensor housing design must avoid as

much as possible having any mechanical impact on the hull of the

sailing vessel. Given that the boat will be used for racing purposes,

the objective is to interfere as little as possible with its performance

and to minimize the increase of its hydrodynamic resistance. At the

same time, the housing must protect the sensor to ensure that it

remains undamaged in the event of a collision with an object, while
FIGURE 1

Ship course during Legs 2, 3, and 4 of the race, with water sampling points marked along the route.
TABLE 1 Summary of the Ocean Globe Race 2023–2024 legs with corresponding dates, harbors, and number of salinity/temperature
measurements collected.

Leg From To Dates Measures
Water
Samples

1 Southampton, UK Cape Town, South Africa Sep 10 – Oct 19, 2023 – –

2 Cape Town, South Africa Auckland, New Zealand Nov 5 – Dec 28, 2023 99,299 6

3 Auckland, New Zealand Punta del Este, Uruguay Jan 14 – Feb 27, 2024 56,358 3

4 Punta del Este, Uruguay Southampton, UK Mar 5 – Apr 16, 2024 59,686 3
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also ensuring that the flow reaching the sensing cell remains

unobstructed. The sensor has been installed directly on top of the

keel bulb using a custom-designed support structure developed to

accommodate the specific sensor in use. The housing was

manufactured using 3D printing, a particularly advantageous

fabrication method for applications requiring unique and custom-

made components. This approach significantly reduces costs

compared to the use of other materials or modifications to

existing products. Moreover, 3D printing minimizes waste, as the

material is directly formed into the final product, ensuring an

efficient and sustainable manufacturing process.

The 3D model of the designed housing includes designated areas

for bolting it to the vessel hull, as well as recesses to accommodate ties

that secure the sensor. The design enables easy removal and re-

installation of the sensor for cleaning or maintenance without

detaching the housing from the hull. The dimensions of the support

structure are 450 x 90 x 50 mm. The ends of the housing have been

contoured to minimize hydrodynamic resistance (Figure 2). The

location is behind the keel fin to reduce the impact probability with

floating objects. In this position, the sensor is submerged at a depth

ranging from 2.5 to 3.5 meters, which helps reduce the presence of

foam and ensures more accurate measurements.
1 Harbour data are typically identified based on vessel speed and may be

valuable for analysis; however, this aspect is not addressed in the

present study.
3 Methodology

3.1 Data filtering

Raw data from opportunity vessels is commonly noisy and

needs filtering. For this kind of data, the process has historically

been done through plotting the time series and manually
Frontiers in Marine Science 04
suppressing outliers. In this section, an automation of this process

is presented, for which software has been developed.

3.1.1 General procedure
The method uses the following standard quality control (QC)

flags: 0 for no QC performed, 1 for good data, 2 for probably good

data, 3 for probably bad data, 4 for bad data, and 6 for harbor data
1.

First, the data is parsed so that only points labeled with QC< 3

are considered. Then two kinds of denoising processes are followed:

wavelet denoising (WD) and moving average denoising (AD), the

two of them detailed in the following subsections. BothWD and AD

take as input a time series and produce a new one, which has the

same number of points and is a less noisy representation of

the input.

After each denoising process (WD or AD), a quality control is

applied to the original data following this principle: the more the

original data points differ from the corresponding value in the

denoised time series, the “worse” it is their assigned QC flag. When

various rounds of (denoising + QC) are applied, each round only

works with data labeled with QC< 3, as a result of all previous

rounds. It is also respected that none of the quality controls can be

“improved” by any of these steps, that is, QC at step n must be

greater than or equal to the QC at step n − 1. In this way, at every

round, denoising happens on a subset of the data considered in the

previous step.

Let dibe the distance between the i-th value in the original data

and the corresponding value in the denoised representation. For

comparing the two time series and setting QC labels, three

thresholds t1,t2,t3 are set so that, for every index i:

if t3 ≤ di → QC = 4,

if t2 < di ≤ t3 → QC = 3,

if t1 < di ≤ t2 → QC = 2,

if di < t1 → QC = 1,

The particular values of these thresholds shall depend on the

nature of the signal and the intended accuracy. For the present set of

data, the values that were used are:

½t1, t2, t3� = ½0:02, 0:05, 0:1� ( ° C)  for temperature,

½t1, t2, t3� = ½0:007, 0:015, 0:05�  for salinity :

In the present study, the threshold t2—both for temperature and

salinity—plays a more critical role than t1 and t3, as it defines the

boundary between points that would be included in a filtered

product and those who would be excluded.

The choice of t2 takes into account that the boat’s speed ranged

from 3 to 15 knots for over 95% of the time, and that measurements

were recorded at a frequency of one per minute. Based on this

information, visual criteria from the plots were considered, with the
TABLE 2 Salinity measurements from water samples taken during the
PenDuick VI cruise.

Leg of
the OGR

Date Sref STD

Leg 2 2023 11 06 13:10 35.542 0.002

2023 11 13 16:45 33.764 0.005

2023 11 20 16:36 34.600 0.012

2023 11 27 07:52 34.854 0.008

2023 12 04 21:23 35.442 0.007

2023 12 11 18:55 35.582 0.002

Leg 3 2024 01 22 19:34 34.525 0.003

2024 01 31 02:06 34.236 0.004

2024 02 06 20:29 32.500 0.008

Leg 4 2024 03 06 01:12 29.341 0.084

2024 03 24 09:47 35.979 0.004

2024 04 11 11:27 35.269 0.028
Sref is the mean value of three water samples, with the corresponding standard deviation
(STD). The samples were analyzed on 2024 05–13 at the Laboratoire d’Océanographie
Physique et Spatiale - UMR 6523 IFREMER.
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expectation that the filtering would behave similarly to a manual

selection based on experience (Umbert et al., 2022).

Already having set t2, t1 and t3 are set in a more qualitative way for

this study. They define, respectively, the boundary for a set of data that

is very likely to be good and a set of data that is very likely to be bad.

More objective methods for setting up the thresholds will be

implemented in further versions of the algorithm. However, it must

be noted that in the provided code the values of the thresholds are to be

set by the user, leaving this choice to their knowledge about the dataset.

3.1.2 Wavelet denoising with scikit-image
Wavelet denoising is performed using tools from the scikit-

image Python package. This method allows us to reduce high-

frequency noise in the data while preserving important features

such as trends and abrupt changes.

The signal is first normalized between 0 and 1 to standardize the

scale and improve the efficiency of the denoising process. The

wavelet transform is then applied using the Symlet 8 (sym8)

wavelet, which is a symmetric wavelet well suited for smooth

signal processing. The number of decomposition levels is

determined based on the length of the time series, with a

maximum of three levels, ensuring sufficient depth while avoiding

over-decomposition in shorter sequences.
Frontiers in Marine Science 05
The denoised representation is produced using the VisuShrink

method, a thresholding technique that assumes the noise follows a

Gaussian distribution and applies a universal threshold. Soft

thresholding is used, meaning wavelet coefficients are shrunk

toward zero rather than set to zero, which results in a smoother

reconstructed signal Merry (2005); Addison (2002); Truchetet (1998).

The denoised signal has the same length as the input and

reflects a less noisy representation of the original time series. WD

is followed by the quality control process described above.
3.1.3 Moving average denoising
Moving average denoising takes a time series as input and

produces a new one where every value is the average of its two

closest points and itself. Let xibe the i-th value from data series, then

the i-th value of the output is:

ADi =
1
3
(xi−1 + xi + xi+1)

The interest of this technique is that, similarly to wavelet

denoising, it preserves steep trends. Furthermore, because we are

only averaging over three points, it can preserve relatively

sharp edges.
FIGURE 2

(a) 3D printed sensor housing. (b, c) Sensor housing location in the keel of the sailboat. (d) Pen Duick VI hull shape.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1602092
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Werner-Pelletier et al. 10.3389/fmars.2025.1602092
3.1.4 The need to combine wavelet denoising
and average denoising

In the testing of the denoising methods, WD shows better

adaptation to the nature of the original signal than AD, having a

good performance for filtering points that are outliers but remain

relatively close to the line drawn by the data. However, the outliers

that differ more significantly from the data line are sometimes

reached by the WD representation, resulting in not being labeled

with QC ∈{3,4}.
To address this issue while preserving the qualities of the WD

method, AD is introduced. Applying one or more rounds of AD on

top of WD, effectively labels with QC ∈{3,4} these remaining

outliers, while not causing significant data loss.

In this case study, temperature was filtered with WD and one

round of AD, while salinity was filtered with WD and two rounds

of AD.
3.2 Salinity bias correction

Salinity biases are computed by comparing the data from water

sample triplets (Table 2) with the values recorded by the sensor.

Since the water sample collection took about three minutes to be

done, an average over three consecutive points is considered for the

sensor value, only taking data with QC ∈{1,2} after the filtering. The
next step is to calculate D = S − Sref for each control point (Table 3).

In this case study, no significant trends can be seen either in the

time distribution of the biases or with temperature. Therefore,

salinity data correction is done considering the mean value of the

differences as a constant bias with an imprecision computed

imposing 95% confidence, assuming a normal distribution of

the error.
4 Results

In this section, the results of the work are presented, both in terms

of methodology performance and oceanographic data. Firstly, the

denoising process is discussed, showing the algorithm behavior on a

sample dataset; secondly, the denoising results are presented for Legs

2, 3, and 4; thirdly, the bias analysis and correction are discussed; and

lastly, the final data output is presented and analyzed.
4.1 Data filtering performance

This subsection considers a data sample with noise episodes from

Leg 4, ranging from 2 April 2024, 10:25 to 3 April 2024, 03:46 (UTC

times and one measure per minute). The following figures show the

denoising process for both temperature and salinity, considering the

aforementioned time interval and a “zoom in”, ranging from 2 April

2024, 21:45 to 3 April 2024, 01:27. Salinity data correspond to the

practical salinity calculated from temperature and conductivity data

according to the PSS-78 scale.
Frontiers in Marine Science 06
Figure 3 shows on the left part of the interval an episode of

measurements where the noise is little enough not to trigger quality

controls greater than 1. As noise appears in the signal, it is shown

how those points that differ significantly from the WD or the AD

denoise lines are labeled with greater QC values. In this figure, most

of them remain probably good data (QC=2, in green) and some are

labeled as probably bad data (QC=3, in pink).

With one iteration of AD, the algorithm follows these filtering

steps: (a) the WD values are computed, (b) these values are

compared to the original data and QC labels are set, (c) AD

values are computed for points that still satisfy QC< 3, and (d)

these values are compared to the original data again and QC labels

are set in a non-decreasing way. Recall that thresholds in use for

temperature are [t1,t2,t3] = [0.02,0.05,0.1] (°C).

Figure 4 presents a narrow window of time from this same data

sample to better show the denoised values. The plot illustrates how

the WD values have a higher tendency to reach the outliers than the

AD values, as mentioned in Subsection 3.1. However, in the

combination of both denoising methods, close to manual

performance is achieved in filtering outliers.

In Figure 5, we present the corresponding salinity data of the

time interval from Figure 3 (temperature). The downwards spikes

show a typical noisy behavior of this sort of salinity data Umbert

et al. (2022), which is successfully filtered by the algorithm, as these

points are labeled with QC = 3 (pink) or QC = 4 (red). Recall that

thresholds in use for salinity are [t1,t2,t3] = [0.007,0.015,0.05]. Note

that some of these distant outliers are being labeled as probably bad,

even when they fall far apart from the main signal feature. This can

be easily addressed by shifting t3 toward t2. However, being t2 the

most relevant threshold to the study, it was chosen not to do so in

order to better show the behavior of the algorithm.

Also recall that in the case of salinity, two rounds of AD were

needed, resulting in the following steps of processing: (a) the WD

values are computed, (b) these values are compared to the original data
TABLE 3 Differences between sensor data and salinity references
obtained by sampling at control points during the PenDuick VI cruise.

Leg of the OGR Date Bias

Leg 2 2023 11 06 13:10 -0.144

2023 11 13 16:45 -0.109

2023 11 20 16:36 -0.114

2023 11 27 07:52 -0.135

2023 12 04 21:23 -0.195

2023 12 11 18:55 -0.188

Leg 3 2024 01 22 19:34 -0.092

2024 01 31 02:06 -0.081

2024 02 06 20:29 -0.078

Leg 4 2024 03 06 01:12 -0.043

2024 03 24 09:47 -0.159

2024 04 11 11:27 -0.234
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and QC labels are set, (c) AD values are computed for points with QC<

3 (first round of AD), (d) these values are compared to the original data

and QC labels are set in a non-decreasing way, (e) AD values are

produced with the remaining data with QC< 3 (second round of AD),
Frontiers in Marine Science 07
and (f) these values (from second AD round) are compared to the

original data and QC labels are set in a non-decreasing way.

The plots for salinity are shown as AD values, the ones resulting

from the second round of AD denoising together with those points
FIGURE 4

Zoom in from Figure 3. Denoising process on a temperature data sample with noisy episodes from leg 4. WD values are shown in orange and AD
values after one iteration are shown in gray.
FIGURE 3

Denoising process on a temperature data sample with noisy episodes from leg 4. WD values are shown in orange. AD values after one iteration are
plotted in gray, but are hidden beneath the WD line, see Figure 4 for a better visualization.
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that were involved in round 1 but not in round 2, that is, the points

that were already labeled as “bad” or “probably bad” in round 1.

Figure 6 presents salinity data on the same time window as

Figure 4. It provides a clear example of how WD tends to reach

distant outliers. The plot also shows how the presence of such an

outlier induces oscillation on the surrounding WD values.

Therefore, even if a high percentage of these points is still being

labeled as “bad” or “probably bad” through WD, AD has shown to

be valuable in cleaning the remaining outliers.
4.2 Data filtering on Legs 2, 3, and 4

This subsection presents a set offigures showing a global view of

how the algorithm worked on Legs 2, 3, and 4 (Figures 7–13). The

thresholds that were used are presented together with the

percentages of each quality flag.
4.3 Salinity bias analysis

Table 3 shows the resulting biases from water samples for all

Legs. It also shows how the sensor was under-measuring salinity at

all times, recording the less biased results in Leg 3 and showing the

greatest bias value -in absolute terms- at the end of Leg 4.

As described in subsection 3.2, the bias is taken as the mean

value from Table 3, which is −0.127. Imposing a 95% confidence, an

imprecision of 0.115 is obtained for this value. Therefore, all salinity
Frontiers in Marine Science 08
data are to be shifted +0.13 and to be considered with

±0.1 precision.
4.4 Oceanographic observations

The filtered sea surface salinity and temperature (Figure 14)

maps reveal distinct hydrographic structures as the vessel navigates

the Subantarctic Zone during Legs 2 and 3. South of 40°S, along the

path of the Antarctic Circumpolar Current, clear gradients in both

T and S are observed, especially in the Pacific and Indian sectors.

Salinity values range from approximately 33.5 to 35.5, showing

a freshening trend near 50–60°S (likely due to Antarctic surface

waters and precipitation influence) and increasing sharply north of

the Subantarctic Front (SAF), where subtropical waters dominate

Chapman et al. (2020). The temperature distribution follows a

similar pattern, with colder waters (5–10°C) near 60°S and warmer

values (up to 20°C) closer to 40°S, marking the transition across the

SAF and Subtropical Front (STF).

The temperature (left panel; Figure 15) and salinity (right panel;

Figure 15) distributions along leg 4 reveal a clear latitudinal gradient

consistent with large-scale oceanographic structures in the

Atlantic Ocean.

Surface temperature ranges from approximately 11.5°C in the

north (near 40°N) to over 30°C in the tropics, reflecting the

transition from temperate waters of the North Atlantic to the

equatorial warm pool. Salinity, in turn, ranges from about 34 to 38,

with the highest values located between 10°N and 30°N, associated with
FIGURE 5

Denoising process on a salinity data sample with noisy episodes from leg 4 corresponding to Figure 3 time interval. WD values are shown in orange,
and AD values after two iterations are shown in gray. The downward spikes are characteristic of this type of data, typically caused by air bubbles
going through the conductivity sensor.
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Subtropical Surface Waters, where evaporation exceeds precipitation.

Fresher waters are observed near the equator and south of 20°S,

possibly influenced by river outflow or rainfall.
5 Discussion

Traditional approaches to filtering sea surface temperature and

salinity data collected from vessel-based platforms often rely on

threshold-based criteria or simple statistical techniques to identify
Frontiers in Marine Science 09
and remove outliers [e.g., Bushnell et al. (2019); U.S. Integrated

Ocean Observing System (IOOS) (2020)]. While these methods can

be effective in removing gross errors due to bubbles, water

stagnation, or sensor lags, they often lack adaptability in dynamic

ocean environments and may fail to capture more subtle, transient

anomalies. In this study, we proposed an automated filtering

method that builds on these classical approaches but incorporates

a more robust and systematic framework to improve data quality,

particularly in the challenging context of data collected from

racing yachts.
FIGURE 6

Zoom in from Figure 5. Denoising process on a salinity data sample with noisy episodes from leg 4. WD values are shown in orange, and AD values
after two iterations are shown in gray.
FIGURE 7

Temperature data during Leg 2 of the race, with WD and AD filtering applied. The table shows the settings of the filtering method and the
percentages of quality control labels in the output.
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In this study, we have gone beyond conventional filtering by

incorporating methodologies drawn from image processing,

specifically wavelet-based denoising techniques applied in one

dimension [e.g., Merry (2005); Truchetet (1998)]. These methods,

which are particularly effective at isolating multi-scale structures,

allowed us to better capture the fine-scale variability in SST and SSS

time series while minimizing the influence of instrumental noise.

While the proposed automated filtering method successfully

improves data quality by mitigating noise caused by bubble formation
Frontiers in Marine Science 10
and water stagnation, certain limitations remain. The algorithm relies

on predefined thresholds and statistical techniques that may not fully

adapt to highly dynamic oceanic conditions, particularly under relatively

low measurement frequencies. In extreme weather events or regions

with strong currents, transient anomalies in temperature and salinity

could still bemisclassified as noise if themeasuring frequency is not high

enough, potentially leading to data loss. Additionally, the method

assumes uniform sensor performance across different vessel

speeds and sea states, which may not always hold true. Future
FIGURE 8

Salinity data during Leg 2 of the race, with WD and AD filtering applied. The table shows the settings of the filtering method and the percentages of
quality control labels in the output.
FIGURE 9

Temperature data during Leg 3 of the race, with WD and AD filtering applied. The table shows the settings of the filtering method and the
percentages of quality control labels in the output.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1602092
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Werner-Pelletier et al. 10.3389/fmars.2025.1602092
refinements should incorporate adaptive filtering techniques that

dynamically adjust to environmental variability, improving robustness

in challenging conditions.

The filtering approach developed in this study has the potential to

be applied beyond the Ocean Globe Race dataset. Similar denoising

methodologies could enhance data quality in other vessel-based

oceanographic programs, such as ferry-based monitoring networks,

autonomous surface vehicles, and research cruises. The technique

could also be adapted for use in low-cost sensor deployments on

commercial ships, expanding data collection capabilities in under-
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sampled ocean regions. By refining and validating this approach

across multiple platforms, the method could contribute to the

standardization of automated filtering procedures for vessels of

opportunity within global ocean observing networks.

The ability to obtain high-quality in-situ SST and SSS

measurements from non-traditional observation platforms has

significant implications for oceanographic research. Improved

datasets contribute to better calibration and validation of satellite-

derived products, reducing uncertainties in global climate

monitoring. Additionally, high-resolution data from racing yachts
FIGURE 11

Temperature data during Leg 4 of the race, with WD and AD filtering applied. The table shows the settings of the filtering method and the
percentages of quality control labels in the output.
FIGURE 10

Salinity data during Leg 3 of the race, with WD and AD filtering applied. The table shows the settings of the filtering method and the percentages of
quality control labels in the output.
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provide new insights into small-scale ocean processes, including

sub-mesoscale eddies and boundary layer interactions, which are

often underrepresented in coarse-resolution climate models. The

development of automated filtering techniques also supports the

broader effort to integrate machine learning and artificial

intelligence into oceanographic data processing, paving the way

for more efficient and scalable ocean monitoring solutions.
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6 Conclusion

The present study presents a robust and systematic method to filter

SST and SSS data collected from vessels of opportunity, particularly in

the demanding conditions of ocean racing. By integrating wavelet-based

denoising techniques, the approach effectively reduces noise while

preserving fine-scale oceanographic variability.
FIGURE 13

Leg 2 filtered data from denoising (gray) and final data (black) with a +0.130 bias correction.
FIGURE 12

Salinity data during Leg 4 of the race, with WD and AD filtering applied. The table shows the settings of the filtering method and the percentages of
quality control labels in the output.
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The method presented in this manuscript advances the field by

showing that automated data denoising techniques can achieve

manual-level performance while significantly improving processing

speed. The system is more efficient because it reduces costs and

provides similar filtering standards. Although some limitations

remain under particular conditions, the method offers a valuable

step toward standardized, automated processing of in-situ ocean data.
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Its potential application across diverse platforms highlights its

relevance for enhancing global ocean observing systems and

improving the validation of satellite products. The continued

refinement and expansion of these methodologies will enhance

observational capacity in climate-sensitive and remote ocean

regions, strengthening global efforts to monitor the changing

global ocean.
FIGURE 15

Temperature (left) and salinity (right) along Leg 4 (Mar 5 – Apr 16, 2024).
FIGURE 14

Temperature (left) and salinity (right) along Leg 2 (Nov 5 – Dec 28, 2023) and Leg 3 (Jan 14 – Feb 27, 2024).
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