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The Canadian Arctic Archipelago (CAA) serves as a major conduit between the

Arctic Ocean and the North Atlantic. The Nansen Sound fiord system, which

encapsulates Nansen Sound, Greely Fiord, Eureka Sound and several surrounding

fiords, forms the northernmost oceanographic passageway through the CAA.

Due to hostile ice conditions, the area has been understudied since the original

oceanographic surveys were conducted in the 1960s and 1970s. The historic

data highlighted a very weak signal of the relatively fresh Pacific-derived water

(PW). Here, we present new oceanographic observations, including PW tracers,

and contrast them against the historic data. Salinity profiles taken in 2024 show

significant freshening as compared to 1976. This freshening is attributed to

enhanced presence of PW in the area. We suggest that changes in the Arctic

Oscillation impact the export gateways of PW from the Arctic Ocean, with the

recent switch to a positive phase enhancing the outflow of cool and less saline

PW through the CAA. Overall, this provides a first glimpse into variability of the

freshwater flow through the straits of the northern CAA.
KEYWORDS

Canadian Arctic Archipelago (CAA), Pacific-modified polar water, Pacific water tracers,
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1 Introduction

The Canadian Arctic Archipelago (CAA) is comprised of a series

of narrow channels and passageways that collectively form a conduit

connecting the Arctic Ocean (AO) to Baffin Bay and the North

Atlantic. Inflow, modification and outflow of the waters passing

through the CAA are of great interest for the purposes of

understanding oceanographic conditions, changes and variability,

with a particular interest in the advection of freshwater (Zhang

et al., 2021). The primary source of freshwater in the CAA is the

relatively fresh Pacific-modified polar water (hereinafter Pacific water

– PW; Carmack et al., 2016) that enters the AO through the Bering

Strait (Figure 1a). PW subsequently follows one of two major

pathways, a transpolar branch crossing the AO toward Fram Strait,

and an Alaskan branch that flows along the continental slope of the

Beaufort Sea (Figure 1a; Jones, 2001; Rudels, 2012; Woodgate, 2013).

The magnitude of PW flowing through each pathway and the

location of the transpolar branch is controlled by the large-scale

atmospheric circulation (Steele et al., 2004; Karcher et al., 2012; Hu

and Myers, 2013; Haine et al., 2015; Aksenov et al., 2016; Dmitrenko

et al., 2018; Kelly et al., 2020; Wang et al., 2021; Wang and Danilov,

2022), which varies on decadal and multidecadal timescales and

therefore drives variability in the distribution of PW throughout the

AO. This is expected to drive variability in the advection and storage

of freshwater in the CAA, though due to limited in situ studies this

variability is poorly understood.

The northernmost passageway through the CAA is comprised

of Nansen Sound, Greely Fiord, Eureka Sound and the surrounding

fiords, which we collectively refer to as the Nansen Sound Fiord

system (NSFS; Figure 1). Due to its northern geography and near

year-round ice cover, this area has been dramatically understudied

relative to the rest of the Canadian Arctic. The original

oceanographic surveys were conducted from 1963–1972 as part of

operation “Hazen-Tanquary”, under the framework of the Defence

Research Board of Canada (Hattersley-Smith, 1968; Fissel et al.,

1983). Unfortunately, most of this data was not published and is

unavailable. Additional oceanographic data was collected in the

mid-1970s by the Frozen Sea Research Group of the Institute of

Ocean Sciences (e.g., Frozen Sea Research Group, 1976) and

therefore provide a baseline of the oceanographic conditions in

the NSFS. Since these surveys there has been very little work done in

the area, which is now part of the Tuvaijuittuq Marine Protected

Area (DFO, 2020) and part of the broadly defined Last Ice Area (Fol

et al., 2025). As a result, it is not well understood how the

oceanography of this area has responded to climatically driven

changes that have occurred both upstream and locally during the

past half-century. Here, we present data from a new oceanographic

survey of this area completed during August 2024 and contrast it

against the available historic observations. This comparison

highlights changes and variability of the oceanography in the

northern CAA indicating a noticeable freshening in the area.

Using biogeochemical tracers we attributed this freshening to an

increased volume of PW in the NSFS. We assign this to changes in

the large-scale atmospheric circulation over the Arctic that impacts

the circulation patterns of PW in the AO.
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2 Data and methods

In August 2024, 11 conductivity-temperature-depth (CTD)

profiles were collected in the NSFS from the Canadian Coast

Guard icebreaker Des Groseilliers (Figures 1, 2; Supplementary

Figures S1–S3; Dmitrenko and Babb, 2025). The CTD observations

were carried out with a Sea-Bird Scientific SBE-19plus CTD that

was calibrated prior to the expedition and was accurate to ±0.005°C

and ±0.0005 S m–1. Throughout the manuscript, we used practical

salinity calculated directly from the conductivity and temperature of

seawater as defined by Practical Salinity Scale 1978 (Lewis, 1980).

All CTD casts were taken through the full water column or to a

maximum depth of 520 m. The CTD was outfitted with a Wet Labs

ECO fluorometer for measuring Colored Dissolved Organic Matter

(CDOM) fluorescence for EX/EM = 370/460 nm, and a Sea-Bird

Scientific SUNA V2 Optical Nitrate Sensor that measured nitrate

based on the absorption characteristics of nitrate in the UV light

spectrum. The CDOM sensor sensitivity is 0.09 parts per billion

(ppb). The nitrate profiling was accurate to ±2 mmol m–3 (mmol m–

3 = millimoles of nitrate per cubic meter of water) or ± 10% of

reading. Both the CDOM and Nitrate sensors were calibrated prior

to the expedition, however, the resulting measurements were not

post-calibrated against discrete samples. In what follows, we limited

our analysis based on CDOM and nitrate data (Figure 3) only to

PW qualitative tracing. Throughout the paper we contrast the 2024

observations against historic observations occupied in August 1962

along Nansen Sound and Greeley Fiord (Supplementary Figure

S1A; Ford and Hattersley-Smith, 1965), in March-April 1976 in

Greely Fjord and Eureka Sound (Figures 1b, 2; Frozen Sea Research

Group, 1976) and in March 1983 (two stations over the mouth of

Nansen Sound and one station ~85 km from the mouth; Figures 1b,

2a, b; Supplementary Figure S3; CIOOS Pacific Data

Catalogue, 2025).

Three additional sets of complementary CTD profiles are used

to provide context for the water masses we observed in the NSFS. (i)

We adopted 26 CTD profiles from Iceberg Bay in Axel Heiberg

Island occupied in April-May 2022 (Figure 1a; Supplementary

Figure S2; Dmitrenko et al., 2023) to assess oceanographic

conditions on the western side of Axel Heiberg Island. (ii) CTD

profiles collected by Ice Tethered Profilers (ITP; Toole et al., 2011)

over the lower continental slope of the northern CAA (~ 82°N, 102°

W) are used to represent the ambient water masses. We specifically

use the mean of CTD profiles #1500–1700 from ITP #63 occupied

from May to June 2012 (Figures 1a, 2a, b; Supplementary Figures

S2, S3; Toole and Krishfield, 2016). (iii) Finally, 18 CTD profiles

collected over the CAA shelf ~60 km offshore from Ellesmere and

Axel Heiberg islands between 82°W and 97°W, and 1 profile in the

Prince Gustaf Adolf Sea at ~ 109.5°W all collected in March 1983

(CIOOS Pacific Data Catalogue, 2025) reveal the upstream

conditions over the northern CAA shelf (Supplementary Figure S3).

Mean sea-level pressure (SLP) was derived from ERA5

atmospheric reanalysis (Hersbach et al., 2020) for periods with

positive (1988–1994 and 2011–2021) and negative (1976–1982 and

1961–1971) phases of the Arctic Oscillation index (AOi; Figure 4a;

Supplementary Figure S4). The horizontal resolution of ERA5 is 31
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km. Monthly mean values of the AOi were obtained from the

National Centers for Environmental Information (2025).

For examining the PW pathways in the AO under different

atmospheric forcing, we use the global Finite volumE Sea-ice Ocean

Model (FESOM, 2025; Danilov et al., 2017). The model is based on

unstructured meshes, which allows the use of variable horizontal

resolution. The setup used here has a horizontal resolution of 6 km

in the AO, 4 km in the Bering Strait, 2.5 km in the CAA, nominal

half degree at the equator and one degree elsewhere. In the NSFS, a

1 km resolution was used. The vertical grid spacing is 2.5 m in the

upper 30 m, 5 m for 30–100 m depth and then coarsened with depth

– with 76 levels in total. The model was initialized from a rest state

and temperature and salinity from PHC3 climatology (Steele et al.,

2001). The model was run separately for the periods of 1961–1971

and 2011–2021 with negative and positive AOi, respectively

(Figure 4a), following a 3-year spin-up for each simulation. The

initial ice conditions for spin-ups are shown in Supplementary

Figure S5. We added a passive dye in the Bering Strait after the
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spin-up period. The tracer was initialized to zero globally and

restored to value one in the Bering Strait through the simulations.

It experiences the same advection and mixing as temperature and

salinity in the simulations. The model was forced by the

atmospheric fields from the JRA55-do reanalysis dataset (Tsujino

et al., 2018). For spin-ups we used the actual years of

JRA55 reanalysis.
3 Results

In August 2024, the water column across the NSFS showed four

distinct layers, which are consistent across the entire study area

(Figure 2; Supplementary Figure S1). These layers, from top to

bottom are described below:
i. 0–45 m: The layer immediately below the sea surface down

to ~45 m depth comprises the subsurface halocline
FIGURE 1

(a) Bathymetric chart of the western AO. The schematic circulation of PW (white arrows) and AW (red arrows) in the AO and adjoining CAA follows
Jones (2001); Rudels (2012), and Woodgate (2013). Blue dots depict CTD profiles taken by the ITP #63 over the lower continental slope of the CAA
in May-June 2012. Blue arrow highlights Iceberg Bay in Axel Heiberg Island. Red rectangle denotes the area of Nansen Sound and Greely Fjord
enlarged in (b). (b) Sentinel-2 satellite image from 9 August 2024 shows Nansen Sound and Greely Fjord with oceanographic stations occupied in
August 2024 (red crosses). Blue and green crosses identify CTD stations taken in March 1976 and 1983, respectively.
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Fron
conditioned by snow, sea-ice and glacier meltwater influx

and solar radiative heating during summer (Figures 2a, b).

The subsurface halocline is characterized by a relatively

strong vertical salinity gradient with salinity increasing

with depth by ~0.07 m–1. Water temperature gradually

decreases with depth from ~0°C below the sea surface to –

1.2°С at 45 m depth. The exception to this is station 7,

which was colder, a feature that we attribute to its position

near the ice-covered area at the mouth of Nansen Sound

(Figures 1b, 2a).

ii. 45–180 m: A layer with a weaker vertical salinity gradient

(0.019 m–1) with salinity increasing from 31.5 at 45 m to 34.1

at 180 m depth underlays the subsurface halocline

(Figure 2b). We refer to this layer as PW following its

similarity to the Pacific-derived water layer in the adjoining

Canada Basin (e.g., Steele et al., 2004; Shimada et al., 2005). In

the upper part of this layer, temperature decreases to –1.35°С

at 65–75 m depth (Figure 2a), with cooler temperatures

observed closer to the mouth of Nansen Sound

(Supplementary Figure S1B). The temperature then

gradually increases with depth to –0.4°С at 180 m

(Figure 2a; Supplementary Figure S1B) indicating the

transition to relatively warm Atlantic water (AW).
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iii. 180–235 m: Below PW (>180 m depth), temperatures

increased steadily through the Atlantic-modified polar

water with salinity from 34.1 to 34.5 (Figures 2a,b). The

temperatures eventually exceeded 0°C (the commonly

accepted upper boundary of the AW) at ~235 m depth,

indicating the presence of AW (Figure 2a).

iv. >235 m: AW occupies depths exceeding 235 m. The

thermohaline characteristics of AW are spatially uniform

over the entire study area (Figures 2a, b). The temperature

increases with depth from 0°C at ~235 m to 0.4°C at ~500–

520 m depth (Figure 2a). The salinity of AW ranges from

34.5 to 34.8 (Figure 2b). The thermohaline stratification of

the deeper portion of the AW layer >400 m depth is weak

(Figures 2a, b).
CTD data from March 1976 show higher salinity compared to

August 2024 (Figure 2c). The upper ~15 m has the greatest salinity

difference, which is largely due to the seasonal features. Freshwater

from ice melt and glacial discharge accumulates during summer. In

contrast, brine enriched water gains during winter as the ice grows

(Figures 2b, c). From ~20 to 45 m depth, salinity in March 1976

exceeds that recorded in August 2024 by up to 1.2 ± 0.25

(Figure 2c), but this can still be explained by seasonal meltwater
FIGURE 2

Pink solid lines show all vertical profiles of (a) in situ temperature (°C) and (b) practical salinity taken in the NSFS in August 2024 with their mean
displayed by dashed red line. Dashed black line show mean CTD profile taken by the ITP #63 over the lower continental slope of the CAA from May
to June 2012. Dotted black line depicts CTD profile taken in Nansen Sound in March 1983. Purple solid lines show CTD profiles taken in Greely Fjord
and Eureka Sound in March 1976 with their mean displayed by dashed purple line. (c) Salinity (blue line) and temperature (red line) differences
between mean salinity and temperature profiles for 1976 and 2024. Dark blue and pink shading depicts ± one standard deviation of the mean. Blue
and pink shading highlights PW and AW, respectively.
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fluxes. At 45 m depth, salinity in March 1976 already exceeds 32.5

compared to 31.5 in August 2024. The water layer from 60 m to 85

m depth also shows larger salinity relative to August 2024 of ~0.8 ±

0.2 (Figure 2c). This water layer coincides with the temperature

minimum observed in August 2024 (Figure 2a; Supplementary

Figure S1B). For depths exceeding 100 m, salinity difference

between 1976 and 2024 gradually decreases through the Pacific-,

Atlantic-modified and AW layers from 0.8 at ~100 m to 0.1 at 450

m depth (Figure 2c). The difference of 0.1 below 450 m depth is

likely attributed to lower accuracy of salinity measurements taken in

1976. In terms of temperature, PW in 2024 is ~0.2°C cooler

compared to 1976, while the temperature of AW in 2024 is

~0.15°C warmer (Figure 2a). Three stations occupied in Nansen

Sound inMarch 1983 also show saltier PW, however, the magnitude

of the salinity deviation is about 0.3–0.4 lower as compared to 1976

(Figure 2b; Supplementary Figure S3B).

Similar to the comparison with data from 1976, CTD data from

1962 also show larger salinity relative to 2024. In August 1962, a

salinity of 30 observed at 3–12 m depth is compared to 27.2–28.9 in

2024. Salinities 31 at 21–26 m, 32 at 46–48 m, 33 at 70–78 m, and 34

at 108–132 m depth are compared to 30.4–30.6, 31.6–31.7, 32.5–

32.6, and 33.2–33.5 in 2024, respectively (Figure 2b; Supplementary

Figure S1A). Overall, for the PW layer between 45–180 m depth, the

mean salinity difference between 1962 and 2024 is ~0.5.
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4 Discussion

Below we discuss the potential origin of the negative salinity

deviation recorded in the NSFS in 2024. We use tracers (CDOM

and nitrate) to attribute this lower salinity to a larger fraction of

PW. We also put our results into the context of how the PW

pathways in the AO shift in response to changes in the large-scale

atmospheric circulation.

Winter-to-summer CTD profiles show that seasonal variability

impacts the subsurface water layer down to ~50 m depth

(Figure 2c). The solar radiative heating and meltwater flux

generate seasonal warming and freshening. However, the

underlying PW layer remains isolated from the surface due to

salinity (density) stratification re-establishing during summer.

We suggest that the lower salinity in 2024 is attributed to inflow

of Pacific winter water (PWW). In the adjoining Canada Basin, the

upper halocline water with temperatures down to −1.5°С at

salinities of ~32–33 (dashed black lines in Figures 2a, b;

Supplementary Figures S2, S3), originating from the Chukchi Sea

shelf, is usually comprised by PWW (Timmermans et al., 2017).

This water is the most common winter product formed during

freezing and brine rejection in the Bering and Chukchi Seas

(Weingartner et al., 1998; Pickart, 2004). The 32–33 salinity

matches the range of the lower salinity recorded in 2024 at
FIGURE 3

Color solid lines show all vertical profiles of (a) CDOM fluorescence (mg m–3) and (d) nitrate concentration (mmol m–3) taken in the NSFS in August
2024. (b, c) Property-property scatterplots of (b) CDOM fluorescence, practical salinity, and in situ water temperature (in color) and (c) in situ water
temperature, practical salinity, and CDOM fluorescence (in color) for all CTD profiles taken in 2024. (c) Black dashed line shows in situ mean TS
diagram for the lower continental slope of the CAA derived from the ITP #63 ± one standard deviation depicted by pink shading.
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50−105 m depth (Figures 2b, c) assuming that it is explained by

injection of PWW. In 1976, this salinity was observed at ~30−60 m,

which is likely too shallow to be attributed to PWW.

Our suggestion on the Pacific origin of the lower salinity is

confirmed by the PW tracers. CDOM in the Arctic originates

predominantly from two sources: (i) terrigenous organic matter

primarily attributed to the Eurasian and American continental

runoff water (Amon et al., 2003; Stedmon et al., 2011), and (ii)

subsurface interactions with organic-rich sediments on the Arctic

shelves (Guéguen et al., 2007; Stedmon et al., 2011, 2021). In

Figures 3b, c and Supplementary Figure S1C we observe a

subsurface maximum in CDOM fluorescence at intermediate

salinities between 32 and 33.5, with temperatures near the freezing

point. This is consistent with previously documented salinity-CDOM

relationships in the Canada Basin, where the CDOM maximum

originates from interaction with shelf sediments in the Chukchi Sea

during the formation of PWW (Guéguen et al., 2007; Stedmon et al.,

2021). The CDOMmaximum also corresponds to the depth range of

subsurface salinity anomalies in Figure 2c at ~50−105 m.
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Further evidence to support the Pacific-origin of the lower

salinity is provided by a peak in nitrate concentrations at the

same intermediate salinity range as the CDOM maximum

(Figure 3d). Similar to CDOM, these high nitrate concentrations

result from the interaction of shelf waters with bottom sediments

during transport of PW across the Bering and Chukchi shelves

(Jones and Anderson, 1986; Cooper et al., 1997). Moreover, the

Pacific inflow through Bering Strait itself carries a higher nitrate

concentration (Mordy et al., 2020; Zhou et al., 2021). The depth

range of the nitrate maximum at ~50−105 m with concentrations

from ~18 to >20 mmol m–3 (Figure 3d; Supplementary Figure S1D)

consistent with the depth range of salinity deviation in Figure 2c.

Note, however, that CDOM and nitrate cannot be fully treated

as conservative tracers. CDOM of the surface layer can be from high

primary production (Hill et al., 2013) and may have been slowly

mixed downward to the upper portion of the Pacific-derived water

layer. Moreover, water below the sub-surface halocline can

experience significant nitrate regeneration primarily driven by the

breakdown of sinking organic matter and the activity of microbial
FIGURE 4

(a) Annual mean AOi anomaly relative to the long-term mean with its 5-year running mean (gray and red lines, respectively). (b, c) Simulated
subsurface (50–180 m) mean value of the Bering Strait passive tracer concentration in the last model year for (b) 1961–1971 (negative AOi) and (c)
2011–2021 (positive AOi).
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communities (Granger et al., 2018). However, the combination of

tracers used in Figure 3 allow to reduce uncertainty attributed to

local biogeochemical processes.

Although the Pacific origin of the subsurface salinity deviation

in Figure 2c is obvious, PW in the NSFS does not show the full

thermohaline structure usually associated with PW of the Canada

Basin. There Pacific summer water (PSW) is usually assigned to

temperatures above −1.2°C for salinities between 31 and 32 (Steele

et al., 2004), and PWW is defined by salinities between 32 and 33

with temperatures as cold as −1.45°C (Shimada et al., 2005). Here

we broadly classified PW as T<–1.3°C and 31.5<S<34.1 (Figures 2,

3), with this range of salinity also corresponding to the CDOM

maximum of ~4.25−5 mmol m–3 at 45−180 m depth centered at

salinity ~32.8 (Figures 3a, b). The 2024 data show an insignificant

amount of PSW (31<S<32 at 37–53 m depth), while the fraction of

PWW is excessively thick, warm and saltier indicating interaction

with underlying AW (Figures 2a, b, 3c). This structure resembles

that observed in Iceberg Bay in 2022 (Supplementary Figure S2),

and over the shelf of Ellesmere and Axel Heiberg islands in 1983

(Supplementary Figure S3). In contrast, CTD profile taken in the

Prince Gustaf Adolf Sea resembles that of the Canada Basin

(Supplementary Figure S3). Overall, this suggests variable

modification of PW “en route” to the CAA presumably over the

Arctic shelf of the northern CAA.

What is the reason for changes in PW properties over time in

the CAA? The PW freshening revealed in the NSFS in 2024 could be

linked to increasing volume transport and freshening of the Pacific

inflow to the Arctic Ocean from 1990-2019 (Woodgate and Peralta-

Ferriz, 2021). This may suggest a role of the Bering Strait for

maintaining downstream freshening of PW as recorded in the

NSFS. However, Woodgate and Peralta-Ferriz (2021) also

reported that this freshening was accompanied by warming. In

contrast, in the NSFS the major portion of PW in 2024 was found to

be fresher and cooler relative to the 1970s (Figure 2).

We speculate that enhanced invasion of PW in the NSFS seems

to be the reason for transformation of the subsurface water

properties. The alternation of the PW pathways in the AO can

enhance the PW inflow to the CAA. In general, it is conditioned by

the large-scale atmospheric circulation over the AO described by

the AOi (Figure 4a, Supplementary Figure S4). The AOi’s positive

and negative phases are defined by negative and positive anomalies

of atmospheric pressure over the Arctic (Figure 4a; Supplementary

Figure S4). In general, AOi− conditions a stronger Transpolar Drift

that is typically located over the Lomonosov Ridge and advects

waters from the Laptev Sea to Fram Strait (Haine et al., 2015). AOi+

strengthens the cyclonic circulation in the Eurasian and Makarov

Basins and shifts the Transpolar Drift toward the Canada Basin

(Karcher et al., 2012; Timmermans and Marshall, 2020). For

idealised atmospheric forcing, using FESOM, Wang et al. (2021)

simulated positive and negative freshwater anomalies over the CAA

for AOi+ and AOi−, respectively. PW tracer simulations show that

for AOi+ the Transpolar branch of the PW flow is displaced toward

the Canada Basin (Wang et al., 2021). We also note that the

expansion of the cyclonic circulation mode and the shift of the

Transpolar Drift toward the Canada Basin in the 2010s were driven
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by both the positive AOi and Arctic sea ice decline (Wang

et al., 2024).

We use FESOM to simulate the response of the Transpolar

branch of the PW flow to AOi− conditions in 1961–1971 foregoing

observations of 1960s and 1970s, and AOi+ in 2011–2021 preceding

our observations in 2024 (Figure 4; Supplementary Figures S4B, D,

F). The SLP difference between these two periods was not as large as

between AOi+ in 1988–1993 and AOi− in 1976–1981 (Figure 4a;

Supplementary Figure S4). However, our simulations captured a

similar pattern as revealed by Wang et al. (2021) with a shift of the

Transpolar branch to the Canada Basin for AOi+ (Figures 4b, c). It

seems that changes in the large-scale atmospheric circulation

impact the export gateways of PW from the AO, and the recent

switch to a positive phase of AOi (Figure 4a) preconditions an

enhanced outflow of cool and less saline PW through the

northern CAA.

We also speculate that it is the Transpolar branch of the PW

flow that supplies the northern CAA with PW. Simulations show

that the Beaufort Sea is fed by the Alaska Coastal current, whereas

the northern CAA is fed by the Transpolar current (e.g., Hu and

Myers, 2013). The thermohaline modifications of the PWW in the

northern CAA compared to that of the Canada Basin

(Supplementary Figures S3, S4) and Beaufort Sea (von Appen and

Pickart, 2012; Dmitrenko et al., 2016) suggest vertical mixing of

PWW with underlying AW. This seems to occur over the shelf and

upper continental slope of the northern CAA where the mixing rate

is enhanced as suggested by Melling et al. (1984) and Dmitrenko

et al. (2023). Longer transit time with the Transpolar branch also

contributes to the PW modifications such as the disappearance of

the temperature maximum associated with PSW.

Finally, we note that the synoptic, seasonal, interannual, and

decadal variability of temperature and salinity in the Arctic Ocean is

significant (e.g., Polyakov et al., 2003). This provides uncertainty for

interpreting changes observed in 2024 in the context of

historic observations.
5 Conclusions

Our data indicate significant freshening of the AO outflow

through the straits of the northern CAA between the initial

oceanographic survey conducted in 1976 and a recent survey

conducted in 2024. This freshening is attributed to changes in

the AOi, which in turn influences the pathway of cool, less saline

PW water from the AO into the CAA. Simulations show that a

positive AOi (cyclonic circulation over the AO) during the period

prior to the recent survey shifted the transpolar branch of PW

toward the Canada Basin and CAA, thereby promoting PW

outflow into the CAA. The opposite situation occurred ahead of

the initial survey, with anticyclonic circulation limiting PW

outflow into the CAA. Overall, this provides a first glimpse into

variability of the CAA oceanography over the last half-century,

specifically indicating significant variability of the freshwater flow

through the straits of the northern CAA over the inter-decadal

time scale.
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