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Recognition and classification
techniques of marine mammal
calls based on LSTM and
expanded causal convolution
Wanlu Cheng1,2, Hao Chen3, Jiaming Jiang1,2, Shuang Li1,2,
Jingjing Wang1,2 and Yanping Zhou1*

1School of Information Science and Technology, Qingdao University of Science and Technology,
Qingdao, China, 2Shandong Key Laboratory of Deep Sea Equipment Intelligent Networking,
Qingdao, China, 3School of Mechanical Engineering, Ilmenau University of Technology,
Ilmenau, Germany
Marine mammal calls play a vital role in navigation, localization, and

communication. Effectively classifying these calls is essential for ecological

monitoring, species conservation, and military biomimetic applications.

However, traditional machine learning methods struggle to capture complex

acoustic patterns, while most existing deep learning approaches rely solely on

frequency-domain features and require large datasets, which limits their

performance on small-scale marine mammal datasets. To address these

challenges, we propose a hybrid architecture combining a time-attention Long

Short-Term Memory (LSTM) network and a multi-scale dilated causal

convolutional network. The model comprises three modules: (1) a frequency-

domain feature extraction module employing dilated causal convolutions at

multiple scales to capture multi-resolution spectral information from Mel

spectrograms; (2) a time-domain feature extraction module that inputs Mel-

frequency cepstral coefficients (MFCCs) into an LSTM enhanced with a time-

attention mechanism to highlight key temporal features; and (3) a classification

module leveraging transfer learning, where a pre-trained neural network is fine-

tuned on real marine mammal call data to improve performance. Extensive

experiments were conducted on vocalizations from four marine mammal

species. Our proposed method outperformed existing baseline models across

four evaluation metrics: accuracy, precision, recall, and F1 score, with

improvements of 3%, 7%, 2%, and 4%, respectively. The results confirm the

effectiveness of combining frequency- and time-domain features along with

attention mechanisms and transfer learning. This hybrid approach enhances the

accuracy and robustness of marine mammal call classification, especially under

limited data conditions.
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1 Introduction

The calls of marine mammals are crucial for communication,

localization, and navigation within the marine ecosystem. These

sounds not only contain rich information and features but also

reflect their behavioral patterns, population distribution, and

surrounding ecological conditions. By recognizing, monitoring,

and analyzing marine mammal calls, we can gain a deeper

understanding of their lifestyles, population numbers, and

whether conservation measures are necessary Duan et al. (2022).

Therefore, researching and developing techniques for the

recognition and classification of marine mammal calls is of

significant importance for protecting the marine environment,

preserving marine biodiversity, and advancing the construction of

maritime power.

The ability to accurately identify and classify these calls can also

help us understand the impacts of environmental changes,

including noise pollution and climate change, on marine life. This

is especially important as some species, such as whales and

dolphins , re ly heavi ly on sound for navigat ion and

communication in the ocean’s vast and often murky waters.

Furthermore, understanding marine mammal calls provides

invaluable data for monitoring and enforcing conservation

strategies, ensuring the protection of endangered species, and

maintaining the overall balance of the marine ecosystem. Given

the importance of marine mammals to the ecological health of the

oceans, the research and development of call recognition and

classification technologies are not only pivotal for the protection

of these animals but also for promoting biodiversity and

strengthening maritime power. Advancements in these

technologies have significant implications for the conservation of

marine environments, the sustainable use of ocean resources, and

the preservation of marine biodiversity for future generations.

Research on marine mammal call recognition and classification

primarily involves two approaches. The first approach involves

manually extracting features such as MFCC Vimal et al. (2021) and

spectral centroid Zhang (2021), followed by manual classification.

For example, Nanaware et al. Nanaware et al. (2014) used the

ISHMAEL algorithm and PAMGUARD algorithm for passive

acoustic detection and manual classification of calls from six

species of marine mammals. Clemins et al. (2006)proposed the

Greenwood function cepstral coefficient (GFCC) and generalized

perceptual linear prediction (GPLP) models for extracting features

to classify animal calls across various species. While these manual

classification methods perform well when dealing with a limited

number of marine mammal calls, they struggle when the calls of

different species have similar spectrograms. Moreover, manual

extraction methods fail to capture the inherent features of the

audio itself. The second approach extracts features from marine

mammal calls and uses traditional machine-learning models for

classification, which includes extracting the MFCC Liu et al.

(2024a), Mel spectrogram Tang et al. (2023) and other audio data

features. Ibrahim et al. (2016) proposed a method for extracting

features of the upward calls of North Atlantic right whales using

low-frequency cepstral coefficients and discrete wavelet transforms
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(DWTs), with Support Vector Machines (SVM) used as the final

classifier. Zhong and Cai (2019) introduced a method that combines

MFCC, linear frequency cepstral coefficients (LFCC), and time-

domain features, using SVM for classification and recognition.

Furthermore, the complexity and diversity of marine mammal

calls pose significant challenges for traditional machine learning-

based methods in recognition and classification tasks. First, these

methods require manual feature selection, which demands a deep

understanding of the domain from researchers. Second, due to the

varied patterns and fluctuations in marine mammal calls,

traditional machine-learning approaches often have limited

generalization capabilities. These methods struggle to capture

patterns in data that are highly variable or previously unseen.

Additionally, when dealing with large-scale datasets, traditional

machine learning methods tend to require long training times.

Recently, deep learning methods have achieved remarkable

results in marine mammal call recognition and classification

tasks. Compared to traditional machine learning approaches, deep

learning methods do not require manual feature labeling. Second,

deep learning methods are able to more effectively extract features

from data samples, leading to improved classification performance.

Therefore, deep learning methods outperform traditional machine

learning approaches for classification tasks involving the complex

and diverse calls of marine mammals. Huang et al. (2022) extracted

MFCC from real marine mammal vocal signals and transformed

them into heat maps for classification. They used a combination of

convolutional neural networks (CNNs) and MFCC images to

classify marine mammal calls. Li et al. (2022) used marine

mammal calls as input to a neural network model and employed

a Convolutional Neural Network Gated Recurrent Unit(CNN-

GRU) structure to extract acoustic features and perform

classification. These methods generally rely on a single

classification approach or a single feature extraction technique for

marine mammal call recognition and classification, which often

fails to fully capture the complexity of the audio signals. This can

result in information loss and, consequently, hinder the overall

classification performance. Furthermore, training classifiers with

CNNs typically demands a large amount of labeled data, which is

often challenging to obtain in the field of marine mammal

call recognition.

To address the aforementioned challenges, this paper proposes

a marine mammal calls recognition and classification method based

on time-attention LSTM and a multi-scale dilated causal

convolutional network. This approach aims to resolve issues such

as single-feature extraction, information loss, and insufficient data

samples in existing algorithms for marine mammal calls recognition

and classification. By combining time-attention LSTM with multi-

scale dilated causal convolutional networks, the method enhances

the accuracy and robustness of marine mammal calls recognition

and classification. The main contributions of this paper are as

follows: 1) Integration of temporal and frequency domain feature

extraction. We propose a method that integrates temporal and

frequency domain feature extraction modules to capture audio

signal information from multiple perspectives. This improves the

model’s robustness in complex environments and enhances its
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ability to capture diverse features. 2) Optimized feature extraction

networks. The method employs different networks for different

feature extraction modules, improving the overall feature extraction

capability and final classification accuracy. The frequency domain

feature extraction module uses a multi-scale dilated causal

convolutional network to extract frequency-domain features,

while the temporal feature extraction module uses an LSTM

network combined with a time-attention mechanism to

emphasize critical temporal features. 3) Addressing data scarcity

through transfer learning. The proposed method addresses the issue

of limited training samples for marine mammal calls data. A

classifier was pre-trained using the AudioSet dataset, and transfer

learning was applied to adapt the pre-trained model to the

classification of marine mammal calls, achieving the final

classification results.

To evaluate our model, we collect call data from four marine

mammal species, killer whale, sperm whale, pilot whale, and

bottlenose dolphin, to form a dataset with sample sizes of 2,960,

2,007, 2,441, and 2,101, respectively. Extensive experiments were

conducted on a self-labeled dataset, and the results show that the

model achieves accuracy, precision, recall, and F1 scores all

exceeding 95%. Compared to five other baseline models, our

approach achieved the best detection performance across all

four metrics.
2 Related work

Mammal call recognition and classification technology is a

branch of audio pattern recognition widely applied in bioacoustic

research and ecological conservation. With the advancement of

audio pattern recognition and machine learning technologies,

researchers have employed various methods to enhance the

accuracy and efficiency of call recognition and classification.

These approaches range from manual feature extraction to

traditional machine learning and further to modern deep learning

methods, covering a wide range of techniques and application

scenarios. This has brought significant progress and innovation to

the field of mammal call recognition and classification.

In the early manual feature extraction methods, researchers

analyzed audio signals using techniques such as spectral analysis,

time-domain features, and spectrogram correlation analysis. For

example, through spectral analysis, researchers could transform

audio signals into spectrograms to examine the energy distribution

of different frequency components and extract features related to

mammal calls. However, these methods often require substantial

manual intervention and specialized knowledge. Moreover, manual

feature extraction was inefficient and challenging to apply to large-

scale data or process acoustic signals in complex environments.

With the development of machine learning technologies, traditional

methods like SVM were introduced into call recognition and

classification. These methods significantly improved processing

efficiency and accuracy by automating feature selection and

constructing classification models. For instance, Roch et al. (2008)

proposed a method to determine whether clicks were produced by
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beaked whales, short-finned pilot whales, or dolphins. This method

used the Teager Energy Operator to locate individual clicks, then

applied cepstral analysis to construct feature vectors for these clicks,

which were classified using Gaussian Mixture Models (GMMs) and

SVMs. Ali K. Ibrahim et al. Ibrahim et al. (2016) utilized MFCC and

DWTs to extract features of the North Atlantic right whale’s upcalls,

achieving a classification accuracy of 92.27% using SVM and K-

Nearest Neighbor (KNN) algorithms. Zhong Mingtuo et al. Zhong

and Cai (2019) proposed a method combining MFCC, LFCC, and

time-domain features for marine mammal call recognition. After

feature extraction and fusion using these three methods, SVM was

employed for classification, resulting in a 5.5% improvement in

accuracy over traditional methods. Zhao et al. (2023) integrated

four machine learning models and input MFCC features into the

combined model. This approach improved accuracy by 3.03%

compared to individual models. The integrated model leveraged

the strengths of multiple individual models to enhance classification

accuracy and robustness, making it more capable of handling

various noise types and changing environmental conditions.

Similar works include Henaff et al. (2011); Zubair et al. (2013);

Esfahanian et al. (2017).While these traditional machine learning-

based methods for marine mammal call classification have achieved

some success, they also have limitations. First, traditional machine

learning models often struggle with nonlinear and high-

dimensional data, leading to overfitting or underfitting. Second,

they are inefficient when handling large-scale datasets and fail to

fully leverage extensive data for training. Third, these models

typically require manual parameter tuning, with significant

experiments and expertise needed to identify optimal feature

combinations and model parameters.

In recent years, deep learning has garnered widespread

attention in the field of marine mammal call recognition and

classification. Researchers have begun applying CNN Alzubaidi

et al. (2021), Recurrent Neural Networks (RNN) Sherstinsky

(2020), and their variants, such as LSTM Duan (2022), to audio

pattern recognition tasks, significantly improving the performance

of call recognition and classification. Deep learning-based models

can automatically extract high-level features from raw audio data

and capture more complex spatiotemporal dependencies. For

instance, Caleb Buchanan et al. Buchanan et al. (2021) designed a

method to automatically detect bottlenose dolphin clicks. This

method extracted, fused, and classified features from grayscale

images, binary pixel values, and raw images of the audio signals.

It successfully automated the recognition of bottlenose dolphin

clicks, reducing the workload of manual feature extraction while

improving processing efficiency and reliability. Ali K. Ibrahim et al.

Ibrahim et al. (2021) proposed a classifier based on a Multi-Model

Deep Learning (MMDL) algorithm to detect the upcalls of whales.

This algorithm integrated CNN and Stacked Autoencoders (SAE)

and demonstrated superior performance compared to traditional

machine learning algorithms. Cai Wenyu et al. Cai et al. (2022)

introduced a Multi-Channel Parallel (MDF-PNet) model

comprising four branches: Mel spectrogram, MFCC, LFCC, and

mean MFCC branches. A fully connected layer was used to fuse the

results from the different branches. This approach employed neural
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networks based on transfer learning in each branch to accelerate

convergence and combine complementary features from four

different perspectives. Feng et al. (2023) introduced adaptive

wavelet transforms to extract features of bowhead whale whistles

and used a CNN-LSTM model for recognition. This method

leveraged the strengths of adaptive wavelet transforms and the

CNN-LSTM model to more effectively extract and classify features.

Murphy et al. (2022) proposed a method using residual learning

networks for classifying marine mammal calls based on acoustic

data from the William A. Watkins Marine Mammal Sound

Database. Tabak et al. (2022) introduced a CNN model based on

the ResNet18 architecture for classifying bat calls, achieving an

accuracy of 92%. Liang et al. (2025) developed a method combining

automatic detection and unsupervised clustering to extract acoustic

features from PAM data and effectively remove noise, enabling

whale calls recognition without manual annotation, with an average

accuracy of 84.83%. White et al. (2022) employed transfer learning

and deep convolutional neural networks to detect multiple marine

sound sources, achieving high-accuracy identification of various

sound sources such as odontocete whistles and ship noise,

demonstrating the potential for ecological information extraction

from large-scale PAM data to support marine mammal

conservation. Schneider et al. (2024) combined convolutional

neural networks with clustering methods to automatically detect

and classify manatee calls from long-term recordings, further

enabling individual identification and population size estimation,

highlighting the feasibility of species monitoring through acoustics

in visually limited environments. Liu et al. (2024b) proposed the

XCFSMN framework based on knowledge distillation for efficient

marine mammal sound source detection and classification,

significantly improving model inference efficiency while

maintaining accuracy. Liang et al. (2024) introduced an automatic

detection method based on weighted spectral entropy, combining

adaptive filtering, time-frequency transformations, and likelihood

ratio detection to effectively enhance the detection performance of

marine mammal tonal calls under low signal-to-noise ratio

conditions. Di Nardo et al. (2025) proposed a CNN-based passive

acoustic classification method that integrates spectral edge filtering

to improve noise robustness, achieving high-precision identification

of four types of bottlenose dolphin calls, providing an effective tool

for dolphin behavior research and conservation.Similar works

include Lü et al. (2024); Yin et al. (2025); Best (2022); Yang et al.

(2023); Li et al. (2024).

From the analysis of the aforementioned studies, it can be

concluded that current methods primarily rely on either a single

classification approach or a single feature extraction method for

marine mammal call recognition and classification. Moreover, most

of these methods focus solely on feature extraction in the frequency

domain, potentially failing to fully capture the complexity of audio

signals that contain significant information in both the time and

frequency domains. This may result in the loss of important

information and negatively impact the final classification

performance, resulting in lower recognition accuracy.

Additionally, training classifiers using conventional convolutional

neural networks requires a large amount of labeled data. However,
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obtaining large-scale labeled call datasets in the field of marine

mammal call recognition is often extremely challenging.

3 System model

Feature extraction is the core step in the model’s processing of

audio data. This paper adopts a marine mammal call recognition

and classification method based on feature fusion. The overall

approach is illustrated in Figure 1, which adopts a dual-branch

parallel structure. The two branches are independent during the

feature extraction process, and they extract frequency-domain and

time-domain features based on their respective advantages. The

features extracted by both branches are concatenated and fused to

form a complete feature representation, which is then input into a

classifier to obtain the prediction result. Specifically, the frequency-

domain branch uses a multi-scale dilated causal convolution

network, a structure capable of capturing spectral features of

audio signals at multiple scales, effectively enhancing the model’s

ability to model long-range dependencies in the frequency

spectrum. The time-domain branch introduces an LSTM network

with a time attention mechanism, which focuses on key information

segments in the time series, improving the model’s ability to

perceive important temporal features.

The flowchart of the marine mammal calls recognition and

classification method based on feature fusion is shown in Figure 2.

Part a is the data processing section, which preprocesses the raw

marine mammal calls data through operations such as clipping and

denoising to obtain the correspondingMel spectrograms. Part b is the

feature extraction section, mainly consisting of frequency-domain

feature extraction, time-domain feature extraction, and feature

fusion. Part c is the classifier initialization section, where a

convolutional neural network model with optimal classification

performance is trained on the AudioSet dataset. The parameters of

the encoder CNN convolutional neural network are initialized using a

pre-trained network from the AudioSet audio tagging task, followed

by fine-tuning. Part d is the transfer learning section, which builds

upon part c by applying transfer learning to fine-tune the pre-trained

neural network using real marine mammal calls data, replacing the

original convolutional neural network for classification. The entire

model is implemented through three main modules: first, the

frequency-domain feature extraction module, which obtains

spectral feature information of the signal; then, the time-domain

feature extraction module, which extracts temporal information of

the audio signal; and finally, the classification output module, which

uses transfer learning to replace the original network with the pre-

trained neural network and perform classification of marine mammal

calls to meet specific task requirements.
3.1 Based frequency domain feature
extraction module based on multi-scale
dilated causal convolution

We preprocessed the raw audio signals of marine mammal calls

by clipping, denoising and windowing, a 25 ms Hamming window
frontiersin.org
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was applied to the audio signal for windowing. Each frame of audio

signals was then subjected to a Fast Fourier Transform (FFT) to

convert the time-domain signals into the frequency domain,

obtaining the frequency-domain information for each frame.

Additionally, we applied a Mel filter bank to the spectrogram,

merging the energy in different frequency ranges with weighting

to obtain the Mel spectrograms of killer whales, sperm whales, pilot

whales, and bottlenose dolphins. Figures 3a-d show the

spectrograms and Mel spectrograms of killer whales, sperm

whales, pilot whales, and bottlenose dolphins.

The calls of marine mammals exhibit various forms,

frequencies, durations, and rhythms, reflecting their different

needs in communication, foraging, and navigation. Since Mel

spectrograms can effectively reduce the dimensionality of spectral

data, extract key information from audio data, and thus reduce data

redundancy, we use Mel spectrograms to observe the frequency

distribution of marine mammal calls, as well as the energy

distribution of different frequency components. These
Frontiers in Marine Science 05
spectrograms present complex spectral shapes to showcase the

spectral characteristics of marine mammal calls at different

time periods.

The processed Mel spectrograms are input into a multi-scale

dilated causal convolutional neural network for frequency-domain

feature extraction. The frequency-domain feature extraction

module based on multiscale dilated causal convolution is shown

in Figure 4. This module consists of the input section, the multi-

scale dilated causal convolution feature extraction section, and the

feature vector fusion section. The input section provides the Mel

spectrogram obtained from the input audio signal. The multi-scale

dilated causal convolution feature extraction section combines the

advantages of dilated convolution and causal convolution. This

section adopts a multi-scale approach, performing convolution

operations at different scales to capture various levels of features

from the data. Each scale consists of three convolution layers, with

each convolution layer including one-dimensional dilated causal

convolution (1D Conv), an activation function (ReLU), and a
FIGURE 2

Flowchart of the marine mammal call recognition and classification method based on feature fusion, where (a) represents data preprocessing, (b)
(including b1, b2, b3) represents the feature extraction process, (c) represents the pre-training process of the classifier, and (d) represents the
transfer learning process.
FIGURE 1

Overall framework diagram.
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Dropout layer to prevent overfitting. The dilation factors for the

three scales of dilated causal convolution are 1, 2, and 3,

respectively. The calculation is as follows:

Assume there are M different dilation factors d1,…,dM, the

outputs for each scale are y(1),…,y(M), the final output vector u is

calculated by Equation 1:

u = o
M

m=1
am · y(m) (1)

Where M is the number of different dilation factors, and in this

chapter,M = 3, amis the weight parameter for the m − th scale, and

y(m) is the output of them − th scale’s dilated causal convolution. By

using multiple different dilation factors, this module is able to

perform multi-scale feature extraction, which helps capture both

short-term and long-term features, enhancing the ability to

recognize complex time series patterns.

The model utilizes multiple different dilation factors, allowing

the module to extract features at multiple scales, capturing features

over different time ranges. This helps capture patterns and

information across various time scales and enables the
Frontiers in Marine Science 06
simultaneous capture of short-term and long-term features,

thereby improving the recognition of complex time series patterns.
3.2 Time-domain feature extraction
module based on ATT-LSTM

We employ a multi-scale dilated causal convolutional neural

network module to extract the frequencydomain features of the

audio data. However, this approach may overlook certain time-

domain features. Furthermore, LSTM, which excel in processing

time-series data, offer advantages such as capturing long-term

dependencies, mitigating gradient vanishing, and handling

sequences of variable lengths. By incorporating a time attention

mechanism into the LSTM, we combine the sequential modeling

capability of LSTM with the dynamic weighting property of time

attention, which can significantly improve the identification and

processing of important time-domain features. Therefore, this

paper proposes using LSTM with a time attention mechanism for

time-domain feature extraction of audio signals to complement the
FIGURE 3

Spectrograms and Mel spectrograms of four marine mammals. (a) Killer Whale. (b) Sperm Whale. (c) Pilot Whale. (d) Bottlenose dolphin.
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frequency-domain features. First, we preprocess the raw marine

mammal call data through clipping, denoising, and MFCC

processing to generate a series of MFCC feature vectors, which

represent the frequency spectrum characteristics of the audio signal

at different time steps. These MFCC feature sequences are then

input into an LSTM for time-domain feature extraction. The LSTM

addresses long-term dependency issues by introducing a

mechanism known as “gates,” allowing it to better capture long-

term dependencies in sequence data. After that, a time attention

mechanism is introduced at the LSTM’s output layer, which

calculates the importance weight of each time step feature and

applies a weighted process to the LSTM output sequence features.

The structure of the time-domain feature extraction module using

ATT-LSTM is shown in Figure 5. It consists of a forget gate, an

input gate, an output gate, a cell state for controlling updates to the

unit state, and the time attention mechanism. These gates control
Frontiers in Marine Science 07
the flow of information within the LSTM unit, allowing it to

selectively forget, add, or output information when processing

sequence data. In the LSTM output layer, the time attention

mechanism dynamically adjusts the feature weights, allowing the

model to automatically identify and prioritize the most critical time

points in the audio signal, reducing the impact of irrelevant

information on model performance and thus improving

classification accuracy and robustness.

The calculation process of each part inside the ATT-LSTM

module is as follows: The forget gate of the original LSTM decides

which information should be discarded at the current time step. Its

output ranges from 0 to 1, where 0 indicates completely forgetting

and 1 indicates completely remembering. It depends on the current

input and the previous hidden state. The calculation Equation 2 is :

fa = s (Wf  * ½ht−1, xt � + bf ) (2)
FIGURE 4

Structure diagram of the frequency-domain feature extraction module based on multi-scale dilated causal convolution.
FIGURE 5

Structure diagram of the time-domain feature extraction module based on ATT-LSTM.
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WhereWf is the weight matrix of the forget gate, ½ht−1, xt � is the
hidden state from the previous time step, ht−1 is the vector formed

by concatenating the current input xtand the previous hidden state,

bf is the bias term, and s is the Sigmoid function.

The calculation of the input gate involves the current input and

the previous hidden state. It determines what information should be

added to the cell state at the current time step. Its output range is

between 0 and 1, where 0 means completely ignored and 1 means

fully retained. The calculation Equation 3 is :

it = s (Wi*½ht−1, xt � + bi) (3)

Where Wi is the weight matrix of the input gate, ½ht−1, xt � is the
hidden state from the previous time step, and the vector formed by

concatenating the current input xt and the previous hidden state

ht−1, while bi is the bias term.

The cell state is responsible for passing and storing information

between different time steps. It is jointly regulated by the forget gate

and the input gate, allowing the model to maintain appropriate

memory when processing long sequences. The calculation Equation

4 is :

Ct = ft  * Ct−1 + it* eCt (4)

Where ft is the output of the forget gate, Ct−1 is the cell state

from the previous time step, and eCt is the new candidate cell state.

Its calculation formula is eCt = tanh (Wc * ½ht−1, xt � + bc), tanh  is the

hyperbolic tangent function, Wc is the weight matrix used to

calculate the new candidate cell state, ½ht−1, xt � is the vector

formed by concatenating the previous hidden state ht−1 and the

current input xt , and bc is the bias term.

The output gate, which is the output of the LSTM, determines

what information should be output at the current time step based

on the current input and the previous hidden state. Its output will be

passed to the hidden state of the next time step. The calculation

Equation 5 is as follows :

vt = s (Wo * ½ht−1, xt � + bo) (5)

Where Wo is the weight matrix of the output gate, ½ht−1, xt � is
the vector formed by connecting the previous hidden state ht−1 and

the current input xt , and bo is the bias term. The hidden state at the

current time step can be represented by Equation 6:

ht = vt  * tanh (Ct) (6)

In addition, we introduced a time attention mechanism to

adjust the impact weight of all hidden layers H at the input time

step on the hidden state h
0
t at the output time step. This weight is

calculated using cosine similarity by Equation 7:

et =
h0t · H
h0tk k · Hk k (7)

Then, the Softmax function is used to calculate the contribution

of each hidden layer to the output hidden layer based on the

similarity values, as shown in Equation 8:
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St =
et

ot
j=1ej

(8)

Finally, we calculate the weighted sum of the contribution of

each hidden layer to obtain the final output value of the hidden

layer, as shown in Equation 9:

v
0
i =o

i

j=0
Sj * hj (9)

After the feature extraction of the audio signal by the ATT-

LSTM module, the output vector v
0
1, v

0
2…, v

0
t is concatenated to

obtain the ATT-LSTM time-domain feature extraction vector.

Finally, the Concat function is introduced to fuse the

frequencydomain feature vector and the time-domain feature

vector, as shown in Equation 10:

h = Concat (u, v) (10)
3.3 Audio classification output module

The audio classification output module adopts the core idea of

PANNs (Prototypical Audio Neural Networks), a neural network

model used for audio classification and related tasks, which is pre-

trained using the AudioSet dataset Kong et al. (2020). PANNs

transfer pre-trained models from the computer vision field to the

audio domain to address audio classification tasks. The training

process mainly consists of two steps: First, pretraining on a large-

scale audio dataset, aiming to learn general feature representations

from audio data; Second, fine-tuning, where the pretrained model is

applied to a specific audio classification task and its parameters are

adjusted to adapt to the task-specific dataset and requirements.

The audio classification output module we constructed is shown

in Figure 6. Since marine mammal call datasets are usually scarce,

this part adopts transfer learning to address the issue of insufficient

samples. First, a convolutional neural network model with optimal

classification performance is trained using the AudioSet dataset.

Then, the network trained on the AudioSet dataset for audio

labeling tasks is used to initialize the parameters of the encoder

CNN, followed by fine-tuning. The model is retrained using

augmented data and a small amount of real data to replace the

AudioSet dataset. This pre-trained model has already learned

generalized audio features from a large amount of audio data, so

it can be fine-tuned with a small amount of marine mammal call

data to adapt to the specific task requirements. Finally, transfer

learning is applied to mitigate the problem of insufficient samples

by using the trained neural network to train on real marine

mammal call data, replacing the original classification module.

The final classification is obtained using the Softmax function to

determine the category of the sound data, as shown in Equation 11:

pi =
exp   (zi)

on
j=1 exp   (zj)

(11)
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Where zi represents the feature embedding for the i − th class.

Finally, we minimize the following cross-entropy loss function to

train our model, as shown in Equation 12:

L = −
1
No

N

i=1
o
C

j=1
yijlog(pij) (12)

Where N is the number of samples, C is the number of classes,

yij is the true label indicating whether sample i belongs to class j, and

pij is the probability predicted by the model that sample i belongs to

class j.
4 Experimental analysis

4.1 Experimental data

The dataset used in this study was collected from the Watkins

Marine Mammal Sound Database Sayigh et al. (2016) and the

Whale FM website. For the experiments, we selected audio

recordings of four marine mammal species that are frequently

active in the waters surrounding China. These species include

killer whales, sperm whales, pilot whales, and bottlenose dolphins.

Due to the imbalance in the number of audio samples for each

species and the varying quality of the recordings, manual

inspection, segmentation, and denoising were required.

Ultimately, we obtained the following numbers of calls samples:

1,500 samples of killer whales, 512 samples of sperm whales, 1,123

samples of pilot whales, and 966 samples of dolphins. The duration

of each audio sample ranges from 1 second to 1 minute. The data

sources for each category are listed in Table 1.

The specific steps of data preprocessing are as follows: First,

manual denoising was performed. To reduce the interference of

environmental noise and other non-target factors on classification

performance, we used Adobe Audition to manually denoise the raw
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audio data. During this process, we combined spectrogram analysis

with manual listening to locate and remove segments containing

background noise, non-marine mammal calls, and other irrelevant

signals. For the retained valid audio segments, we standardized the

sampling rate to 16 kHz to ensure consistency and quality of the

input for subsequent modeling. Second, audio segmentation was

conducted. Since the durations of the original audio clips varied

greatly, we further used Adobe Audition to uniformly segment the

denoised audio data. The audio clips were trimmed into segments

ranging from 1 to 5 seconds in length, and those shorter than 1

second were discarded to ensure that each sample contained

sufficient information. Finally, considering the issue of class

imbalance in the dataset, we adjusted the clipping ratio of each

category to maintain a relatively balanced number of samples per

class as much as possible during segmentation. (In future studies,

we plan to introduce data augmentation techniques such as

generative adversarial networks to further expand the number of

samples in underrepresented classes and systematically improve

model performance under imbalanced data conditions.) After these

data processing steps, the number of audio samples for Killer

Whales, sperm whales, pilot whales, and bottlenose dolphins was

expanded to 2960, 2007, 2441, and 2101, respectively, to achieve

better marine mammal sound detection performance.
4.2 Evaluation metrics

In this paper, we use four evaluation metrics to assess the

performance of the model: Accuracy (A), Precision (P), Recall (R),

and F1 Score (F1), as shown in Equations 13-16: Accuracy (A)

refers to the ratio of the number of correctly classified samples to

the total number of samples.

A =
TP + TN

TP + TN + FP + FN
(13)
FIGURE 6

Construction diagram of marine mammal call classifier.
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where, TP stands for True Positive (the number of samples

correctly classified as positive), TN stands for True Negative (the

number of samples correctly classified as negative), FP stands for

False Positive (the number of samples incorrectly classified as

positive), and FN stands for False Negative (the number of

samples incorrectly classified as negative). Precision (P) refers to

the proportion of samples predicted as positive that are actually

positive. It reflects the accuracy of the classifier in predicting

positive classes.

P =
TP

TP + FP
(14)

Recall (R) refers to the proportion of actual positive samples

that are correctly predicted as positive. It reflects the classifier’s

ability to cover positive samples.

R =
TP

TP + FN
(15)

The F1 score is the harmonic mean of precision and recall.

F1 = 2 ·
P · R
P + R

(16)
4.3 Experimental details

In the experiment, this paper implements a marine mammal

call recognition and classification system based on Pytorch. To train

our model, we randomly split the dataset into training and testing

sets in an 80:20 ratio for each class. In the data preprocessing stage,

we use Mel spectrograms to extract audio features for the frequency

domain feature extraction stage, where the audio sample rate is set

to 16,000 Hz, and the number of Mel filters is set to 64 to provide

finer frequency resolution. In the model training stage, we set the

dilation factors of the dilated causal convolution at three scales to be

1, 2, and 3, with three layers at each scale, and the number of layers

of the LSTM network is set to 2. We implement the alignment of the

output features from the dilated causal convolution layers and

LSTM network layers to achieve feature fusion. Furthermore, the

training objective is to minimize the distance between the predicted

and actual samples. The experiment trains the audio samples for 30

batches using the Adam algorithm with a learning rate of 0.001, and

a warm-up cosine scheduler is employed. The experiment is

conducted on a Linux machine with an Intel(R) Core(TM) i9-

10920X CPU, 24 GB of RAM, and an NVIDIA RTX 3090 GPU.
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4.4 Experimental results and analysis

To evaluate the effectiveness of the marine mammal call

recognition and classification method based on ATT-LSTM and

multi-scale dilated causal convolution, we investigate the following

three questions:
• RQ1: Can our method achieve better results than other

methods in the marine mammal sound detection and

classification task?

• RQ2: What is the contribution of the time-domain feature

extraction module and frequency-domain feature

extraction module used in our method to the model?

• RQ3: How do hyperparameter settings affect the

performance of our method?

• RQ4: How does our method perform compared to the

baseline method under different noise conditions?
RQ1: Can our method achieve better results than other methods

in the marine mammal sound recognition and classification task?

To validate the effectiveness of our method in the marine

mammal sound detection and classification task, we selected five

high-performance baseline models for comparison experiments and

conducted classification studies on the calls of four marine

mammals: the bottlenose dolphin, Killer Whale, sperm whale, and

pilot whale. Model 1 uses an improved residual network-based

model, Res2Net Gao et al. (2019), This improves the network’s

feature extraction performance by representing features at multiple

scales. Model 2 adopts TDNN (Time Delay Neural Network)

Martinez et al. (2022), which captures temporal dependencies in

input sequences by introducing time delays. Model 3 employs

Ecapa-TDNN (Emphasized Channel Attention, Propagation, and

Aggregation Time Delay Neural Network) Desplanques et al.

(2020), an improved version of TDNN, which incorporates a

channel attention mechanism and a feature aggregation strategy.

Model 4 utilizes an Attention-DenseNet-based model Xie et al.

(2023), combines the DenseNet121 network architecture with a self-

attention module and a center loss function to enhance sound

recognition. Model 5 adopts the DRCNN (Deep Residual

Convolutional Neural Network) model Feng and Cheng (2023),

an acoustic model built on deep residual convolutional neural

networks. We applied these baseline models for marine mammal

sound recognition and classification.

We conducted experiments on the proposed method and five

baseline models using four marine mammal sound datasets we

constructed and compared the classification performance of

different methods using four performance metrics. Each data

point represents the average value of the four detection metrics,

and the results are shown in Table 2.

As shown in Table 2, our method achieved the highest scores

across all evaluation metrics. Specifically, it attained an accuracy of

97%, which is 3% higher than the best-performing baseline model,

AttentionDenseNet, indicating a stronger overall capability in

correctly classifying sample categories. The precision reached

99%, significantly outperforming other models-7% higher than
TABLE 1 Description of the datasets used.

Dataset
Name

Watkins Marine Mammal
Sound Database

Whale
FM Website

Killer Whale ✓

Sperm Whale ✓

Pilot Whale ✓

Bottlenose
Dolphin

✓
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TDNN and 9% higher than DRCNN—demonstrating a very low

false positive rate when identifying samples as a specific call type.

The recall was 96%, also surpassing all comparison models by at

least 2% compared to the highest recall among them (Attention-

DenseNet), showing superior ability in correctly retrieving target

samples. The F1 score was 0.97, reflecting a well-balanced and stable

performance by considering both precision and recall. This score is

much higher than traditional models such as Res2Net (83%) and

ECAPA-TDNN (89%), and also outperforms the more complex

Attention-DenseNet (93%), highlighting our method’s notable

advantages in classification stability and consistency. We attribute

this to the fact that our model can integrate features of marine

mammal sounds from both the time domain and frequency domain

perspectives. In contrast to methods that only extract frequency

domain features of audio or use a single method to extract multiple

features, our method provides a more comprehensive capture of

audio features.

Overall, the proposed method based on ATT-LSTM and multi-

scale dilated causal convolution demonstrates significant

advantages over other baseline methods and achieves the best

detection performance across all four evaluation metrics.

In addition, our proposed method for marine mammal sound

recognition and classification based on ATT-LSTM and multi-scale

dilated causal convolution outperforms the five baseline methods in

all four metrics. Compared to the best-performing baseline model,

Attention-DenseNet, our method achieves absolute improvements

of 3% in accuracy and 4% in F1 score. Compared to the Ecapa-

TDNNmodel, our method achieves improvements of 5% and 8% in

the two metrics. We attribute this to the fact that our model can

integrate features of marine mammal sounds from both the time

domain and frequency domain perspectives. In contrast to methods

that only extract frequency domain features of audio or use a single

method to extract multiple features, our method provides a more

comprehensive capture of audio features.

Overall, the proposed method based on ATT-LSTM and multi-

scale dilated causal convolution demonstrates significant

advantages over other baseline methods and achieves the best

detection performance across all four evaluation metrics.

To validate the effectiveness of our proposed method in marine

mammal sound classification, we compared the classification

performance of the model for different marine mammal sounds

using the four evaluation metrics, as shown in Table 3. Specifically,
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our method achieved more than 95% in both accuracy and F1 score

for the detection of each marine mammal sound, indicating that our

model can efficiently recognize and classify the sounds of the four

marine mammals with robustness. Furthermore, our method

achieved a precision of 1 for two types of marine mammal

sounds, which means the model correctly identified all positive

class results. For each marine mammal, our method performed

better than 97% in all four metrics for detecting the sounds of the

bottlenose dolphin, Killer Whale, and Pilot Whale. However, the

detection performance for sperm whale sounds was not as good

(with recall only exceeding 92%). We analysed the reason and found

that during the data clipping process, certain sperm whale audio

recordings contained noticeable environmental noise, which

somewhat affected the model’s classification performance for

sperm whale sounds. Therefore, there is still room for

improvement in both the model’s recognition and classification of

sperm whale sounds and the overall model performance.

In addition, we have plotted the confusion matrix for the

recognition accuracy of the four marine mammal sounds using

our method to visually observe the model’s performance in

classifying the sounds of the four marine mammals, as shown in

Figure 7 The rows of the matrix represent the predicted categories

of the marine mammals, while the columns represent the true

categories. The black boxes on the diagonal represent the
TABLE 3 Classification performance of the model on marine
mammal calls.

Marine
mammal
species

Accuracy Precision Recall F1
Score

Bottlenose Dolphin 0.96 0.97 0.98 0.97

Killer Whale 0.98 1.0 0.97 0.98

Sperm Whale 0.98 0.98 0.92 0.95

Pilot Whale 0.95 1.0 0.98 0.99
front
TABLE 2 Comparison of marine mammal call recognition performance.

Model Name Accuracy Precision Recall F1 Score

Res2Net 0.87 0.84 0.83 0.83

TDNN 0.89 0.92 0.89 0.90

Ecapa-TDNN 0.92 0.88 0.91 0.89

DRCNN 0.93 0.90 0.92 0.91

Attention-
DenseNet

0.94 0.92 0.94 0.93

Our method 0.97 0.99 0.96 0.97
Bold values indicate the experimental results of the proposed method in this paper.
FIGURE 7

Confusion matrix of the feature fusion model.
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proportion of correctly predicted categories, and the color depth

indicates the degree of classification success, with darker colors

indicating better classification performance. We found that the

model achieved an average classification accuracy of

approximately 97% for the four marine mammal sounds, with

classification accuracy for each sound data being above 95%.

Additionally, for the misclassified results, the confusion matrix

shows a relatively uniform distribution. This further indicates that

our model achieves a good fit for all four marine mammal sounds.

RQ2: What is the contribution of the time-domain feature

extraction module and frequency-domain feature extraction

module used in our method to the model?

As shown in Figures 8–11, we compare the four quantitative

metrics under three conditions: using both feature extraction

modules, using only the time-domain feature extraction module,

and using only the frequency-domain feature extraction module.

The results show that our method, which integrates both time-

domain and frequency-domain features of marine mammal calls,

achieves the best recognition and classification performance.

Compared to using only the time-domain or frequency-domain

feature extraction branches, there is a significant performance

improvement. Specifically, compared to using only the time-

domain feature extraction method, our method improves by 5%-

10% across all four metrics for the four audio datasets. Compared to

using only the frequency-domain feature extraction method, our

method improves by 3%-8%, achieving optimal detection

performance. This demonstrates that integrating two types of

feature extraction modules complements the single features

extracted, achieving the “1 + 1>2” effect.

Furthermore, we compared the contributions of the time-

domain and frequency-domain modules to the model ’s

performance. We found that the model is more significantly

influenced by the frequency-domain feature extraction branch

than by the time-domain feature extraction branch, which is

closely related to the characteristics of audio data. The frequency-

domain information of marine mammal call data records the

distribution of the audio signal in terms of frequency, which is

crucial for recognizing audio data. On the other hand, the time-

domain information records rapid changes and transient features in

the audio data, representing more detailed information. Therefore,
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integrating both time-domain and frequency-domain features is

beneficial for improving the model’s ability to recognize and classify

marine mammal calls.

RQ3: How do hyperparameter settings affect the performance of

our method?

Tuning and hyperparameters play a key role in the feature

extraction performance of our method. We conducted experiments

to investigate the impact of hyperparameter settings on our

method’s performance, including combinations of different
FIGURE 8

Accuracy of different feature extraction models.
FIGURE 9

Precision of different feature extraction models.
FIGURE 10

Recall of different feature extraction models.
FIGURE 11

F1 Score of different feature extraction models.
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dilation factors, the number of attention heads, and the choice of

pre-trained models. To optimize these hyperparameters, we used

Neural Network Intelligence (NNI) for fine-tuning.

(1) Different dilation factor combinations and number of

attention heads.

To explore the effect of dilation factor settings on frequency-

domain feature extraction, we designed sensitivity comparison

experiments to assess the model’s sensitivity to different receptive

fields. We analyzed whether the current dilation factor combination

of [1, 2, 3] is optimal. We compared it with four other dilation

configurations, keeping the other network parameters unchanged

and training and testing on the same dataset. Table 4 shows the

impact of different dilation factor combinations on our model’s

performance. Adjusting the dilation factors from small to large first

expanded the receptive field, allowing the network to aggregate more

frequency-domain context, thus improving accuracy. When the

dilation factor combination of [1, 2, 3] was used, the model achieved

the best performance with an accuracy of 97%. However, as the dilation

factor was further increased, the classification accuracy dropped

because excessively large dilation factors resulted in an overly large

receptive field, causing information sparsity and loss of details, which

hindered feature interaction and led to a decline in accuracy.

Table 4 also demonstrates the performance of our method with

different numbers of attention heads. We designed comparison

experiments to analyze whether the current number of attention

heads is optimal. We compared it with four other configurations of

different head numbers while keeping other network parameters

unchanged. From Table 4 and Figure 12, we can see that increasing

the number of attention heads improves our method’s accuracy, as

more attention heads capture more feature information and enhance

the expression ability of features. When the number of attention heads

reached 8, themodel achieved the best accuracy of 97%. However, when

the number of attention heads exceeded 8, the model’s performance no

longer improved because the additional attention heads overlapped with

existing information, leading to diminishing returns.

(2) Pre-trained model selection.

To verify the impact of the pre-trainedmodel on the performance

of this task, we designed a comparative experiment in which different

pre-trained models were trained using the same pre-trained dataset,

and then compared in terms of classification accuracy and F1-score

after transfer. This further validates the adaptability and effectiveness

of the selected pre-trained model. In the experiment, we selected five
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pretrained models: ResNet34 Cheng and Yu (2024), VGG16 Singh

et al. (2023), DenseNet121 Tan et al. (2023), EfficientNet-B0

Smelyakov et al. (2022), and PANNs-CNN14, and uniformly pre-

trained them using the AudioSet dataset to eliminate the impact of

training data differences on the results. Then, using the same process,

we trained and evaluated these models on the target task and

subsequently fine-tuned them on our marine mammal calls dataset,

assessing their classification accuracy and F1-score on the test set. The

experimental results are shown in Table 5. The results indicate that

PANNs-CNN14 achieved the best classification performance in this

task, with an accuracy of 97.0% and an F1-score of 97%,

demonstrating its advantages and adaptability in audio feature

modeling. Therefore, we chose PANNs-CNN14 as the pre-

trained model.

RQ4: How does our method perform compared to baseline

methods under different noise conditions?

Audio data is often affected by various types of noise, leading to

a decline in model classification performance. To further evaluate

the robustness of the model in practical applications, we designed

noise contrast experiments to verify the model’s stability and anti-

interference ability under noisy conditions. Before that, we collected

some marine environmental noise data and extracted noise

(including seawater noise and submarine noise) from the marine

mammal call audio data to enhance the noisy data. We used the five

high-performing baseline models from the baseline experiment for

comparison. To simulate real-world environments, we added noise

with different intensities to the original audio data, where the noise

intensity was measured by the Signal-to-Noise Ratio (SNR). We

conducted experiments with noise intensities of 30 dB, 20 dB, 10 dB,

0 dB, and -10 dB. The accuracy comparison of different models

under the influence of marine noise is shown in Figure 13.

Compared to the best-performing Attention-DenseNet model,

our method achieves an average accuracy that is about 5.6%

higher. This indicates that, under the same signal-to-noise ratios

(SNRs), our model outperforms other models. From the slope in the
TABLE 4 Hyperparameter comparison.

Dilation
Factor

Combination

Accuracy Number
of Heads

Accuracy

[1,1,1] 0.92 2 0.90

[1,2,2] 0.95 4 0.95

[1,2,3] 0.97 6 0.94

[2,3,4] 0.94 8 0.97

[3,4,5] 0.91 10 0.95
FIGURE 12

Curve of the effect of the number of attention heads on temporal
domain features.
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graph, we can see that as the SNR decreases, the accuracy of the

Res2Net, TDNN, and DRCNN models drops at a similar rate, with

Res2Net consistently having lower accuracy than the other models.

The Ecapa-TDNN model shows a slower decline in accuracy when

the SNR is greater than 10dB, but its accuracy decreases more

rapidly when the SNR drops below 10 dB. Additionally, compared

to the five baseline models, our model has a slower accuracy decline

and higher accuracy across all SNR levels. Therefore, it can be

concluded that, as the SNR decreases, our model is more stable and

less affected by noise interference, demonstrating better robustness.

When the SNR is below 0 dB, the accuracy of all methods falls below

50%, which we attribute to the noise covering part of the original

call audio, causing a sharp decline in performance for all models.

Overall, under the same noise conditions, our proposed model

performs better and is less affected by noise, indicating its

superior stability.

Cross-dataset validation: To ensure that the model is trained

and tested on multiple different data partitions, thereby making the

evaluation results more stable and comprehensive while reducing

randomness, we introduced K-fold cross-validation. The dataset

was divided into k parts, with one part used as test data and the
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remaining k-1 parts as training data. We adopted 5-fold cross-

validation to evaluate the performance of five baseline models and

our proposed model on the marine mammal call recognition task.

This is equivalent to performing cross-dataset validation among five

“different but related” sub-datasets, allowing us to test the model’s

stability under changing data distributions. The accuracy, standard

deviation, and other metrics of each model are shown in Table 6.

The experimental results demonstrate that our proposed

method exhibits significant advantages in both classification

performance and model stability. In the 5-fold cross-validation,

our method achieved an average accuracy of 0.97, with all folds

maintaining an accuracy above 0.96. This performance is

significantly better than that of the other compared models.

Specifically, compared to the second-best model, Attention-

DenseNet, our method improved classification accuracy by 3.2%;

when compared to the baseline model Res2Net, the improvement

reached 11.5%. This performance advantage is primarily attributed

to our proposed feature extraction approach, which integrates

multi-scale dilated causal frequencydomain features with adaptive

attention-based LSTM time-domain features, significantly

enhancing the model ’s adaptability to complex marine

acoustic environments.

In terms of model stability, our method also performed

exceptionally well, with a standard deviation of only 0.005, which

is substantially lower than that of other models. While Attention-

DenseNet and DRCNN also exhibited relatively good stability, their

fluctuation ranges were still larger than that of our method. Further

analysis revealed that the traditional TDNN model, lacking an

effective feature selection mechanism, was more sensitive to

changes in data distribution. These experimental results fully

validate that our proposed method not only achieves superior

classification accuracy but also offers excellent robustness.

Computational Complexity Analysis: To further evaluate the

practical efficiency of each model during the training phase, this

paper compares the training time of the proposed method with five

baseline models under the same experimental environment. First,

we unified the training environment, parameter settings, and

training dataset for all models. In the experiment, 32 audio

samples were trained per batch, with 100 epochs, using the Adam

optimizer, a learning rate of 0.001, and a warm-up cosine scheduler

for the process. The experiment was conducted on a Linux machine

with an Intel(R) Core(TM) i9-10920X CPU, 24 GB RAM, and an

NVIDIA RTX 3090 GPU. During the experiment, the total training

time, from the beginning of training to final convergence,

was recorded.

Figure 14 shows the training overhead of different classification

models and their achieved accuracy. The maximum-minimum

boundary bars represent the highest and lowest performance

values across multiple tests, while the height of the bars displays

the average performance of the tests. We conducted the experiment

on the collected marine mammal calls dataset.

As shown in the figure, it can be seen that the proposed method,

which integrates a dual-branch structure and transfer learning
FIGURE 13

Comparison of accuracy of different models under the influence of
marine noise.
TABLE 5 Comparison of different pre-trained models.

Pre-
trained Model

Accuracy F1 Score

VGG16 0.90 0.89

ResNet34 0.91 0.90

DenseNet121 0.91 0.90

EfficientNet-B0 0.92 0.91

PANNs-CNN14 0.97 0.97
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strategy, has slightly higher structural complexity compared to

TDNN and DRCNN, but its accuracy is much higher than theirs.

Moreover, its overall training time is shorter than that of ECAPA-

TDNN and Attention-DenseNet, while its accuracy is higher,

demonstrating a good balance of training efficiency and

classification performance. This is due to the use of the transfer

learning strategy in this paper, which addresses the issue of

insufficient experimental data and significantly accelerates the

model’s convergence process, allowing it to achieve better

performance within the same number of epochs. Therefore, the

proposed method strikes a good balance between training time

and performance.
5 Conclusion

This paper presents a marine mammal call recognition and

classification method based on an ATT-LSTM and multi-scale

dilated causal convolutional network. The method leverages the

Mel spectrogram as input and applies multi-scale dilated causal

convolutions to extract the frequency-domain features of the audio,

substantially improving the network’s ability to capture intricate

frequency-domain patterns. Concurrently, the LSTMmodule delves

into the temporal characteristics of the audio signals and introduces
Frontiers in Marine Science 15
a timeattention mechanism to highlight crucial temporal features.

This approach not only effectively complements the frequency-

domain features but also significantly boosts the model’s overall

feature representation capability for audio data. Additionally, the

method incorporates transfer learning to address the challenge of

limited training samples for marine mammal calls, utilizing pre-

trained models to enhance performance. Extensive experimental

validation has demonstrated the feasibility and reliability of the

proposed method. The results show that the proposed method

achieved an accuracy of 97%, a precision of 99%, a recall of 96%,

and an F1 score of 97%, representing performance improvements of

3%, 7%, 2%, and 4%, respectively, compared to the best baseline

model. Even in conditions with varying SNR, the recognition and

classification accuracy of this method exceeds that of other models,

highlighting its robustness and resistance to noise interference. This

method not only ensures the accuracy of neural network classifiers

in sound recognition tasks but also achieves low-latency, high-

accuracy recognition and classification of marine mammal call,

making it highly suitable for practical applications in dynamic and

noisy marine environments. In the future, we plan to introduce

deep learning-based data augmentation techniques (such as

generative adversarial networks) to further expand the number of

samples in underrepresented classes, thereby systematically

improving the model ’s performance under imbalanced

data conditions.
FIGURE 14

Training overhead and accuracy achieved by different classification models, where (a) represents the time complexity of the five models, and (b)
represents the comparison of the model precision rates.
TABLE 6 Accuracy, average, and standard deviation of each model under 5-fold cross-validation.

Model Name Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Standard Deviation

Res2Net 0.84 0.88 0.87 0.86 0.90 0.87 0.022

TDNN 0.88 0.90 0.89 0.89 0.89 0.89 0.012

Ecapa-TDNN 0.91 0.93 0.92 0.92 0.94 0.92 0.010

DRCNN 0.92 0.94 0.93 0.92 0.94 0.93 0.008

Attention-
DenseNet

0.93 0.94 0.94 0.93 0.96 0.94 0.007

DRCNN 0.96 0.97 0.97 0.97 0.98 0.97 0.005
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