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Lin Ma1,2*, Hao Cao1,2 and Guo-You Shi1,2

1Navigation College, Dalian Maritime University, Dalian, Liaoning, China, 2Key Laboratory of Navigation
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Introduction: Accurate identification of ship behavioral patterns is essential for

maritime management, contributing to improved regulatory efficiency, accident

prevention, navigation safety, and scheduling. However, traditional methods often

struggle with the complexity of high-dimensional, time-series trajectory data.

Methods: To overcome these challenges, this study proposes the following

optimized graph neural network (GNN) models: an optimized adjacency matrix

graph convolutional network, a hybrid model combining a graph convolutional

network with a graph attention network (GAT), and an integrated model of GAT

and long short-term memory. These models leverage standardized automatic

identification system data to improve feature extraction and recognition accuracy.

Results: Experimental results demonstrate that the proposed models achieve

over 98% accuracy in ship behavioral pattern recognition, with fast convergence

and superior performance compared to conventional GNN-based methods.

Discussion: Themodels provide robust and efficient solutions for maritime traffic

analysis, offering significant potential for real-world applications in ship

monitoring, intelligent navigation, and maritime safety management.
KEYWORDS

maritime traffic networks, graph neural networks, AIS data, behavioral pattern
recognition, ship motion analysis
1 Introduction

The shipping industry is vital to the global economy, handling over 90% of global trade

and significantly influencing economic patterns, international cooperation, and

environmental protection. Navigation safety is a top priority, and modern ship behavior

pattern recognition technology ensures safe and efficient navigation. By monitoring real-

time data such as position, speed, and heading, ship behavior pattern recognition systems

can prevent collisions and optimize traffic flow, thereby enhancing the operational

efficiency of maritime transport (Wu et al., 2021). As highlighted by the International

Maritime Organization (IMO), most of maritime accidents are attributable to human error,
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many of which stem from misjudged or uncoordinated ship

maneuvers. Ship behavior recognition thus serves as a critical

foundation for proactive safety monitoring and early warning

systems (Zhang et al., 2022a). Automatic identification system

(AIS) data, which includes both static and dynamic information,

are crucial for ship behavior analysis (Zhou et al., 2019). In port

waters and congested sea lanes, real-time recognition of ship

behavior patterns aids in vessel traffic service (VTS), congestion

prediction, and illegal anchoring detection. It also underpins

intelligent maritime surveillance systems by enabling dynamic

risk assessment and anomaly detection (Ribeiro et al., 2023).

Beyond ensuring navigation safety, AIS data play a fundamental

role in maritime traffic systems by supporting traffic optimization,

intelligent monitoring, and environmental management. As such,

they have become a core data resource driving the digitalization and

intelligent transformation of modern maritime governance

(Almunia et al., 2021; Guan et al., 2022). Previous studies have

explored various methods for behavior pattern recognition (Gao

et al., 2018; Li et al., 2024; Wei et al., 2024; Xin et al., 2024; Han et al.,

2025). Most existing methods depend on parameter settings and

thresholds, which limits their generalizability and requires extensive

tuning. Deep learning, particularly GNN, has the potential to

improve spatial and temporal relationship modeling, feature

extraction, and handling of irregular data (Xin et al., 2024).

However, the application of GNN in marine ship motion pattern

recognition remains limited. This suggests that optimizing GNN

improves ship behavior pattern recognition. Existing research has

explored various behavioral pattern recognition methods; however,

these methods face many challenges when handling high-

dimensional, time-series ship trajectory data (Gao et al., 2018;

Yan et al., 2020; Rong et al., 2022). For example, many methods

rely on parameter settings and thresholds, which results in poor

model generalizability and requires extensive manual tuning. In

addition, conventional methods typically handle ships

independently; thus, the complex interactions between ships are

difficult to capture, along with generalization across regions and

under different conditions. To solve these problems, this study aims

to achieve high-accuracy ship behavior pattern recognition using

hybrid GNN models trained on AIS data.

In this study, we define three primary ship behavior patterns:

underway, anchoring, and mooring, based on their fundamental

significance in maritime management and monitoring. These

patterns represent the most common operational states of ships

and are widely regarded as essential categories in ship behavior

recognition. The underway state denotes a vessel actively

navigating, a crucial aspect of maritime traffic control, route

optimization, and voyage planning. The anchoring state

characterizes a ship remaining stationary in designated sea areas

or ports, necessitating continuous monitoring to ensure compliance

with anchorage regulations and maritime safety protocols. The

mooring state describes the process of vessels docking at ports or

berthing along the shore, a behavior closely associated with port

operations, berth management, and cargo handling. Given their

prevalence and operational significance, these three patterns
Frontiers in Marine Science 02
comprehensively encompass the majority of typical ship activities,

making them highly representative for maritime surveillance,

decision-making, and intelligent management applications.

The structure of this paper is as follows. Section 2 reviews

related research on ship behavior pattern recognition. In Section 3,

we present a ship behavior pattern recognition model based on

optimized GNN. Section 4 describes the experimental process and

discusses the experimental results. Section 5 concludes the study

and recommends future research directions.
2 Literature review

2.1 Ship behavior pattern recognition
methods

In recent years, various ship behavior pattern recognition

methods have been developed based on AIS data (Chen et al.,

2020; Zhang et al., 2022b). Researchers have analyzed rich motion

features in AIS data to identify ship behavior patterns. Li et al.

proposed a multi-attribute trajectory similarity method by

analyzing static, dynamic, and port geospatial features and their

semantic relationships (Li et al., 2024). Data mining techniques

have been used to extract key behavioral features, explore motion

characteristics in AIS data, and propose efficient traffic network

extraction frameworks (Liu et al., 2023). Suo et al. introduced a

complex ship behavior pattern mining model to classify sailing

behaviors (Suo et al., 2022), and Yan et al. extracted ship docking

information using fused trajectory features and geographic scene

semantics (Filipiak et al., 2020). Clustering methods are also

popular for detecting abnormal behaviors and recognizing

loading and unloading patterns. Wei et al. used the DBSCAN

algorithm to classify maritime traffic behavior patterns (Wei et al.,

2024). Gao et al. proposed a method to recognize loading and

unloading behaviors using sub-trajectory clustering (Gao and Shi,

2020). Zhou et al. developed a new method for clustering ship paths

and ground speeds to understand port behavioral patterns (Zhou

et al., 2019). However, conventional methods have limitations. For

example, they are sensitive to trajectory noise, sensor errors, and

environmental factors; they typically treat ships independently,

thereby missing complex interactions; they struggle to generalize

across regions and conditions, thereby requiring extensive manual

tuning. Consequently, these methods may perform poorly with new

or uncommon ship states. To address these challenges, graph neural

networks offer a more advanced approach by modeling ship

movements as a graph, where nodes represent ships and edges

capture their interactions. Unlike traditional methods, GNN

automatically learn spatial and temporal dependencies, reducing

reliance on manual feature extraction and improving adaptability to

varying maritime scenarios. By incorporating optimized GNN

architectures, this study demonstrates enhanced recognition

accuracy, robustness, and efficiency in ship behavior pattern

analysis, paving the way for more intelligent maritime

traffic management.
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2.2 Graph neural network

GNN excel at modeling and analyzing graph-structured data,

achieving good results in social networks, bioinformatics, and

recommender systems (Shaw and Wu, 2023; Ünal and Akkas ̧,
2023). By combining graph topology and node characteristics,

GNN effectively model complex relationships. GNN offer new

opportunities for ship behavior pattern recognition, improving

accuracy and robustness by comprehensively understanding ship

relationships. These models synthesize node connections, extract

state information from AIS data, and consider all data connections

to optimize model parameters based on feature correlations. Zhang

et al. explored semi-supervised learning with Graph Convolutional

Networks (GCN) (Zhang et al., 2021). Liu et al. introduced a

spatiotemporal multi-GCN for ship trajectory prediction (Liu

et al., 2022). Zhao et al. developed a framework combining k-

GCNs and long short-term memory (LSTM) for predicting ship

speeds (Zhao et al., 2022). A deep attention awareness

spatiotemporal GCN has been proposed to predict the future

trajectories of ships (Wang et al., 2024). Zhang et al. developed

G-STGAN, which aggregates spatial and temporal features for ship

trajectory prediction, demonstrating competitive performance

(Zhang et al., 2023). Gao et al. applied GCNs to multi-ship

encounter identification (Gao et al., 2024). Conventional GCNs

have fixed weights; thus, they treat all neighboring nodes equally,

which limits their ability to differentiate important nodes and

capture the influence of various AIS data features. Although GAT

models incorporate attention mechanisms, they have high

computational complexity and scalability problems. This study

addresses these challenges by optimizing GNN models to improve

the performance and efficiency of ship behavior pattern recognition.

Section 2.1 highlights the shortcomings of conventional ship

behavior pattern recognition methods. These methods typically

encounter several challenges in handling high-dimensional and

sequential AIS data. For example, the presence of data noise,

sensor inaccuracies, and potential data loss complicates the

precise extraction of track features; The intricate spatiotemporal

interactions inherent in ship behavior patterns are typically

overlooked by conventional approaches; the fixed parameter

settings and reliance on thresholds restrict the adaptability and

generalization capabilities of these methods.

To address these issues, this study proposes three GNN-based

optimization models to improve both the accuracy and robustness

of ship behavior pattern recognition by effectively modeling the

spatiotemporal relationships in AIS data, these models leverage

advanced GNN techniques to improve the accuracy of ship

behavior pattern recognition.
3 Optimization model framework

In this section, several ship behavior pattern recognition models

using optimized GNN and hybrid models are presented. In the first

part, the AIS data are initially cleaned and processed to obtain

effective and reliable ship trajectory segments. In the second part,
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the structure and content of conventional GNN are introduced, and

the optimization and improvement of the models are performed by

combining the features of different GNN for the special structure

and complex information of AIS data. The main flow of the model is

illustrated in Figure 1.
3.1 AIS data processing

AIS data are typically affected by GPS interference, sensor

errors, and transmission delays, which reduce data quality. To

address this, we employed data cleaning and correction methods

to improve the accuracy and reliability of the AIS data. For missing

data, abnormal position and speed data were detected by calculating

the mean and standard deviation, setting three standard deviations

as thresholds, outliers that significantly deviated from normal

trajectory patterns were first removed and then replaced using

linear interpolation. For repeated latitude and longitude values

caused by signal noise or transmission errors, only the first

occurrence was retained to preserve trajectory continuity.

Regarding missing values, records with missing timestamps were

directly discarded, while missing values in critical fields such as

position (longitude and latitude), speed over ground (SOG), and

course over ground (COG) were filled using interpolation methods,

depending on the location and pattern of the missing data. This

approach effectively reduces the impact of AIS data errors.

The MMSI number was used to uniquely identify each ship. LAT

and LON represent the latitude and longitude of ships. These

coordinates provide the spatial foundation for analyzing behavioral

patterns such as anchoring, drifting, or navigation within constrained

waterways. Speed over ground (SOG), heading (HEA), and course

over ground (COG) are dynamic AIS attributes that describe the

vessel’s motion characteristics. Specifically, SOG reflects the ship’s

actual velocity over the Earth’s surface, while COG and HEA together

help capture directional stability and maneuvering behavior. The

difference between heading and COG may indicate lateral drift or

external influences such as wind or current, which are informative for

detecting anomalies or behavior transitions. Due to sensor errors, data

loss, or communication failures, some of the AIS data are inaccurate

(Xin et al., 2024). Speed over ground (SOG) values of 102.3 were

considered invalid and deleted. Course over ground (COG) and

heading values of 511 were also considered invalid and were

removed. Other data were deemed irrelevant and excluded from the

study. Shorter time intervals help capture subtle changes in a ship’s

behavior without losing information due to long sampling intervals.

As shown in Figure 2, to ensure the accuracy and validity of the

data during model training, we grouped every 50 consecutive AIS data

points for each ship, ensuring that the state remained consistent and

the time interval did not exceed 10 min. Each state contained an equal

number of data points to ensure balance in the data. Each group was

labeled based on the ship’s state. We retained the five-dimensional

features longitude, latitude, SOG, heading, and COG and calculated

the time difference between adjacent data points to capture both static

and motion features. After processing, the data were grouped into sets

with 50 data points each, with each point formatted as A1 = (LAT1,
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LON1, SOG1, COG1, HEA1, T1), where HEA denotes the heading

and T denotes the time interval. Each data group was labeled with the

corresponding vessel behavior pattern. Each data sample obtained

after processing has 50 sets of data points, each with multidimensional

features. The results of data processing and grouping are shown

in Figure 2D.
3.2 Graph neural network model
construction

After processing the AIS data, as described in Section 3.1, the

cluttered AIS data were organized into a standardized dataset. Then,

a model was developed based on the data characteristics and the

GNN structure. In this study, we developed three hybrid GNN

models and conducted experimental analyses to compare their

respective strengths and weaknesses:

AMO-GCN (Adjacency matrix Optimized GCN): This model

addresses the issue of fixed weights in conventional GCNs, which

fail to distinguish important neighboring nodes. By optimizing the

adjacency matrix, AMO-GCN effectively captures the dependency

relationships and structural information between nodes.

Hybrid GAT–GCN model: To tackle the high computational

complexity of GAT models, this hybrid model uses GCNs for initial

feature extraction and then uses GATs for fine-grained feature

aggregation, thereby improving performance and efficiency.

Hybrid GAT–LSTM model: This model combines GAT and

LSTM to better understand complex spatiotemporal relationships.

GAT mines potential relationships in the spatial dimension,
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whereas LSTM models long-term dependencies in the temporal

dimension, thereby improving accuracy and robustness.

The structure of a conventional graph convolutional neural

network (GCNN) is shown in Figure 3A. Following hidden layer

computation to extract features according to the features and data

processing, as described in Section 3.1, the graph structure data are

divided into two categories, Y1 and Y2. The convolutional structure

diagram of our model is shown in Figure 3B. The model inputs the

processed data, uses a GNN to extract data features, and weights

them into three states. When extracting feature information, each

node is associated with other nodes by default, and all associations

are combined into an adjacency matrix. In Figure 3C, node M is

used as an example. A, B, M, C, and D represent several neighboring

nodes, and we briefly explain the structure of the model by

analyzing the associations between these nodes. The maximum

influence distance between nodes is 2, and nodes A, B, M, C, and D

have six features. In the model, for node M feature extraction, the

five node features are weighted and summed. When initializing the

GCN model, the adjacency matrix (Adj or A) is used to define the

topology of the graph-structured data to ensure that the model can

accurately perform graph convolution operations. During model

initialization, Adj is passed to the model to allow it to understand

the connection relationships between nodes. In a GCNN, layers are

propagated from layer to layer as Equation 1:

H(l+1) = d (D−1=2AD−1=2H(l)W(l)) (1)

In this equation, H(l+1) denotes the node features at layer   l + 1,

representing the updated node representations after graph

convolution. H(l) is the node feature matrix from the previous
FIGURE 1

Flow diagram of neural network model training.
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layer. Here, A = A0 + I.  A0 is the initial adjacency matrix, and I

represents the unit matrix. An increase in the unit matrix allows the

model to consider the node relationship and its influence. D is the

degree matrix, a diagonal matrix used for normalization based on

node degrees. W(l) is the learnable weight matrix at layer l, which

transforms the node features and captures structural relationships. d
is the activation function, which introduces non-linearity to enhance

the model’s representational capacity. In summary, the proposed

model integrates a Graph Neural Network structure to perform

modeling and classification of ship trajectory data. Based on the

preprocessed AIS data, a graph structure is constructed by defining

the connections between nodes, ensures the graph convolution

operations accurately reflect potential interactions among vessels.

The model then applies a two-layer graph convolution architecture

combined with feature fusion, enabling effective extraction of spatial

neighborhood features for each node. These features are aggregated

using weighted adjacency information. The incorporation of graph-

based structure significantly enhances the model’s capability in
Frontiers in Marine Science 05
capturing spatiotemporal behavior patterns of ships and improves

recognition performance for complex navigational states. Through

this propagation rule, the GCNN updates node features layer by layer,

effectively aggregating information from neighbors and learning

hierarchical feature representations.

In this study, optimizing the adjacency matrix and other

hyperparameter combinations of GNN requires extensive

computations. The optimization of model parameters is critical to

enhancing the performance and generalization capability of the

proposed GNN-based architectures. Different hyperparameters play

distinct roles during training and directly affect the model’s learning

behavior. Key hyperparameters such as the learning rate, dropout rate,

weight decay, number of graph convolutional layers, and the structure

of attention mechanisms substantially influence the model’s

convergence speed, resistance to overfitting, and its ability to

capture spatial-temporal dependencies inherent in AIS data. For

instance, the learning rate determines how rapidly the model

updates its weights during training. An excessively high rate may
FIGURE 2

Schematic of AIS data processing flow. (A) Visualization of AIS data of selected ships with different behavioral models (the horizontal and vertical
axes represent latitude and longitude coordinates). (B) Every tenth consecutive node is taken as a group (for schematic purposes only, 50 nodes in
the model). (C) Each node has six features. (D) Data processing and grouping.
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lead to instability or divergence, while a rate that is too low can slow

convergence and increase the risk of getting trapped in local minima.

Dropout acts as a regularization technique by randomly deactivating

neurons during training, thereby reducing overfitting and improving
Frontiers in Marine Science 06
model robustness. Weight decay helps prevent the model from

becoming overly complex by penalizing large weights, promoting

simpler and more generalizable representations. The number of graph

convolutional layers controls the extent of neighborhood information
FIGURE 3

Model structure association diagram. (A) Conventional GCNN structure. (B) Convolutional structure diagram of our model. (C) Data feature
calculation diagram (take node M as an example).
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aggregation—too few layers may limit the model’s expressive power,

while too many may lead to over-smoothing, making node

r e p r e s e n t a t i o n s i n d i s t i n g u i s h a b l e a nd d e g r a d i n g

classification performance.

Considering the complex interplay among these hyperparameters

and the high computational cost of exhaustive search strategies,

traditional grid search or random search approaches are inefficient

for identifying optimal configurations. To address this, we adopted

Bayesian optimization via the fmin function from the Hyperopt library.

Bayesian optimization constructs a probabilistic surrogate model of the

objective function here, the model’s validation error and iteratively

selects hyperparameter combinations by balancing exploration and

exploitation. By leveraging prior evaluations to inform future trials, this

method efficiently navigates the hyperparameter space and significantly

reduces the number of evaluations required. In this study, we applied

Bayesian optimization not only to refine key hyperparameters but also

to adjust the structure of the adjacency matrix, thereby enhancing the

model’s ability to capture meaningful graph topology. The resulting

optimized parameter set collectively improves model accuracy, training

efficiency, and robustness in the ship behavior pattern recognition task.

In GAT, the attentional layer is the only layer that constitutes the

entire GAT. The input to this layer is the original features of the node,

and the output is the new features of the node. For example,
the input

feature is, and the output feature is h0 = →
h
0
1

,→
h
0
2

,…→
h
0
N

( )
,
h

0
i ∈ R0 (R0

denotes a multidimensional real vector space). The GAT network is

realized based on the attention mechanism, and the core of the

attention mechanism is to calculate the degree of the contribution of

each part to the final goal. The degree of contribution is represented

by the attention coefficient. First, the self-attention mechanism is

executed by linearly varying the input features; second, the above-

calculated coefficients are normalized by softmax, and the attention

coefficients are then calculated by the nonlinear layer; finally, the

normalized attention coefficients are linearly combined with their
corresponding features to be the final output features of each node.
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To synthesize the local feature aggregation capability of GCNs and

the attention mechanism of GAT for robust graph feature

representation, we developed a hybrid GCN–GAT model for

recognizing ship sailing patterns. Node features enter the input

layer, and the initial feature representation of each node is generated

by first performing global feature extraction of the features of the

nodes in the graph through the GCN layer. The weights are then

dynamically assigned among the neighbors of each node using the

GAT layer to re-aggregate the features according to the importance of

the neighboring nodes. The final feature representation of a node is

generated by combining the output features of both parts. Finally, the

output layer is used for classification. This hybrid network leverages

the strengths of both GCNs and GAT, thereby more effectively

handling complex relationships in graph-structured data. The GAT–

LSTMhybridmodel combines a GAT and a LSTMnetwork to process

data with both graph structures and sequence information. The GAT

layer processes the input features to generate new node

representations that serve as input to the LSTM layer. The LSTM

layer models temporal sequence information, and its output is fed to a

final GAT layer, resulting in node classification (Figure 4). This hybrid

model effectively utilizes the advantages of GAT for graph data and

LSTM for sequence data, thereby addressing more complex tasks.

The data used by the three proposed models were AIS datasets

in the same format, as shown in Figure 1. Although data processing

was consistent across all models, the neural networks and

algorithms differed, leading to distinct ship behavior recognition

results. Each method has unique characteristics: AMO-GCN

improves accuracy and robustness in processing graph-structured

data by optimizing the adjacency matrix; the GCN–GAT hybrid

model combines graph convolution and attention mechanisms for

strong comprehensive performance, effectively learning both graph

structures and node features; the GAT–LSTM hybrid model merges

graph structure learning with time-series modeling, making it

suitable for dynamic behavior pattern recognition with flexible

and comprehensive performance.
FIGURE 4

Structure of proposed GAT–LSTM.
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4 Results analysis and discussion

This section describes the entire experimental process, starting

with the processing of the experimental data, followed by the ship

behavior pattern recognition using each model, and finally the

analysis of the experimental results.
4.1 Experimental data

Publicly available AIS data collected from January 2021 to

December 2022 collected from AccessAIS-MarineCadastre.gov

were used in the experiment.

As shown in Figure 5, we selected the coastal waters of Texas as

the study area, specifically encompassing the region between 29°18′
N–29°33′N latitude and 94°45′W–95°06′W longitude. This area

includes major ports such as Galveston, Texas City, and the

surrounding bay areas. It represents a highly active maritime

region with frequent ship movements, making it suitable for

behavior pattern recognition research. The AIS data visualized in

the Figure are plotted as red dots, indicating ship trajectories

collected during the observation period.

To ensure the diversity and reliability of the experimental data,

various types of ships—including passenger ships, cargo ships, and oil

tankers—were selected, with lengths ranging from 15 m (e.g.,

RHONDA E) to 338 m (e.g., LIBERTY OF THE SEAS). After

cleaning and organizing the AIS data, a total of 750,000 high-quality

data points were obtained from 1,174,918 raw trajectory records.

These cleaned and filtered trajectory points, indicated as red dots in

the corresponding figure, represent consistent and valid motion

patterns. To facilitate controlled evaluation and reduce confounding

factors during model comparison, this study employed a balanced

sampling strategy, wherein an equal number of trajectory groups

(5,000) were constructed for each of the three ship behavior categories:

underway, mooring, and anchored. Each group contains 50
Frontiers in Marine Science 08
consecutive data nodes, with each node described by six key

features: latitude, longitude, speed over ground (SOG), course over

ground (COG), heading, and timestamp interval. This balanced design

allows for fair performance comparison across different models and

clearer attribution of effectiveness to architectural components, rather

than to class distribution biases. It also ensures that the behavior

recognition model can be evaluated under uniform data conditions

before being extended to naturally imbalanced datasets in future work.

The AIS data for each state were divided into training,

validation, and test sets at a 3:1:1 ratio. Specifically, the training,

validation, and test sets contained 3,000, 1,000, and 1,000 data

groups, respectively. The training set was used for model training,

where the model learned the features and patterns of the data. The

validation set was used to evaluate model performance on unseen

data to prevent overfitting and to adjust hyperparameters (e.g.,

learning rate, regularization factor, and number of network layers)

to find the optimal configuration. The test set, which was

completely unseen during training, was used to evaluate the final

trained model to obtain performance metrics and objectively reflect

the generalizability of the model.
4.2 Experimental procedure

The three proposed innovative models, namely, AMO-GCN, a

hybrid GCN–GAT model, and a hybrid GAT–LSTM model, were

evaluated and compared with the conventional GCN and GAT

models. Uniform hyperparameters and graph convolutional layers

were set for consistency: two graph convolutional layers with 64

kernels each, a dropout rate of 60%, a learning rate of 0.01, a weight

decay of 0.0001, and 200 runs. All models used the same AIS dataset

format. The GCNmodel uses multiple graph convolutional layers to

perform convolution operations on nodes (ship locations) via the

adjacency matrix to extract local and global features. The GAT

model employs graph attention layers, which extract features
FIGURE 5

Research area. (A) Geographical map of the study area. (B) Ship trajectories in the study area, visualized using AIS data as red dots.
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through the weighted summation of node features, consisting of

embedding and output layers. The embedding layer has multiple

parallel graph attention layers, stitching features together, and the

output layer maps these features to the final category labels. The

hybrid GAT–LSTM model integrates an LSTM layer to receive

input from the graph attention layer of the GAT. The feature matrix

was reshaped into sequence data to better capture the temporal

relationships and dependencies in the graph data. This setup allows

for a thorough comparison of the ability of the models to recognize

ship behavior patterns from AIS data.
4.3 Analysis and comparison of results

4.3.1 Analysis of model results
The models were coded in Python using PyTorch, a library for

developing and training deep-learning models. To evaluate the

performance and effectiveness of the hybrid model, conventional

GCN and GAT were used as control groups, each processing data

differently and efficiently over time. Performance was assessed by

tracking loss and accuracy. Loss, derived from the negative log-

likelihood function, measures prediction discrepancies. Minimizing

this loss optimizes the model parameters, which improves

performance. Loss on the validation set helps visualize the

prediction accuracy of the model, whereas accuracy provides

insight into the classification performance and generalizability of

the model. To visualize the training process, we plotted the loss and

accuracy curves over the training rounds for each model (Figure 6).

The total time for each model run was recorded, along with the final

accuracy on the test set. The results are shown in Table 1

and Figure 7.

The experimental results demonstrate that the traditional GCN

model has the fastest processing speed (a running time of 241.91 s)

due to its low computational complexity and direct convolution on

graph nodes. Although the GCN model effectively captures local

node information, it cannot finely model relationships between

neighboring nodes, which leads to its slightly lower accuracy. Its
Frontiers in Marine Science 09
simple weighted summation encounters difficulties in handling

complex graph structures and long-range dependencies; thus, it is

suitable for high-speed scenarios despite its higher loss values.

The GAT model, which uses a multi-head attention mechanism

to weight and sum node relationships, exhibits increased

computational complexity and longer processing times. Although

GAT first optimizes rapidly, its performance subsequently

decreases, which requires further parameter tuning. However, the

attention mechanism improves accuracy by finely capturing node

relationships and weight distributions. The AMO-GCN model

improves accuracy by optimizing the adjacency matrix, thereby

capturing node relationships more effectively. This increases

computational time and resource consumption but improves

feature extraction and reduces errors during training. Despite

having the longest running time, the higher accuracy of AMO-

GCN makes it suitable for precision-demanding tasks with ample

computational resources. The GCN–GAT hybrid model combines

the rapid local information processing of the GCN with the

attention mechanism of GAT, thereby improving efficiency and

achieving the highest final accuracy. It balances accuracy and

running time, making it ideal for high-accuracy tasks with

moderate time constraints. Although the GAT–LSTM hybrid

model exhibits longer computational times due to the complexity

of LSTM when handling sequence data, it effectively captures

complex relationships and dynamic features over time. Its

accuracy is second only to that of GCN–GAT, which makes it

suitable for tasks requiring high accuracy despite longer running

times. In summary, all models achieved greater than 95% accuracy,

with the basic GCN achieving 95.16%, demonstrating the

effectiveness of GNN in capturing the relational structure of AIS

data. The hybrid GCN–GAT and GAT–LSTM models achieved the

highest and second-highest accuracies (98.86% and 98.67%,

respectively) by combining the strengths of the different

approaches. Base models such as GCNs offer shorter running

times, which makes them ideal for time-sensitive or resource-

constrained tasks. This comparison highlights the strengths of

hybrid models in terms of accuracy and feature fusion for
FIGURE 6

Model performance curve on the validation set. (A) Accuracy curves for the five models. (B) Loss curves for the five models.
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complex tasks, whereas base models excel in terms of efficiency for

fast-paced, resource-limited scenarios. The selection and

optimization of an appropriate model ensures the best

performance and efficiency across different applications.

To visually assess the classification results, we presented

confusion matrices for each model, which clearly display the true

positives, false positives, and misclassifications for each behavioral

pattern, as illustrated in Figure 8. Based on the confusion matrix, we

observe that the different models exhibit slight differences in

recognizing the three behavioral patterns; however, similarly, each

model exhibits high accuracy in distinguishing mooring patterns

from the other behavioral patterns.

Precision measures the accuracy of a model in predicting a

specific class, whereas recall evaluates the ability of the model to

identify all samples of that class. Both metrics are critical in

assessing the performance of classification models on imbalanced

datasets or for multiclass problems. To obtain a more complete view

of the ability of the model to accurately categorize samples in each

category, we computed the precision and recall for each category to

evaluate classification performance. The results are shown

in Figure 9.

As shown in the Figure 9, the precision and recall values of the

GCN and GAT models are low, particularly for the “underway” and

“anchor” states. In contrast, the precision and recall values of the

GCN–GAT hybridmodel reached over 98% formost of the categories,

indicating a significant improvement in the classification performance.

For “underway,” precision and recall were slightly lower than for

“mooring” and “anchor” patterns in all experiments. There may be

feature ambiguities or overlaps with other states (e.g., “anchor”),

making them susceptible to misclassification. “Mooring” states may

have more defined characteristics and are thus easier for classifiers to

distinguish. There may be some overlap of features between the

“mooring” and “underway” states, such as certain low-speed moving

behaviors, leading to model confusion.

To better understand the contribution of each key component

in our hybrid GNN models, we conducted a comprehensive

ablation study. Specifically, we assessed the impact of three core

architectural modules: adjacency matrix optimization, attention
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mechanism and temporal modeling via LSTM. The performance

of each model was evaluated using three metrics: validation loss,

classification accuracy, and inference time. The results are

summarized in Table 2.

The ablation study demonstrates the importance of each

architectural component in the proposed hybrid models. The

AMO-GCN model, which integrates graph convolution, attention

mechanisms, and adjacency matrix optimization via an actor module,

achieved a high recognition accuracy of 98.16% with moderate

inference time. When adjacency optimization and attention were

removed, resulting in a GCN-only version, the accuracy dropped to

94.96%. This performance gap underscores the value of adaptive

structure learning in enhancing behavior recognition. Similarly, the

GCN-GAT model, which fuses convolutional and attention-based

spatial learning, achieved an accuracy of 98.70%. In comparison, the

GCN-only and GAT-only variants achieved 95.03% and 96.33%,

respectively, suggesting that their combination yields a more

comprehensive representation than either component alone. The

GAT-LSTM model, designed to jointly capture spatial attention

and temporal dependencies, achieved 98.53% accuracy. Its GAT-

only variant showed a modest decline to 97.01%, while the LSTM-

only version performed significantly worse at 35.54%, highlighting

that spatial contextual information is essential for ship behavior

recognition and cannot be replaced by temporal modeling alone.

From a computational perspective, GCN-only models

demonstrated the lowest inference latency, making them suitable

for resource-constrained or real-time applications. However, the

hybrid models, while incurring higher computational costs,

consistently delivered superior recognition performance. Overall,

the ablation results confirm that incorporating attention

mechanisms, temporal dynamics, and adaptive graph structures

significantly enhances the model’s ability to capture complex

maritime behavior patterns from AIS data.
4.3.2 Discussion
This study optimized GNN algorithms for ship behavior pattern

recognition by leveraging the ability of GNN to handle connections

between data points. We developed hybrid models based on the

characteristics of different GNN and the AIS data structure,

achieving high recognition accuracy. After cleaning and

organizing the AIS data, we retained six key features: LON, LAT,

SOG, HEA, COG and T. Each of the 50 consecutive nodes formed a

complete data unit, resulting in 5,000 samples for each behavior

category: underway, anchor, and mooring.

Considering the spatial nature of ship trajectory data and the

ability of GNN to learn spatial patterns, we developed three hybrid

models: AMO-GCN, GCN–GAT, and GAT–LSTM. These models

combined the strengths of various approaches, thereby significantly

improving the accuracy of ship behavior pattern recognition.

Although the control GCN model was less accurate, it had the

shortest running time, making it suitable for tasks with limited

computational resources or time constraints. The models can

extract specific ship state information from AIS data, thereby

providing reliable navigation advice and enhancing maritime traffic

safety. In practical applications of ship behavior pattern recognition,
FIGURE 7

Time consumption and training accuracy of models on test set.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1605216
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2025.1605216
FIGURE 9

Histogram of accuracy vs. recall for various categories for each model: (A) Precision accuracy for each ship behavior pattern, (B) Recall for each ship
behavior pattern.
FIGURE 8

Confusion matrixes of results on five training model test sets: (A) GAT model, (B) GCN model, (C) AMO-GCN model, (D) GCN-GAT model, (E) GAT-
LSTM model.
TABLE 1 Time consumption and training-optimal accuracy of models on the test set.

MODEL GCN GAT AMO-GCN GCN–GAT GAT–LSTM

Time consumption (s) 241.91 344.13 387.36 273.26 346.64s

Accuracy (%) 95.16 96.73 98.13 98.86 98.67
F
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for real-time requirements, it is recommended to use GCN models

with slightly lower accuracy but faster processing speed. For higher-

accuracy requirements, the AMO-GCN and GCN–GATmodels with

higher accuracy are more suitable, and the GAT–LSTM model is

suitable for tasks with high-accuracy requirements and is sensitive to

temporal relationships. In summary, this study achieved high-

accuracy behavior pattern recognition by optimizing GNN to yield

hybrid models. The GNN models demonstrated strong data mining

capabilities and high accuracy and were particularly useful in waters

with rich historical AIS data.

However, the proposed models still have certain limitations. For

instance, the current hybrid architectures that combine GCN, GAT, or

LSTM operate in a multi-stage manner, where spatial and temporal

features are modeled separately. While this modular design provides

flexibility and interpretability, it also introduces challenges such as

increased training complexity and potential inconsistencies across

stages. To address these issues, future research will explore the

integration of temporal GNN, which are capable of simultaneously

capturing both spatial dependencies and temporal dynamics in an end-

to-end fashion. These models leverage time-aware graph structures or

time-encoding mechanisms to enhance the representation of evolving

ship behaviors over time. By adopting such unified frameworks, we

expect to improve both the training efficiency and the coherence of

spatiotemporal feature extraction.

This study employed a balanced sampling strategy to enable

controlled evaluation; however, this approach does not fully reflect

the naturally imbalanced distribution of AIS data, where the

“underway” state occurs more frequently than “anchored” or

“moored” states. Future work will consider techniques such as

resampling or cost-sensitive learning to improve model robustness

under real-world class imbalance.

In addition, future work will aim to enhance the real-time

monitoring capabilities of the proposed models, enabling timely

and intelligent responses to complex maritime traffic scenarios. This

will support the development of a more flexible, scalable, and

intelligent maritime transportation system. Although the hybrid

models proposed in this study achieve high recognition accuracy,

their multi-stage architecture increases computational complexity.
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To facilitate practical deployment in time-sensitive and resource-

limited environments, future research will explore lightweight and

adaptive GNN designs that reduce inference latency while

maintaining performance.

Furthermore, to enhance the operational applicability and practical

value of the proposed framework, future research will investigate the

extension of behavior categories beyond the current classification of

underway, moored, and anchored. In particular, nuanced and

operationally significant behaviors such as loitering, drifting, illegal

anchoring, and search-and-rescue standby will be considered. These

patterns are increasingly relevant in real-world maritime security,

anomaly detection, and environmental protection scenarios. For

instance, loitering behavior, often characterized by low-speed circular

or meandering paths in non-designated zones, may indicate suspicious

or unauthorized activity. Similarly, illegal anchoring can be inferred

from stationary behavior in environmentally protected or restricted

areas, violating port regulations or navigational laws. Detecting such

complex behaviors requires the model to capture finer-grained

temporal-spatial variations and contextual cues from AIS trajectories.

While this introduces new challenges such as class imbalance, data

annotation difficulty, and inter-behavior similarity, it also presents an

opportunity to strengthen the model’s generalization ability and

broaden its utility in intelligent maritime surveillance systems.

Therefore, future work will focus on refining trajectory segmentation,

incorporating context-aware features (e.g., restricted area maps, VTS

zones), and developing adaptive thresholds to support the

identification of these subtle yet critical patterns. By expanding the

behavioral taxonomy, the proposed framework can better assist in

monitoring vessel compliance, detecting maritime anomalies, and

supporting domain-specific applications such as marine protected

area enforcement, illegal fishing prevention, and dynamic

anchorage management.
5 Conclusions

In this study, we propose ship behavior pattern recognition

methods based on AIS data and GNN. We developed hybrid

models based on conventional GNN, achieving over 98% accuracy

on the test set. These hybrid models improve the accuracy and

efficiency of ship movement behavior pattern recognition, providing

powerful tools for maritime traffic management. They have broad

applications in maritime supervision, navigation safety, and ship

management, offering reliable technical support and improving the

overall effectiveness of maritime traffic networks.

The innovative aspect of this study is the use of GNN and hybrid

models to transform error-prone AIS data into valuable ship behavior

pattern information. This transformation helps decision makers and

planners improve navigation paths and maritime safety. Promoting

international AIS data sharing will enhance global maritime traffic

management and safety, thereby supporting the development of more

efficient maritime traffic systems. Continuous model optimization and

expanded research areas will further promote global maritime traffic

management, protect navigators, and lay the foundation for a

comprehensive maritime transportation network. Future research
TABLE 2 Ablation study results of different model components on ship
behavior recognition.

MODEL Val
Loss

Accuracy
(%)

Time
consumption

(s)

AMO-GCN 0.0862 98.16 404.82

AMO-GCN(GCN_Only) 0.4328 94.96 245.91

GCN-GAT 0.0528 98.70 313.42

GCN-GAT(GCN_Only) 0.4138 95.03 219.37

GCN-GAT(GAT_Only) 0.0927 96.33 398.31

GAT-LSTM 0.2122 98.53 362.99

GAT-LSTM(GAT_Only) 0.7111 97.01 387.69

GAT-LSTM(LSTM_Only) 0.0843 35.54 115.67
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should focus on systems capable of processing and analyzing real-time

data to facilitate real-time decision-making and response. This will

enhance the flexibility and responsiveness of maritime traffic

management, ensure navigation safety and efficiency, optimize

navigation routes and schedules, strengthen emergency response

capabilities, and support long-term analysis and strategic planning.

To further improve performance and generalization, future research

will explore the incorporation of adaptive graph construction

mechanisms, enabling the adjacency matrix to be learned

dynamically rather than predefined. Such adaptive graph neural

networks (AGNN) have shown significant potential in handling

heterogeneous and evolving topologies in maritime scenarios.

Moreover, we will investigate ensemble-based learning strategies and

end-to-end architectures such as T-GCN, TGAT, or ST-GCN to unify

spatial and temporal modeling in a more efficient and scalable

manner. These improvements are expected to address current

limitations in trajectory segmentation, feature interaction, and ship-

type generalization.

With the increasing availability of reliable external data sources and

the continuous advancement of model capabilities, future work may

explore multimodal data fusion techniques. By incorporating

additional contextual features—such as weather conditions, vessel

types, and destinations—these methods have the potential to

enhance model performance and generalization, improve

classification robustness, and support broader maritime monitoring

tasks under diverse operational scenarios. To support real-time

maritime surveillance, future research will also focus on reducing

inference latency and improving model scalability. This includes the

development of lightweight and adaptive GNN architectures, as well as

the integration of early-exit strategies and stream-based data processing

frameworks. These enhancements aim to maintain recognition

accuracy while ensuring timely responses in resource-constrained

and dynamic environments.

We also plan to expand behavior categories, incorporate vessel-specific

profiles, and deploy real-time behavior recognition systems. Additionally,

ablation studies will be conducted to quantitatively evaluate the

contribution of each architectural module to model performance. This

comprehensive research roadmap supports long-term development of

intelligent maritime management systems. Expanding the model’s

capabilities will allow for a more nuanced understanding of vessel

activities, which is crucial for improving intelligent maritime

management. Through persistent research and innovation, we can

comprehensively elevate maritime traffic management.
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