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Brominated flame retardants (BFRs) represent the most widely produced and

utilized organic flame retardants globally. Compared to terrestrial and freshwater

organisms, research on the marine ecotoxicity of BFRs has lagged behind, with

no comprehensive review currently synthesizing these studies. Internationally,

BFRs have been subjected to regulatory restrictions due to their demonstrated

characteristics as persistent organic pollutants. Nevertheless, significant

regulatory gaps persist in current BFRs governance frameworks. Addressing

this knowledge gap, this paper briefly reviews the distribution of BFRs in the

marine environment, while comprehensively reviewing and comparing their

toxic effects on marine organisms and summarize toxic mechanisms.

Meanwhile, the paper systematically examines global regulatory policies

governing BFRs across various nations and proposes recommendations for

enhanced regulatory oversight and legislative improvements. Currently, the

studies on the marine biological toxicity of three traditional BFRs, namely

polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD),

and tetrabromobisphenol A, are relatively comprehensive. These BFRs can

exert various toxic effects on planktonic, benthic, and nektonic organisms,

mainly including growth and development toxicity, reproductive toxicity,

immunotoxicity, and neurotoxicity. However, the toxicity studies on novel

BFRs, such as decabromodiphenyl ethane, are scarce and urgently need to be

initiated. Moreover, researches on the marine biological toxicity mechanisms of

BFRs are relatively simplistic, lacking in the characteristics of different BFRs and

adverse outcome pathways starting from the molecular level. Within existing

global regulatory frameworks, PBDEs, HBCD, and hexabromobiphenyl have been

comprehensively prohibited and phased out. However, environmental risk

assessments for alternative BFRs remain ongoing, with corresponding

legislative actions lagging behind scientific findings.
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1 Introduction

Brominated flame retardants (BFRs) are the most-produced and

most-used organic flame retardants worldwide, accounting for

approximately 21% of the total production of flame retardants

(Sharkey et al., 2020). These chemicals are widely used in products

requiring flame retardants, such as clothing, electronic products,

furniture, motor vehicles, and decoration and building materials,

and constitute 5–30% of the products by weight (Rani et al., 2022).

Studies have reported that approximately 70% of the flame retardants

used in electrical and electronic products worldwide are BFRs

(Feiteiro et al., 2021). With developments in the chemical industry,

BFRs can be divided into two types: traditional and novel. Traditional

BFRs include polybrominated diphenyl ethers (PBDEs),

hexabromocyclododecane (HBCD), and tetrabromobisphenol A

(TBBPA) (Xiong et al., 2019). Due to the high ecological risk and

human health hazards exhibited by traditional BFRs, a series of novel

BFRs (NBFRs) as substitutes have been developed and entered into

use. NBFR substitutes for PBDEs include decabromodiphenyl ethane

(DBDPE) and bis(2,4,6-tribromophenoxy) ethane (BTBPE),

2,3,4,5,6-pentabromoethylbenzene (PBEB), hexabromobiphenyl

(HBB), and 2,3,4,5,6-pentabromotoluene (PBT); the main substitute

for HBCD is DBDPE; and NBFR substitute for TBBPA include 2-

ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl)

tetrabromophtalate (TBPH) (Xiong et al., 2019).

If an organic chemical substance can be closely combined with a

product and never escape during the production, use, and end-of-

life recycling processes of the product, it will not cause potential

human health and ecological risks. However, among the most-used

BFRs, only TBBPA is chemically reacted with certain materials to

form chemical bonds (Liu et al., 2016). When TBBPA or other BFRs

are not chemically bonded, they constitute additives that are not

tightly combined with the product. Therefore, most BFRs are prone

to escape into the environment (Liu et al., 2016). The ocean is a

global sink for pollutants. BFRs can enter the marine environment

through various channels, including evaporation and escape into

the atmosphere followed by sedimentation into the ocean, overflow

from the production process and escape during product end of life

into the ocean through surface runoff, and the illegal discarding of

e-waste and plastic waste directly into the marine environment

(Turner, 2022). Due to their high hydrophobicity, BFRs in the

marine environment are mainly distributed in sediments rather

than dissolved in seawater (Wang et al., 2023a). Research data from

the past five years have shown that the BFRs with the highest levels

in the marine environment are mainly PBDEs and TBBPA, two

traditional BFRs, and DBDPE, an NBFR (Table 1). The maximum

content of PBDEs in the sediments of the Bohai Estuary and

Xiamen Bay in China are as high as 238 and 276 ng/g,

respectively (Liu et al., 2021, 2019), and the maximum content of

TBBPA in the coastal area of Guangdong, China, was reported to be

80 ng/g (Chen et al., 2024). The highest concentrations of DBDPE

in the highly industrialized Ulsan and Onsan Bays in South Korea

and the Pearl River Delta in China were 81.6 and 58.2 ng/g,

respectively (Feng et al., 2021; Lee et al., 2020). These data show

that marine pollution by traditional BFRs still occurs and that the
Frontiers in Marine Science 02
residues of NBFRs represented by DBDPE are rising, with a

tendency to exceed the level of traditional BFRs.

BFRs are poorly soluble in seawater but have high lipid solubility.

Therefore, BFRs that enter the ocean are likely to accumulate in marine

organisms and be gradually amplified along the food chain (Li et al.,

2024). Taking PBDEs as an example, the average measured PBDE

content in the Bohai Sea, China, where industrial pollution is relatively

severe, was 0.07 ng/L (Liu et al., 2020a). The mean PBDE content of

zooplankton, invertebrates, and fish in this sea area were 1.1, 1.7, and

4.9 ng/g, respectively (Liu et al., 2021). The mean observed

concentration of PBDEs in the body of killer whales, the top oceanic

predator, was as high as 1,800 ng/g (Kratofil et al., 2020). BFRs that

accumulate in organisms can produce toxic effects. Studies on humans,

terrestrial animals, and model organisms have demonstrated that

traditional BFRs or NBFRs have different degrees of reproductive,

developmental, immune and neurotoxic, endocrine disruptive, and

carcinogenic effects, and these studies have been summarized in

multiple review papers (Dong et al., 2021; Feiteiro et al., 2021;

Gouesse and Plante, 2022; Okeke et al., 2022; Sarkar et al., 2023;

Shen et al., 2024; Wu et al., 2020; Xiong et al., 2019). However, to the

best of our knowledge, there are few reviews on the toxicity of BFRs in

marine organisms.

Given the frequent environmental detection of BFRs and their

demonstrated toxicological effects, the international community and

major economies have progressively established regulatory frameworks

to control BFRs. The Stockholm Convention on Persistent Organic

Pollutants (POPs), administered by the United Nations Environment

Programme (UNEP), lists multiple BFRs as POPs, mandating signatory

states to phase out their production and restrict usage (UNEP, 2017).

Regional legislative frameworks, such as those enacted by the key

economies in Europe, North America, and East Asian, further reinforce

prohibition and restriction regimes targeting BFRs. Nevertheless, the

current regulatory system for BFRs faces multifaceted challenges,

including a lack of harmonized global restriction criteria, the absence

of comprehensive life-cycle supervision, and regulatory gaps

concerning NBFRs (Sharkey et al., 2020).

Based on the aforementioned issues, in this review, keywords such

as BFRs, PBDEs, HBCD, TBBPA, NBFRs, DBDPE, BTBPE, PBEB,

HBB, PBT, TBB, TBPH, marine, toxicity, regulation, and policy were

used to retrieve relevant papers from the Web of Science, PubMed,

Scopus and ScienceDirect database, aiming to (1) comprehensively

summarize toxic effects and mechanism of BFRs on marine organisms;

(2) compare the similarities and differences in BFRs toxicity; (3) review

the global regulatory policies on BFRs; (4) identify research gaps and

provide recommendations for BFRs toxicity studies on marine

organisms; (5) provide recommendations for the regulation and

legislation of BFRs.

2 Toxic effects of BFRs on marine
organisms

2.1 PBDEs

PBDEs theoretically have 209 homologs due to their different

numbers of bromine atoms and substitution positions, but
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TABLE 1 BFRs content in marine environment reported in published papers over the past five years.

Matrix/Unit Region PBDEs HBCD TBBPA DBDPE BTBPE PBEB HBB PBT TBB References

03–0.32 Lee et al., 2020

n.d.–0.00197 n.d.–0.00196 Liu et al., 2020a

B, and PBT) Zhen et al., 2021

–0.59 n.d. n.d. Feng et al., 2021

Fu et al., 2023

Xie et al., 2022

Gong et al., 2021

–13.7 n.d.–62.3 Lee et al., 2020

–0.38 n.d.–0.02 Hu et al., 2022

, and PBT) Zhen et al., 2021

–0.0472 n.d.–0.0345 n.d.–0.0073 Liu et al., 2021

, PBT and TBB) Li et al., 2019

Xie et al., 2021

–0.13 n.d. n.d. Feng et al., 2021

Gil-Solsona et al., 2022

Xie et al., 2022

Liu et al., 2019

Chen et al., 2024

Pan et al., 2022

Fu et al., 2023

Long et al., 2024
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Ulsan and Onsan
Bays, Korea

n.d.–25.7 n.d.–0.21 0.0

Bohai, China n.d.–0.2453 n.d.–0.578 n.d.–0.0005 n.d.–0.01733

Bohai, China n.d.– 0.089 n.d.–1.45 n.d. – 0.052 (sum of BTBPE, PBEB, H

Pearl River Delta, China n.d.–4.28 n.d.–7.04 n.d. n.d

Jiaozhou Bay, China n.d.–7.93 n.d.–0.31

East China Sea, China 0.25–25

Yellow Sea and Bohai
Sea, China

n.d.–0.46

Sediment (ng/g dw)

Ulsan and Onsan
Bays, Korea

0.12–63.5 n.d.–81.6 n.d.–86.9 n.d

Pearl River Estuary and Daya
Bay, China

0.29–43.4 0.14–13.0 n.d.–0.27 0.0007–0.06 n.d

Bohai, China n.d.–17.7 n.d. – 11.2 n.d. – 0.23 (sum of BTBPE, PBEB, HB

36 rivers estuaries of Bohai
Sea and North Yellow
Sea, China

0.0121–238 n.d.–46.4 n.d.–0.0228 n.d.–0.0207 n.d

Yellow Sea and East China
Sea, China

0.0003–0.924 n.d.– 9.46 n.d.–0.293 (sum of BTBPE, PBEB, HB

14 Estuaries, South China. 0.39–81.2 0.18–49.9 n.d.–0.62

Pearl River Delta, China n.d.–21.55 0.74–58.22 n.d. n.d

Ebro Delta, Spain n.d.–4.7

East China Sea, China n.d.–0.27

Sanmen Bay and Xiamen
Bay, China

2.2–276

Coastal areas of
Guangdong, China

n.d.–18 n.d.–80

24 Fishing ports along the
South China coast, China

1.06–14.1 0.02–21.5

Jiaozhou Bay, China n.d.–65.76 n.d.–16.63

Pearl River Estuary and
South China Sea, China

n.d.–0.42 n.d.–6.14

n.d., not detected.
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commercial PBDEs are mainly based on tetrabromodiphenyl ether

(BDE-47) and decabromodiphenyl ether (BDE-209) homologs

(Abbasi et al., 2019). Therefore, studies on the toxic effects on

marine organisms have focused mainly on BDE-47 and BDE-209.

The toxicity of PBDEs on various marine organisms is the most

comprehensively studied among all types of BFRs (Table 2). Marine

phytoplankton constitute floating single-celled microalgae, which

are primary producers in marine ecosystems. Studies have shown

that PBDEs have certain toxicity to marine diatoms, green algae,

and dinoflagellates. Three diatoms, Skeletonema costatum,

Thalassiosira pseudonana, and Phaeodactylum tricornutum, the

dinoflagellate Alexandrium minutum, and the green alga

Dunaliella salina have been reported to be inhibited by BDE-47

in terms of population growth and photosynthesis but with different

sensitivities. Significant population growth and photosynthesis

inhibition were observed in T. pseudonana under BDE-47

exposure at 15 mg/L (Zhao et al., 2019b), while the other four

microalgae were inhibited only in the concentration range of 200–

800 mg/L BDE-47. Moreover, BDE-47 at 200–800 mg/L can also

induce oxidative stress in S. costatum, P. tricornutum, A. minutum,

and D. salina (Liu et al., 2020b; Zhang et al., 2022; Zhao et al., 2017).

Zhao et al (2020, 2019b). reported that 25 mg/L BDE-47 induced T.

pseudonana cell cycle arrest and cell apoptosis, and excessive

reactive oxygen species (ROS) were the mediating factors. In

addition, Zhao et al. (2019a) specifically focused on the effects of

PBDEs on the movement of marine microalgae and found that

exposure to three PBDEs, BDE-47, BDE-99, and BDE-153, changed

the proportions and swimming speeds of movement cells in

Platymonas subcordiformis and changed their swimming mode.

The severity of the negative effects of the three PBDEs on the

movement of P. subcordiformis were in the order BDE-47>BDE-

99>BDE-153. The above studies indicated that the toxic effect of

PBDEs on marine phytoplankton was mainly the inhibition of their

population growth and photosynthesis.

PBDEs can exert a variety of toxic effects on marine zooplankton

rotifers. Multiple studies have reported that BDE-47 exposure inhibits

the growth, reproductive ability, and exercise ability of Brachionus

plicatilis and Brachionus koreanus, changes the activity of the

antioxidant system, and induces oxidative stress. The inhibition of

population growth and reproductive ability specifically manifests as a

decrease in age-specific survival, the intrinsic rate of increase, the finite

rate of increase, life expectancy, generation time, age-specific fecundity,

and the net reproductive rate of the two rotifers (Park et al., 2017; Sha

et al., 2015b; Wang et al., 2015). The effect on the antioxidant system in

B. plicatilis specifically manifests as an increase in the activity of

antioxidant enzymes such as glutathione reductase, glutathione

peroxidase, superoxide dismutase, catalase, and peroxidase when

exposed to lower BDE-47 concentrations (8 and 80 mg/L), whereas
activity was inhibited at higher concentrations (800 and 8000 mg/L)
(Jian et al., 2017; Sha et al., 2022; Wang et al., 2015). The activities of

glutathione S-transferase and glutathione reductase in B. koreanus

increased after exposure to BDE-47 at 10, 25, and 50 mg/L (Park et al.,

2017). However, none of these changes in the antioxidant system were

sufficient to offset BDE-47-induced oxidative stress. In addition, BDE-

47 has been observed to inhibit food intake and digestion by B. plicatilis
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(Yang et al., 2021). Notably, BDE-209 was less toxic than BDE-47

against rotifers at the same concentration (Sha et al., 2022, 2015a,

2015b). Moreover, BDE-47 can also cause growth inhibition and

oxidative stress in the copepod zooplankton Tigriopus japonicus

(Han et al., 2015). Cao et al. (2023) and Wang et al. (2021a) studied

the toxicity effects of PBDEs on marine zooplankton at the molecular

level and investigated the related molecular mechanisms. BDE-47

induced disorders of nucleotide synthesis and degradation in B.

plicatilis. The changes in the activities of glutamine synthase and

xanthine oxidase led to the overproduction of ROS, which in turn

caused oxidative DNA damage and activated the p53 signaling

pathway to induce apoptosis (Cao et al., 2023). Moreover, excessive

ROS damaged the mitochondria of the ovary and directly activated the

mitochondrial pathway of cell apoptosis. This may be the mechanism

of the reproductive toxicity of BDE-47 to rotifers (Wang et al., 2021a).

Studies on the toxicity of PBDEs to marine benthic organisms

have focused mainly on benthic bivalve molluscs. Hemocytes are

the main contributors to the immune function of bivalve molluscs,

and PBDEs can have a negative effect on the hemocytes of bivalve

molluscs, resulting in immunotoxicity. For example, BDE-47 causes

increased mortality, a decreased proportion of granulosa cells,

decreased phagocytic activity, increased lysosomal membrane

permeability, and changes in the activity of the antioxidant

system and oxidative stress in Ruditapes philippinarum and

Mytilus edulis (Jiang et al., 2017a, 2017b; Zhou and Liu, 2022).

BDE-209 caused reduced phagocytic activity and DNA damage in

hemocytes of Chlamys farreri (Xia et al., 2020). Second, PBDEs can

induce reproductive toxicity in bivalve molluscs. Liu et al. (2017)

found that BDE-47 exposure at 0.1 and 1 mg/L led to decreased

testosterone levels and increased expression of vitellogenin and

spermatogenesis-related proteins in R. philippinarum. Po and Chiu

(2018) reported that BDE-47 at 1 and 10 mg/L led to a reduced

fertilization rate, delayed sexual maturation, and blocked embryonic

development in Crepidula onyx. In addition, PBDEs affect the

feeding and digestion functions of bivalve molluscs. BDE-47 can

cause structural damage to the digestive glands ofM. edulis,Mytilus

galloprovincialis, and Mactra veneriformis and reduce digestive

enzyme activity and the filter-feeding rate of M. edulis, along with

a shift in the energy supply mode from aerobic respiration to

anaerobic respiration (Dong et al., 2019; Jiang et al., 2021, 2023;

Messina et al., 2020). BDE-209 can also cause gastrointestinal gland

damage in C. farreri andM. veneriformis (Xia et al., 2020; Zhu et al.,

2019). Gu et al. (2023) innovatively focused on the effects of PBDEs

on the fixation ability of bivalve molluscs and found that M. edulis

exposed to BDE-47 had fewer foot filaments and reduced adhesion.

In addition to bivalve molluscs, PBDEs also have toxic effects on

echinoderms. Ding et al. (2023) found that BDE-47 induced

disorders of sterol hormone balance, nucleotide metabolism, and

energy metabolism in the sea cucumber Apostichopus japonicus,

affecting the levels of neurotransmitters and resulting in impaired

neuroprotection. The above studies suggested that PBDEs have

varying degrees of negative effects on the feeding, metabolism,

reproduction, and immunity of marine benthic organisms.

Studies on PBDE toxicity in marine nekton have focused mainly

on fish and mammals, organisms with well-developed organs and
frontiersin.org
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TABLE 2 Toxic effects of PBDEs on marine organisms.

Biological Exposure
ffect References

thesis inhibition; oxidative stress
Zhang et al., 2022

thesis inhibition; cell cycle arrest;
Zhao et al., 2020, 2019b

thesis inhibition; oxidative stress;
Liu et al., 2020b

uced swimming speed and change
Zhao et al., 2019a

thesis inhibition; oxidative stress;
Zhao et al., 2017

nt inhibition; decreased oviposition
xidant enzymes and detoxification
roxidation; DNA damage;

Sha et al., 2022, 2015a, 2015b; Jian
et al., 2017; Wang et al., 2015, 2021a

ders of nucleotide synthesis and
utamine synthetase; increased
age to DNA; activation of p53

Cao et al., 2023

Yang et al., 2021

nges in the expression of
ptosis-related genes

Han et al., 2015

d life cycle; decreased net
ant system; MAPK activation

Park et al., 2017

expression of vitellogenin and
Liu et al., 2017

d viability, decreased phagocytic
permeability, destruction of
decreased MAPK

Zhou and Liu, 2022

al maturity; embryonic
Po and Chiu, 2018

d phagocytic activity, increased
nges in antioxidant enzyme
tivation; impaired immune
uction of feeding and digestion;

Gu et al., 2023; Jiang et al., 2017a,
2017b, 2021, 2023
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Phytoplankton

Skeletonema costatum BDE-47 50, 100, 200, 400, 600 mg/L
Population growth inhibition; photosy
and oxidative damage

Thalassiosira pseudonana BDE-47 5, 15, 25 mg/L
Population growth inhibition; photosy
cell apoptosis

Phaeodactylum tricornutum BDE-47 800, 4000 mg/L
Population growth inhibition; photosy
electron transport obstruction

Platymonas subcordiformis
BDE-47
BDE-99 BDE-153

0.5, 1, 2, 4, 8, 16, 32 mg/L
Reduced proportion of motor cells; red
in swimming pattern

Alexandrium minutum
Dunaliella salina

BDE-47 100, 500, 1000 mg/L
Population growth inhibition; photosy
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TABLE 2 Continued

Biological Exposure
Toxic effect References

changes in energy supply patterns, changes from aerobic respiration to
anaerobic respiration; filaments decrease; adhesion decreases

Digestive gland injury, decreased expression of antioxidant, cell
proliferation, drug resistance, decreased xenobiotic detoxification
related genes

Messina et al., 2020

Decreased phagocytic activity of hemocytes, DNA damage, damage to
digestive gland cells

Xia et al., 2020

Oxidative damage of digestive glands, reduced expression and activity of
antioxidant enzymes

Dong et al., 2019; Zhu et al., 2019

Steroid hormone balance, nucleotide metabolism and energy metabolism
disorders; changes in neurotransmitter levels; impaired neuroprotection

Ding et al., 2023

Changes in neurotransmitter levels; amino acid metabolism disorders Lei et al., 2017

Downregulation of sperm production-related proteins; upregulation of the
expression of vitellin and lipoproteins

Fong et al., 2014

Embryo death and malformation Mhadhbi et al., 2012

Oxidative stress in fibroblasts; changes in the expression of proteins
related to cell cycle, proliferation, energy balance, and oxidative stress

Ruiz et al., 2019

Lower awareness of a threat situation; increased activity; less time spent
within the shoal; reversed lateralization

Dias et al., 2023

Upregulation of inflammatory factors and prostaglandins in fibroblasts,
oxidative stress, decrease in mitochondrial membrane potential, and
mitochondrial damage

Rajput et al., 2021; Ying et al., 2020

Decreased phagocytic activity of peripheral blood leukocytes, oxidative
stress, and decreased thiol levels

Frouin et al., 2010
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group
Species name PBDEs

concentration

Mytilus galloprovincialis BDE-47
0.001, 0.01, 0.1 mg/L
Dietary exposure

Chlamys farreri BDE-209 0.01, 0.1 mg/L

Mactra veneriformis
BDE-47
BDE-209

0.1, 1, 10 mg/L

Apostichopus japonicus BDE-47 0.1, 1, 10 mg/L

Nektonic
organism

Oryzias melastigma BDE-47 2500, 5000 mg/kg

O. melastigma BDE-47
0.65, 1.30 mg/g
Dietary exposure

Psetta maxima
BDE-47
BDE-99

0.3-300 mg/L

Sparus aurata BDE-209
0.25, 0.5, 0.75, 1, 2 µM
In vitro exposure

Diplodus sargus BDE-209
60000 µg/g
Dietary exposure

Stenella attenuate
BDE-47
BDE-100 BDE-209

0.1-1 mg/mL
In vitro exposure

Phoca vitulina
BDE-47
BDE-99
BDE-153

1.5, 3, 6, 12 mM
In vitro exposure
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systems. Lei et al. (2017) and Fong et al. (2014) used metabolomics

and proteomics techniques to investigate the toxic effects of BDE-47

on the marine ecotoxicology model organism Oryzias melastigma

and found that BDE-47 induced metabolic disorders related to its

neurotransmitters and amino acids and altered the expression of the

sperm production proteins vitellin and lipoproteins. Mhadhbi et al.

(2012) reported that both BDE-47 and BDE-99 had lethal and

teratogenic effects on Psetta maxima embryos, but BDE-47 was

more toxic than BDE-99 at the same concentration. Through

dietary exposure experiments, Dias et al. (2023) found that BDE-

209 at 60 ng/g induced behavioral changes in Diplodus sargus,

including lower awareness of threat situations, increased activity,

less time spent within the shoal, and reversed lateralization. Due to

the large size of some marine fish and mammals and the limitation

of species protection, in vitro experiments are used for studies of

PBDE toxicity in these organisms. Ruiz et al. (2019) found that

although in vitro exposure to 0.25–2 mM BDE-209 did not affect the

viability of Sparus aurata fibroblasts, it induced oxidative stress and

induced changes in the expression of proteins related to the cell

cycle, proliferation, energy balance, and oxidative stress. In vitro

studies of PBDE toxicity in two marine mammals have been

reported. An in vitro toxicology study by Rajput et al. (2021)

showed that BDE-47, BDE-100 and BDE-209 induced ROS

overproduction in the fibroblasts of Stenella attenuata and further

mediated a decrease in the mitochondrial membrane potential and

damage to the mitochondrial structure but did not significantly

affect cell viability. Among the three PBDEs, only BDE-47 and

BDE-209 further upregulated the expression of proapoptotic genes

and proteins in S. attenuate fibroblasts. Ying et al. (2020)

investigated the toxicity of PBDEs on S. attenuate fibroblasts

from the perspective of the immune system and demonstrated

that BDE-47 and BDE-209 induce cellular inflammation through

the activation of the prostaglandin pathway, thereby impairing the

innate immunity of dolphins; however, BDE-100 did not exhibit

this effect. These two studies suggested that BDE-100 was less toxic

to S. attenuate fibroblasts than were BDE-47 and BDE-209.

Additionally, Frouin et al. (2010) found that in vitro exposure to

BDE-47, BDE-99, and BDE-153 led to a decrease in the phagocytic

activity of peripheral blood leukocytes and decreases in oxidative

stress and thiol levels in Phoca vitulina but did not induce

cell apoptosis.
2.2 HBCD

HBCD have been banned and phased out worldwide, and few

studies have investigated their marine toxicity (Table 3). Two types

of marine zooplankton were reported to be sensitive to HBCD.

Under exposure to HBCD at 50–600 mg/L, B. plicatilis exhibited
toxic phenomena such as slower population growth, prolonged

oviposition and larval hatching, reduced body length, shortened

survival of individuals, ROS over production, oxidative stress, and

cell apoptosis (Lu et al., 2024). After exposure to 8–800 mg/L HBCD

in T. japonicus, growth delay and oxidative stress occurred, and the

expression of apoptosis-related genes was activated (Hong et al.,
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2017; Shi et al., 2017). Since industrially produced HBCD are a

mixture of three diastereomers (i.e., a-, b-, and g-HBCD), Hong

et al. (2017) examined the toxicity of each HBCD independently

and showed that the three HBCD had similar toxicity in T.

japonicus, but the ability of a- and b-HBCD to induce oxidative

stress was greater than that of g-HBCD. The toxicity of these HBCD

to marine organisms is similar to the toxicity of PBDEs to the same

species, but the required concentration of HBCD is generally higher

than that of PBDEs.

For marine benthic organisms, Smolarz and Berger (2009) were

the first to show that exposure to HBCD at 100 and 250 mg/L led to

increased mortality of gill cells and micronuclei in the nuclei with

malfunction of ribosomal genes of the bivalve mollusk Macoma

balthica. Zhang et al. (2014) demonstrated that lower doses of

HBCD (0.086–8.6 mg/L) also increased antioxidant enzyme

activities, oxidative stress, and DNA damage in the gills and

digestive glands of Venerupis philippinarum. In addition,

Anselmo et al. (2011) showed that HBCD produced teratogenicity

and delayed the development of sea urchin Psammechinus miliaris

larvae. Park and Kwak (2022) recently showed that HBCD induced

an increase in the expression levels of catalase and p53 in the gills

and hepatopancreas of the crab Macrophthalmus japonicus.

For marine nektonic organism, Hong et al (2014, 2015). found

that HBCD produced toxicity in O. melastigma embryos, which

manifested as a rapid heartbeat and increased distance between

venous and arterial bulbs in the embryos when exposed to HBCD at

5–200 mg/L, induced DNA oxidative damage, and cell apoptosis in

the embryonic myocardium. Molecular studies showed that HBCD

inhibited nucleic acid and protein synthesis in O. melastigma

embryos. Together, these negative effects lead to embryonic

malformations and developmental toxicity in O. melastigma,

especially in the cardiovascular system. In addition, Yu et al.

(2023a) investigated the toxicity of HBCD to the hepatopancreas

using the shrimp Litopenaeus vannamei as the test organism and

found that exposure to 2.1 mg/L HBCD caused oxidative damage

and structural damage in the hepatopancreas of L. vannamei and

that the levels of pathological markers increased, which in turn led

to metabolic disorders and destruction of the detoxification

function of the hepatopancreas. In general, the toxic effects of

HBCD on marine organisms are similar to those of PBDEs,

including the induction of oxidative stress, tissue structure

damage, and metabolic disorders, resulting in growth inhibition,

reproductive inhibition, and organ damage.
2.3 TBBPA

TBBPA is the only traditional BFR still in extensive use, and

studies on its toxicity to marine organisms are continuing to be

conducted. To date, many reports on the toxicity of TBBPA tomarine

benthic organisms have been published, but there are few studies on

other organisms (Table 4). Hu et al (2015a, 2015b). demonstrated

that TBBPA at 400 mg/L produced toxicity to both the digestive

glands and gills of the clam C. farreri, including the induction of stress

responses in the digestive glands and the inhibition of the expression
frontiersin.org
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TABLE 3 Toxic effects of HBCD on marine organisms.

Biological Species
ion Toxic effect References

Growth and developmental delay; activation of oxidative stress and apoptosis-related gene expression
Hong et al., 2017;
Shi et al., 2017

Population growth inhibition; prolonged egg laying and larval hatching time; individual morphological changes with
reduced body length; shortened survival time of individuals; ROS overproduction; oxidative stress; cell apoptosis

Lu et al., 2024

Increased gill cell mortality, nuclear abnormality and micronucleus phenomenon, malfunction of ribosomal genes
Smolarz and
Berger, 2009

Increased antioxidant enzyme activities, oxidative stress and DNA damage in gills and digestive glands Zhang et al., 2014

Abnormal larval morphology and developmental delay Anselmo et al., 2011

Increased expression of catalase and p53 genes in the gills and hepatopancreas
Park and
Kwak, 2022

Hepatopancreas tissue damage, changes in antioxidant enzyme levels/activity, oxidative damage; increased liver
lesion markers; metabolic disorders; destroyed detoxification function

Yu et al., 2023a

Increased heartbeat and increased sinus-arterial bulb distance in the embryo; embryo malformation, DNA oxidative
damage, cell apoptosis, inhibition of nucleic acid and protein synthesis

Hong et al.,
2014, 2015
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group name
Exposure concentrat

Zooplankton

T. japonicus 8, 30, 80, 300, 800 mg/L

B. Plicatilis 50, 100, 300, 500, 600 mg/L

Benthic
organisms

Macoma balthica 100, 250 mg/L

Venerupis
philippinarum

0.086, 0.86, 8.6 mg/L

Psammechinus
miliaris

0.009, 0.025, 0.05, 0.1 mM

Macrophthalmus
japonicus

1, 10, 100 mg/L

Nektonic
organism

Litopenaeus
vannamei

2.1 mg/L

O. melastigma 5, 20, 50, 200 mg/L
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of genes involved in thyroxine biosynthesis, while inducing the

inhibition of the detoxification system, the activation of the

antioxidant system, and oxidative stress in both the digestive glands

and gills. Organisms of the genus Mytilus are widely used in TBBPA

marine organism toxicity assessment. Canesi et al. (2005) were the

first to show through in vitro exposure experiments that 1–25 mM
TBBPA destabilized the lysosomal membrane of M. galloprovincialis

and that the bactericidal activity of hemocytes, release of lysosomal

enzymes, phagocytic activity, and extracellular superoxide levels all

increased. This finding was essentially consistent with the toxic effects

of PBDEs on mussel hemocytes. Ji et al. (2014) subsequently used

proteomics approaches to identify changes in protein expression in

the hepatopancreas of M. galloprovincialis exposed to 18.4 nM

TBBPA. The results suggested that TBBPA induced apoptosis,

oxidative stress, immune stress, and energy stress in

hepatopancreas cells. Disruption of metabolism leads to disorders

of hepatopancreatic cell development and lipid and protein

metabolism. Moreover, they found that TBBPA also induced

reproductive toxicity and destruction of muscle contraction in M.

galloprovincialis. Recent studies have shown that TBBPA has

reproductive toxicity and endocrine cardiotoxicity in mussels.

Reproductive toxicity includes promoting gametogenesis, altering

vertebrate sex hormones, promoting steroid sulfonation and

hydrolysis of sulfate steroids, and disrupting steroidogenesis (Wang

et al., 2021b, 2023b). Cardiac endocrine toxicity includes heart tissue

hemocytes infiltration and myocardial fibrosis, bradyarrhythmia, and

arrhythmia; decreased levels of cardiac neurotransmitters; increased

levels of acetylcholine; increased acetylcholinesterase activity;

imbalanced calcium homeostasis; limited energy supply; and

oxidative stress (Yu et al., 2023b). In addition, a recent study by

Copeto et al. (2024) suggested that TBBPA induced the activation of

detoxification and antioxidant systems and oxidative stress in M.

galloprovincialis individuals. In addition to bivalve molluscs, Anselmo

et al. (2011) found that TBBPA at 150–1500 nM caused

morphological abnormalities and developmental delays in sea

urchin P. miliaris larvae; this author observed the same degree of

toxicity for HBCD to P. militaris larvae.

In terms of other marine taxa, Debenest et al (2010, 2011).

found that TBBPA exposure at 1.8–16.5 mM reduced the growth

rate and cell viability of three marine phytoplankton species,

Pseudokirchnerie l la subcapitata , Nitzschia palea , and

Chlamydomonas reinhardtii. Gong et al. (2017) found that 0.18–

18 mg/L TBBPA delayed the growth of the marine zooplankton

Pseudodiaptomus inopinus. The time for development from nauplii

to copepods and the developmental success rate were reduced,

whereas the developmental rate of nauplii decreased continuously

for two consecutive generations. Ye et al. (2016) examined the

effects of TBBPA on O. melastigma with respect to embryo toxicity

and reported that, under exposure to 50–800 mg/L TBBPA, the

synthesis of nucleosides, amino acids, and lipids in embryos was

reduced, and the tricarboxylic acid (TCA) cycle, glycolysis, and lipid

metabolism were disrupted, resulting in embryonic developmental

delay. Moreover, endocrine toxicity in the embryo manifested as

increased dopamine levels, decreased levels of inhibitory

neurotransmitters, enhanced neural activity, lactic acid
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accumulation, and increased heart rate. Through an in vitro

exposure study, von Krogh et al. (2019) observed that TBBPA at

1–10,000 nM reduced the integrity of the pituitary cell membrane,

decreased metabolic activity, and decreased the expression of

gonadotropin-related genes in Gadus morhua. These studies on

the toxicity of TBBPA to marine benthic organisms are

comprehensive: TBBPA exhibits growth and developmental

toxicity and produces reproductive and endocrine toxicity in

nektonic organism.
2.4 NBFRs

Unlike the understanding of the toxicity of various NBFRs to

terrestrial and freshwater organisms, there are few reports on the

toxicity of NBFRs to marine organisms.

Taking DBDPE, the novel brominated flame retardant (NBFR)

with the most residues in the marine environment, as an example,

only one paper has reported its reproductive endocrine disruption

effects on the marine bivalve mollusk M. galloprovincialis.

Specifically, the study revealed that exposure to 1–500 mg/L
DBDPE promoted gametogenesis in mussels, suppressed the

expression of cholesterol homeostasis- and transport-related

genes, and disrupted nongenomic signaling pathways through

dysregulation of associated genes (Wang et al., 2023c). The

DBDPE-induced energy metabolism dysfunction in male mussels

is considered the cause of the disturbance of the reproductive

endocrine system (Wang et al., 2023c). No other reports on the

toxic effects of NBFRs on marine organisms were found through

searches using the keywords used in this paper.
3 Toxic mechanism of BFRs on marine
organisms

Some studies on the toxicity mechanisms of BFRs on marine

organisms have been conducted. Studies on the mechanisms are

carried out at the tissue and cellular levels, and the results are

mainly explained from a biochemical perspective. The existing

research indicates that the induction of ROS overproduction,

which leads to oxidative stress or oxidative damage, is a universal

toxicity mechanism of BFRs on marine organisms (Cao et al., 2023;

Lu et al., 2024). This mechanism specifically manifested as BFR

exposure induces the overproduction of ROS and changes in the

antioxidant systems of marine organisms (Zhang et al., 2022; Yu

et al., 2023a). When the antioxidant system cannot remove

excessive ROS, intracellular oxidative damage, including damage

to DNA and the membrane structure, occurs (Jiang et al., 2017b;

Zhu et al., 2019). This injury activates the expression of genes and

proteins in signaling pathways such as the tumor suppressor protein

p53 and mitogen-activated protein kinase (MAPK), thereby

initiating cell apoptosis (Park et al., 2017; Park and Kwak, 2022;

Wang et al., 2021a) (Figure 1). Excessive cell apoptosis or necrosis

leads to destruction of the structure of biological tissues, thus

affecting various life activities (Yu et al., 2023b). In addition,
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BFRs have been reported many times to induce metabolic disorders

of carbohydrate, amino acids, lipids, and nucleosides in marine

organisms (Ding et al., 2023; Lei et al., 2017) (Figure 1). These

negative effects destroy the production of energy or other

substances essential for life activities, resulting in toxic effects

(Jiang et al., 2023). However, these mechanism studies lack

initiating events at the molecular level to provide a complete

evidence chain of the toxicity mechanisms of BFRs on marine
Frontiers in Marine Science 10
organisms (adverse outcome pathway, AOP) and fail to meet the

needs of marine ecological risk assessments for BFRs. For example,

the specific mechanisms by which BFRs induce ROS

overproduction and disrupt energy metabolism remain unclear.

Pereira et al (2013, 2014). used a mouse mitochondrial model and

found that lipophilic BDE-100 and BDE-154 can insert into the

lipophilic gap between the inner and outer membranes of the

mitochondria, interfere with the fluidity of the mitochondrial
TABLE 4 Toxic effects of TBBPA on marine organisms.

Biological
group

Species name Exposure concentration Toxic effect References

Phytoplankton
Pseudokirchneriella subcapitata
Nitzschia palea
Chlamydomonas reinhardtii

1.8, 4.8, 9.2, 12.9, 16.5 mM Reduced growth rate; reduced cell viability
Debenest et al.,
2010, 2011

Zooplankton Pseudodiaptomus inopinus 0.18, 1.8, 18 mg/L

Delay of the developmental time from nauplius to
copepodite; reduced successful rate of development;
continuously decreased naupliar developmental rate in
two successive generations

Gong
et al., 2017

Benthic
organisms

C. farreri 400 mg/L

Changes in gene expression related to digestive gland
stress response, detoxification, antioxidation, and innate
immunity; inhibition of the expression of genes involved
in thyroxine biosynthesis; inhibition of detoxification
system of gills and digestive glands, activation of
antioxidant system, oxidative stress

Hu et al.,
2015a, 2015b

P. miliaris 0.15, 0.5, 0.1, 1.5 mM Abnormal larval morphology and developmental delay
Anselmo
et al., 2011

R. philippinarum 62.5, 125, 250, 500, 1000 mg/L
Inhibition of shell growth; reduced filter-feeding rate;
increased insulin and thyroid hormone levels

Jiang
et al., 2019

M. galloprovincialis 1, 10, 100 mg/L
Activation of detoxification system; activation of
antioxidant system; oxidative stress

Copeto
et al., 2024

M. galloprovincialis 0.0184 mM

Hepatopancreatic cell apoptosis, oxidative and immune
stress, disruption of energy metabolism, developmental
processes, lipid and protein metabolic disorders;
reproductive toxicity and destruction of
muscle contraction

Ji et al., 2014

M. galloprovincialis 0.6, 3, 15, 75, 375 mg/L
Promotion of gametogenesis; alteration in vertebrate sex
hormones; promotion of steroid sulfonation and
hydrolysis of sulfate steroids; disruption of steroidogenesis

Wang et al.,
2021b, 2023b

M. galloprovincialis
1, 5, 25 mM
In vitro exposure

Lysosomal membrane instability of hemocytes, MAPK
phosphorylation; increased blood cell bactericidal activity,
lysosomal enzyme release, phagocytic activity, and
extracellular superoxide levels

Canesi
et al., 2005

Mytilus coruscus 1 mg/L

Heart tissue hemocytes infiltration and myocardial
fibrosis; bradyarrhythmia and arrhythmia; decreased heart
neurotransmitter levels, increased acetylcholine levels,
increased acetylcholinesterase activity, imbalance of
calcium ion homeostasis, limited energy supply,
oxidative stress

Yu et al., 2023b

Nektonic
organism

Gadus morhua
0.001-10 mM
In vitro exposure

Reduced integrity of pituitary cell membranes; reduced
metabolic activity; reduced gene expression of
gonadotropin subunits and gonadotropin-releasing
hormone receptors

von Krogh
et al., 2019

O. melastigma 50, 200, 800 mg/L

Decreased nucleoside, amino acid, and lipid synthesis in
the embryo, disruption of the TCA cycle, glycolysis, and
lipid metabolism; embryonic developmental inhibition;
increased embryonic dopamine levels, decreased
inhibitory neurotransmitter levels, enhanced neural
activity, lactic acid accumulation, and rapid heart rate

Ye et al., 2016
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membrane, and lead to mitochondrial membrane permeabilization

and mitochondrial membrane potential dissipation. These impacts

in turn inhibits oxidative phosphorylation, resulting in reduced

ATP production and ROS overproduction. However, whether other

BFRs follow this mechanism and whether this mechanism is

effective in marine organisms remain unclear.
4 Regulatory policy of BFRs

PBDEs were among the earliest BFRs to be restricted in

production and use. Internationally, commercial penta-BDE (a

mixture of BDE-47/99/100/153) and octa-BDE (a mixture of

BDE-153/183/196/197/207) were listed in Annex A (Elimination)

of the Stockholm Convention on POPs in 2009, prohibiting their
Frontiers in Marine Science 11
production and use in state parties (UNEP, 2009). Commercial

deca-BDE was added to Stockholm Convention in 2017 but granted

exemptions for continued use until 2023 (UNEP, 2017). Earlier

regulatory actions of PBDEs emerged in Europe and North

America. The Restriction of Hazardous Substances (RoHS)

implemented by European Union in 2003 restricted penta-/octa-

BDE concentrations to ≤ 0.1% (w/w) in products (EU, 2003), while

deca-BDE was subsequently regulated under the Registration,

Evaluation, Authorization and Restriction of Chemicals (REACH)

in 2017 with identical concentration limits (EU, 2017). In the

United States, manufacturers voluntarily discontinued penta-/

octa-BDE production through an agreement with the

Environmental Protection Agency in 2004 (USEPA, 2004),

whereas deca-BDE production formally prohibited in 2021

(USEPA, 2021). Canada’s Polybrominated Diphenyl Ethers
URE 1FIG

Toxicity mechanism of BFRs in marine organisms. The dashed lines represent presumed toxic effects.
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Regulations (2008) instituted a comprehensive ban on all PBDE

congeners except deca-BDE, which maintains exemptions for

specific automotive and aerospace components (Canadian

Parliament, 2008). Within the Asia-Pacific region, China fulfills

Stockholm Convention obligations by phasing out PBDEs and

listing deca-BDE in the List of Key Controlled New Pollutants,

prohibiting its production and processing except for limited

exemptions expiring December 2023 (State Council of China,

2023). Japan’s Chemical Substances Control Law imposed 0.1%

concentration thresholds for penta-/octa-BDE in products in 2014

(MHLW of Japan, 2014), while South Korea established equivalent

restrictions for deca-BDE (Ministry of Environment of South

Korea, 2015). Contrastingly, penta-/octa-BDE remain exempted

in several nations including India, Brazil, and Turkey, whereas

deca-BDE retains global exemptions in most nations until 2036

(Sharkey et al., 2020).

HBCD was formally listed in the Stockholm Convention in

2013, with a specific exemption for flame-retardant applications in

expanded polystyrene (EPS) and extruded polystyrene (XPS)

building materials until 2021 (UNEP, 2013). China implemented

pioneering compliance by enacting a comprehensive ban on HBCD

production and use in 2016, achieving full phase-out in EPS/XPS

industries by 2021 alongside dismantling domestic HBCD

production facilities (Jiang et al., 2017c). The European Union

similarly regulated HBCD through POPs Regulation (EU) 2016/293

in 2016, establishing a threshold limit of 100 mg/kg in products

(0.01% w/w) (EU, 2016). This was subsequently strengthened by

amendment (EU) 2024/1555 in 2024, reducing the permissible

concentration to 75 mg/kg (0.0075% w/w) (EU, 2024a). Canada

prohibited HBCD in building foams in 2017 and implemented a

comprehensive ban on manufacturing, sale, use, and import in 2024

(Canadian Parliament, 2017, 2024). In contrast, the United States

maintains no federal prohibition under the Toxic Substances

Control Act, though selected states (e.g., Maine and Connecticut)

designate HBCD as priority-controlled substances restricting its use

in children’s products (Negev et al., 2018).

TBBPA has not been listed in the Stockholm Convention and

remained excluded from the RoHS following repeated controversies

in the European Union. Between 2018 and 2024, the European

Commission initiated the RoHS Evaluation Project Pack 15 to

assess TBBPA and related substances. In 2022, a proposal to

include TBBPA in the RoHS was advanced but subsequently

suspended. Ultimately, the European Union officially announced

the decision to abandon the inclusion of TBBPA in the RoHS in

December 2024 (EU, 2024b). Similarly, major Asian jurisdictions

including China, Japan, and South Korea have not incorporated

TBBPA into their mandatory restriction lists. Notably, the United

States classified TBBPA as an unauthorized food contact material

additive under Section 402(a)(2)(C)(i) of the Federal Food, Drug,

and Cosmetic Act, prohibiting its application in food packaging,

kitchen appliances, and related products (USFDA, 2024). However,

the utilization of TBBPA in other application areas remains

unrestricted in the United States. Current regulatory frameworks

demonstrate that TBBPA remains exempt from comprehensive
Frontiers in Marine Science 12
legal restrictions and continues to be widely utilized in

global industrial.

HBB was initially designed as a substitute for PBDEs. However,

due to the POPs characteristic shown in the process of application,

HBB was formally listed in Annex A (Elimination) of the Stockholm

Convention in 2009 for global elimination without any specific

exemptions (UNEP, 2009). In contrast, other NBFRs remain under

intensive scientific scrutiny and toxicological evaluation, with no

comprehensive national or regional regulations currently enacted to

restrict their manufacturing or application.
5 Conclusions and further research

Due to the complexity and diversity of marine organisms and

their evolutionary status, the toxic effects of BFRs on different

marine organisms are somewhat similar but with important

differences. BFRs significantly impair marine plankton

populations by inhibiting their growth, development, and

reproduction. These chemicals disrupt zooplankton mobility and

feeding capabilities while suppressing photosynthetic activity in

phytoplankton. Marine benthic organisms, particularly bivalve

molluscs, experience a range of adverse effects from BFRs

exposure, including developmental, reproductive, immunological,

and neurotoxic impairments. Similarly, nekton fishes exhibit

compromised growth patterns, reproductive dysfunction, and

metabolic disturbances when exposed to these persistent

pollutants. Though direct evidence from marine mammals

remains limited to in vitro studies, experimental data confirm

BFRs’ cytotoxic potential in mammalian systems, highlighting

ecological risks across marine trophic levels. Notably, this

summary involves only three traditional BFRs and does not assess

the toxicity of NBFRs. In fact, there are very few studies on the

toxicity of NBFRs to marine organisms. The existing research data

have shown that the toxicity of the three traditional BFRs to marine

organisms is similar. For NBFRs to become suitable substitutes, they

need to be demonstrated to be less toxic than traditional BFRs.

Therefore, we first suggest that a comprehensive marine organism

toxicity study should be carried out as soon as possible on NBFRs

present at high levels in the marine environment, such as DBDPE,

and that the toxicity level should be comprehensively compared

with that of traditional BFRs to provide theoretical support for the

production, application, and discharge management of NBFRs.

Furthermore, due to the lack of molecular-level understanding of

the toxicity mechanisms of BFRs in marine organisms,

comprehensive AOPs have yet to be established. We therefore

recommend that future studies employ modern molecular biology

techniques, such as gene editing (CRISPR-Cas9) and gene silencing

(RNAi), to investigate the molecular initiation events of BFR

toxicity, focusing on their cellular uptake mechanisms and

interactions with DNA or associated proteins. Such holistic,

chain-linked investigations into BFR toxicity mechanisms will

address current research gaps and facilitate the development of

AOPs for marine organism. These works will be critical to meet
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global demands for ecological risk assessment of BFRs, thereby

informing legislative actions to restrict their production and

environmental release.

Among traditional BFRs, PBDEs and HBCD have been

prohibited from production and use in the vast majority of

countries worldwide due to their environmental persistence, bio-

accumulative and high toxicity. TBBPA remains under ongoing

evaluation regarding its toxicological profile, with no definitive

regulations currently imposed on its application. Within the

category of NBFRs, HBB stands as the only compound that has

been phased out globally, while the environmental and health risks

associated with other NBFRs remain under scientific assessment,

and none have yet been subjected to prohibition in any national or

regional jurisdictions. Although a preliminary global regulatory

framework for BFRs has been established, significant deficiencies

persist. First, regional discrepancies in restricted BFR lists and

threshold standards remain pronounced. For instance, regulatory

misalignment exists between the Stockholm Convention and

regional standards in the European Union, North America, and

certain developing economies. Such inconsistencies may exacerbate

risks including regulatory loopholes, regulatory arbitrage, and

transboundary pollution. Second, fragmented life-cycle

management of BFR-containing products undermines regulatory

efficacy. Existing regulations predominantly focus on restricting

BFRs production and usage, while oversight of end-of-life disposal

and recycling remains inadequate, particularly in developing

nations where illegal dismantling, informal recycling, and open

incineration practices persist. Third, NBFRs suffer from insufficient

data on environmental behavior and toxicological profiles. This

knowledge gap has resulted in regulatory frameworks lagging

behind industrial advancements, potentially triggering a

“substitution-induced pollution” crisis. To address these

challenges, the following recommendations are proposed, along

with their anticipated benefits:
Fron
1. Establish an international collaborative governance system.

Benefit: Harmonizing global BFR restriction lists and

threshold criteria under platforms like the WHO and

UNEP would minimize regulatory arbitrage and

transboundary pollution. Unified standards would

prevent jurisdictional loopholes, ensuring consistent

enforcement across regions and reducing the risk of

“pollution havens” in less-regulated economies.

2. Strengthen life-cycle risk management. Benefit :

Implementing blockchain-based traceability and IoT

moni tor ing across the BFR product l i f ecyc le

(“production-usage-disposal-recycling”) would enhance

transparency and accountability. This system would deter

illegal disposal practices (e.g., e-waste dumping) and

improve compliance in waste treatment, thereby reducing

environmental leakage and long-term ecological risks.

3. Accelerate risk assessment of NBFRs. Benefit: Mandating

pre-market ecotoxicological screening for NBFRs and

establishing early-warning mechanisms would prevent a

“substitution-induced pollution” crisis. By proactively
tiers in Marine Science 13
identifying high-risk alternatives, policymakers can

enforce timely restrictions, avoiding the environmental

persistence and toxicity issues observed with traditional

BFRs like PBDEs and HBCD.
These recommendations aim to bridge existing regulatory gaps,

align scientific advancements with policy actions, and foster sustainable

management of flame retardants to safeguard marine ecosystems.
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