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Unravelling the enigma of
discontinuous sedimentary
deposits in cold-water coral
mounds in the Atlantic Ocean
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1Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany,
2Department of Geosciences, University of Bremen, Bremen, Germany
Cold-water coral mounds are common along the continental margins of the

Atlantic Ocean. They are formed by coral growth and sediment accumulation and

consist of coral fragments embedded in hemipelagic sediments. Coral mounds are

expected to provide high-resolution palaeo-records due to their elevated

morphology. However, most sediment cores from coral mounds exhibit

significant hiatuses (stratigraphic gaps), often spanning more than 100 kyr,

raising questions about the fate of deposits formed during these periods. Three

processes behind the hiatuses are critically reviewed: gravity-induced mass

wasting, non-deposition, and winnowing. While mass wasting could remove

entire mound layers, hydrodynamically controlled processes like non-deposition

and winnowing affect fine-grained sediments and do not mobilise larger coral

fragments. Evidence for large-scale mass wasting events on coral mounds remains

inconclusive, suggesting that hydrodynamic processes are the primary cause of

the hiatuses in themound record. Consequently, the coral record preserved on the

mounds is typically complete. Mound formation occurs during active reef growth,

while during periods without reef growth, strong hydrodynamics enhanced by the

mound morphology increasing turbulence around the mound prevent sustained

sediment accumulation, causing the frequently observed hiatuses.
KEYWORDS

cold-water coral mound, sedimentary record, hiatus, non-deposition, winnowing, mass
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1 Introduction

Cold-water coral (CWC) mounds form through the prolonged growth of scleractinian reef-

forming CWCs, in combination with the substantial accumulation of sediments (e.g., Hebbeln

et al., 2016; Roberts et al., 2006). As a result, mound deposits comprise coral fragments

embedded within a fine-grained hemipelagic sediment matrix, which includes both terrigenous

and biogenic material (e.g., Titschack et al., 2015, 2016). Although CWCs are critical to

the formation of coral mounds, coral fragments typically contribute less than 50% to the

mound deposits, with the majority consisting of hemipelagic sediments (e.g., Pirlet et al., 2011;
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Titschack et al., 2015, 2016). CWCs are widely distributed from the

shelf to remote mid-ocean ridge environments (e.g., Mortensen et al.,

2008; Roberts et al., 2006), whereas coral mounds occur only on

continental shelves and slopes (e.g., Hebbeln and Samankassou, 2015;

Lo Iacono et al., 2018; Wienberg and Titschack, 2017), where sufficient

hemipelagic sediment to contribute to mound formation is supplied by

slope-parallel currents and internal tides (summarised here as bottom

currents; e.g., Hebbeln et al., 2016; White, 2007). Overall, the

development of coral mounds is highly dependent on

hydrodynamics, as bottom currents not only increase sediment

delivery to the mounds, but also facilitate coral growth through the

lateral delivery of food particles ingested by the sessile CWCs (Figure 1;

e.g., Mienis et al., 2007; Portilho-Ramos et al., 2022).
Frontiers in Marine Science 02
The coral mound itself interacts with bottom currents in two

different ways. First, the elevated mound morphology accelerates

the water flow around the mound, with this mound effect becoming

more pronounced when the mound size increases (e.g., Cyr et al.,

2016; van der Kaaden et al., 2021). This can potentially double the

current velocity at the mound’s top and upper flanks (e.g., Dorschel

et al., 2007; Mienis et al., 2012) similar to other elevated seafloor

structures like seamounts and isolated banks (Genin et al., 1986).

Consequently, coral mounds experience more energetic conditions

compared to the surrounding seafloor (e.g., Frederiksen et al., 1992;

Mohn et al., 2014). Second, CWC reefs thriving on the mound cause

a local deceleration of the bottom currents when these pass the

large, dense framework, allowing suspended sediments to settle
FIGURE 1

(A) Coral mound formation strongly depends on strong bottom currents, which deliver food and sediment particles to facilitate reef growth and
sediment deposition, both being important for reef/mound growth. The elevated mound morphology (formed through repetitive reef growth
phases) enhances bottom currents and turbulence around the mound (mound effect; inset), while the large dense coral framework covering the
mound locally decelerates the current velocity allowing suspended material to become deposited between the coral branches (baffling effect). (B)
Persistent strong bottom currents, further enhanced by the mound effect, keep particles in suspension and prevent them from settling. This
hydrodynamically-driven process primarily affects the mound during times without reef growth and leaves fossil corals at the surface of a mound
exposed for 103 to 105 years. (C) Winnowing describes the selective erosion and mobilisation (displayed on the left side) of previously deposited fine-
grained sediments (displayed on the right side), while coarser sediment components (i.e. centimetre-sized coral fragments) are not affected and
remain at their place of deposition.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1611432
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hebbeln and Wienberg 10.3389/fmars.2025.1611432
between the coral branches (Figures 1, 2; e.g., Bartzke et al., 2021;

Guihen et al., 2013; Huvenne et al., 2009; Wheeler et al., 2008). This

baffling effect facilitates the deposition of fine-grained sediments on

the mound, even under otherwise turbulent hydrodynamic

conditions generated by the mound effect (Figure 1).

Coral mounds rise to a few metres to more than 300 m above

the surrounding seafloor (e.g., Wienberg and Titschack, 2017), and

many of them have considerable subseafloor extensions (e.g.,

Colman et al., 2005; Van Rooij et al., 2003). Hence, coral

mounds, which apparently grow faster as sediments accumulate

around them, have great potential to provide exceptionally high-

resolution palaeo-records of environmental change and ecosystem

response (e.g., Korpanty et al., 2023; Thierens et al., 2010). However,

already the first sediment core-based stratigraphic records from

coral mounds in the Porcupine Seabight off Ireland, where modern

coral mound research gained momentum in the late 1990s (see

Henriet et al., 2014), revealed significant stratigraphic gaps

(hiatuses), some spanning over 100 kyr (e.g., Dorschel et al., 2005;

Kano et al., 2007). These gaps highlight the incomplete nature of the

mound record, which complicates comprehensive palaeo-

environmental reconstructions. Ongoing research has identified

such intermittent (i.e. discontinuous) stratigraphic records from

coral mounds as a common pattern not only off Ireland, but across

the Atlantic Ocean (e.g., Beisel et al., 2025; Bonneau et al., 2018;

Correa et al., 2012; Matos et al., 2015; Raddatz et al., 2020; Wefing

et al., 2017; Wienberg et al., 2010, 2018) as well as in the

Mediterranean Sea and Gulf of Mexico (Corbera et al., 2022;

Fentimen et al., 2023; Matos et al., 2017; Roberts and Kohl, 2018;

Stalder et al., 2015; Wienberg et al., 2022).

Regionally consistent periods of CWC reef growth (e.g., de

Carvalho Ferreira et al., 2022; Fink et al., 2015; Frank et al., 2011)

have been linked to the dependence of CWCs on environmental

forcing factors (e.g., Davies et al., 2008; Portilho-Ramos et al., 2022).

This suggests that, despite the hiatuses and incompleteness in the

mound record, the coral record, i.e. the preservation of corals that
Frontiers in Marine Science 03
once lived on the mound, may be sufficiently complete to allow for

palaeo-ecological interpretation. This raises the question of the

origin of the hiatuses. If they represent periods without CWC reef

growth, fine hemipelagic sediments should have been deposited on

the mounds during these long intervals. However, coral mounds

typically contain predominantly coral-bearing sediments, while

mound records containing substantial layers of fine sediment

without coral fragments are comparatively rare (e.g., Foubert and

Henriet, 2007; Kenyon et al., 2003; Mangini et al., 2010; Raddatz

et al., 2020). For example, in some regions (Ireland, Gulf of Mexico,

Mediterranean Sea), mound records only document interglacial

CWC reef growth, while glacial deposits are absent, despite the

widespread presence of corresponding glacial sediments around

these mounds (e.g., Dorschel et al., 2005; Wienberg et al., 2020;

Matos et al., 2017).

Several explanations have been proposed for the dominant

processes causing these hiatuses, including: (a) non-deposition of

sediments on the coral mound due to persistent strong bottom

currents amplified by the mound effect (b) winnowing (deposition

followed by erosion) of fine sediments from the mound’s surface by

recurrent strong bottom currents, and (c) mass wasting eroding

thick sediment layers from the coral mound. Among these, only

gravity-driven mass wasting would impair the completeness of the

coral record as it potentially mobilises sediment layers containing

large CWC fragments, while hydrodynamic-induced winnowing

and non-deposition would only affect the fine-grained mound

deposits (Figure 1).

Previous studies have linked the ubiquitous occurrence of

hiatuses in mound records to the above-mentioned processes in a

rather general way, without providing a clear attribution or detailed

explanation. This general approach still accepts the possibility of an

incomplete coral record due to mass wasting, which would affect

reliable conclusions about the past development of CWCs. Thus, by

discussing the likely processes that have caused these hiatuses in the

light of recent observations made across the Atlantic Ocean, this
FIGURE 2

(A) Cold-water coral mound on the Angolan continental slope (~370 m water depth) covered by dense living coral reef framework (Lophelia pertusa
and Madrepora oculata; see Orejas et al. 2021; Wienberg et al., 2023). Note the deposition of fine-grained sediments between the coral framework
(red arrows). (B) Cold-water coral mound on the Namibian continental shelf (~220 m water depth) covered by exposed dead coral framework (L.
pertusa) with minimal sediment cover. Corals on the mound surface were dated back to ~5 kyr (Tamborrino et al., 2019). Images are copyright of
ROV MARUM SQUID and were recorded during RV METEOR expedition M122 (ANNA).
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review provides a comprehensive assessment of the reliability of

coral records for reconstructing CWC reef and mound development

through time.
2 Hydrodynamic controlled processes
affecting cold-water coral mound
formation

2.1 Non-deposition of fine sediments

The non-deposition of suspended fine-grained sediment particles

on the seabed requires the constant flow of strong bottom currents

that keep the particles in suspension and prevent them from settling

(Figure 1). Current ripples, often observed adjacent to coral mounds

or on lower mound flanks (e.g., López Correa et al., 2012; Foubert

et al., 2005; Kenyon et al., 2003; Lim et al., 2017; Wienberg et al.,

2008), are an indicator of prevailing strong bottom currents that are

capable of transporting suspended particles up to a grain size that is in

equilibrium with the current velocity (sensu Hjulstrom, 1935). The

strong bottom currents are further enhanced by the mound effect,

thus, preventing the deposition of suspended particles on the mound

by causing continuous by-pass conditions. Even if hydrodynamic

conditions fundamentally change, e.g., on glacial-interglacial time

scales, the morphology-driven mound effect, which leads to relatively

stronger bottom currents on the mound, may also prevent on-mound

deposition of the suspension load during times of generally weak

bottom currents (see Wang et al., 2021).

This probably explains the presence of exposed fossil coral rubble

pavements without significant sediment cover observed in many coral

mound regions (Morocco, Mauritania, Namibia, Mediterranean Sea).

In these areas, coral fragments lying exposed on the mound surface

(Figure 2) reveal ages ranging from 5 kyr to >100 kyr, often with

consistent regional patterns (Tamborrino et al., 2019; Wienberg et al.,

2010, 2018, 2022). Although non-deposition over time scales of 1,000

to 100,000 years seems unlikely at first glance, the mound effect could

have led to prolonged periods of non-deposition on coral mounds.

This may also explain why most mound records are primarily

composed of coral-bearing deposits, indicating that vertical mound

growth was largely confined to periods of CWC reef growth,

when sediment accumulation was enhanced by the baffling effect

(e.g., Corbera et al., 2022; Wang et al., 2021).

When dead or fossil coral skeletons are exposed at the seabed,

they are subject to bioerosion, which leads to their degradation and

fragmentation into smaller particles (e.g., by grazing and boring

fungi and sponges; Beuck and Freiwald, 2005; Bromley, 2005;

Wisshak, 2006). In open-water conditions, bioerosion rates can

approach the growth rates of live CWCs (Büscher et al., 2019), but

are significantly reduced when coral skeletons are buried by

sediments (Beuck and Freiwald, 2005). Since fossil corals exposed

on mounds are often at least partially sediment-covered (Figure 2),

bioerosion likely occurs, but at a reduced rate. Over timescales of

several kiloyears, progressing bioerosion might potentially impact

the completeness of the coral record, but this would also a require a

mechanism to concurrently remove the resulting fine coral debris.
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Considering (i) the presumably slow combined effect of bioerosion

and the removal of its products and the surrounding sediment

matrix, (ii) typical mound growth rates of several decimetres to

meters per kiloyear (e.g., Frank et al., 2009; Wienberg et al., 2018),

(iii) the temporal resolution of mound records based on radiometric

dating, and (iv) the regionally consistent age patterns of exposed

fossil corals (see above), bioerosion is considered to have - if at all - a

negligible effect on the coral record and its interpretation.
2.2 Winnowing: repetitive deposition and
erosion of fine sediments

Similar to non-deposition, winnowing is a hydrodynamically

induced process, but it describes the selective erosion and

mobilisation of previously deposited fine-grained sediments, while

coarser sediment components are not affected and remain at their

place of deposition (Compton, 1962). In contrast to the process of

non-deposition, winnowing involves more variable bottom currents

whose (repeated) amplification promotes the erosion of sediments

deposited under less dynamic conditions (Figure 1).

Assuming that deposition of fine-grained sediments occurred

on the coral mounds during the time intervals represented by the

hiatuses (up to >100 kyr), significant amounts of sediment must be

assumed when considering the surrounding sedimentary

conditions. In coral mound regions where deposits of the last

glacial period (~10–70 kyr BP) are absent in the mound record

(e.g., Gulf of Mexico, Ireland, Mediterranean Sea), mean glacial

sedimentation rates in the adjacent areas ranged from ~4 to 15 cm

kyr-1 (Fink et al., 2013; Matos et al., 2017; Rüggeberg et al., 2005;

Van Rooij et al., 2007), which would have resulted in the deposition

of sediment layers with a thickness of ~240–900 cm. Given the

potential for sediment compaction within such substantial sediment

layers, it would have been challenging to remove them by

winnowing. Nevertheless, winnowing may have occurred as a

repetitive process, with thin layers of (non-consolidated) fine

sediment being repeatedly eroded during periods of increased

current velocities (Figure 1). As winnowing involves erosion, it is

in principle a different process than non-deposition. However, in

terms of hydrodynamic forcing, both processes can be seen as a

kind of continuum controlled by the strength of bottom currents.
3 Extensive erosion by mass wasting:
does it affect mound formation?

Mass wasting is a gravitationally induced process that describes

the sudden downslope movement of large volumes of sediments,

triggered by, for example, earthquakes, sea-level changes, or gas

hydrate dissolution (e.g., Crutchley et al., 2016; Leynaud et al., 2009;

Masson et al., 2010). During mass-wasting events, sediment

material is mobilised as large sediment packages or layers with

the potential to transport particles in the size of coral fragments

(centimetre to decimetre), which would affect the completeness of

the coral record. Although headwalls are known to be preferred
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CWC habitats, suggesting a link between mass wasting and coral

mound formation (De Mol et al., 2009), convincing evidence for

mass-wasting events that removed substantial sediment volumes

from coral mounds has yet to be provided.

Early studies on NE Atlantic coral mounds discussed mass

wasting as the potential cause for the hiatuses documented in the

mound records. These studies either mentioned it as the dominant

process (e.g., Eisele et al., 2008), discussed it as one of several relevant

processes (e.g., Dorschel et al., 2005; Correa et al., 2012), or dismissed

it as an unlikely explanation (e.g., Kano et al., 2007). Several criteria

were used to underpin the possibility of frequent mass-wasting events

occurring on coral mounds, which are critically evaluated below.
3.1 Lack of large dropstones in mound
records

Marine sediments in the NE Atlantic are characterised by

dropstones, which typically range in size from gravel (>2 mm) to

boulders (>250 mm), although sand-sized (>0.15 mm) terrigenous

particles embedded in finer sediments are also classified as

dropstones (e.g., Bennett et al., 1996). Dropstones are ice-rafted

debris dropped by melting icebergs that repeatedly reached this

region during the last glacial period (e.g., Bond et al., 1992; Scourse

et al., 2009). Consequently, dropstones would be expected to

accumulate occasionally also on coral mounds in the NE Atlantic.

This expectation is supported by observations of gravel- to boulder-

sized dropstones commonly found on various Irish coral mounds

(e.g., Foubert et al., 2005; Heindel et al., 2010; Lim et al., 2017;

Wienberg et al., 2008). However, the first sediment cores collected

from these coral mounds revealed an apparent absence of larger,

centimetre-sized dropstones. Initially, this absence was attributed to

mass wasting, which was considered the only process capable of

removing such coarse material from the mounds (e.g., Dorschel

et al., 2005; Eisele et al., 2008). Alternatively, this could simply be a

result of the coring process as sediment core tubes typically have

diameters of less than 12 cm (Hebbeln, 2002), which significantly

limits the likelihood of recovering larger dropstones. Moreover,

layers enriched in sand-sized dropstones have been found in cores

from NE Atlantic coral mounds aligning with observed hiatuses,

which can be seen as (possibly winnowed) relicts of glacial

sedimentation (e.g., Dorschel et al., 2005; Huvenne et al., 2009;

Kenyon et al., 2003; Thierens et al., 2010). Given that dropstone

deposition on these mounds clearly occurred during the last glacial

period, the absence of substantial fine-grained glacial sediments (see

above) suggests that non-deposition or winnowing, rather than

mass wasting, affected these mounds.
3.2 Lack of hardground formation on
exposed mound surfaces

Prolonged exposure of mound surfaces to strong bottom

currents for periods of 103 to 105 years, indicated by the hiatuses,
Frontiers in Marine Science 05
should promote early diagenetic hardground formation (e.g., Noé

et al., 2006). Video observations occasionally documented

hardgrounds on lower flanks of coral mounds in the Porcupine

Seabight (e.g., Heindel et al., 2010; Dorschel et al., 2009). However,

none of the numerous sediment cores from these mounds recovered

hardgrounds, while at the more oceanic Rockall Bank, they are

common in the mound record (e.g., Bonneau et al., 2018; de Haas

et al., 2009). At Rockall Bank, carbonate-rich matrix sediments

surrounding the coral fragments likely promote hardground

formation, whereas the predominantly siliciclastic matrix

sediments of coral mounds in the Porcupine Seabight seemingly

do not support extensive hardground formation (van der Land

et al., 2014). As most coral mounds occur along upper continental

margins, where siliciclastic sediments dominate, hardground

formation may be generally limited. Thus, the absence of

hardgrounds might be explained by the composition and

chemistry of the matrix sediments rather than by mass wasting.
3.3 Exposed fossil cold-water corals at the
top of coral mounds

Fossil CWC fragments exposed on coral mounds without

significant sediment cover (Figure 2) are widespread across

various Atlantic mound regions, suggesting that non-deposition

plays a key role in mound formation (see above). However, such

exposed old mound surfaces have also been linked to mass wasting

(e.g., Dorschel et al., 2005), as this process could explain the removal

of missing younger deposits. However, consistent regional patterns

with nearly identical surface coral ages across multiple mounds are

a common observation. For example, coral ages cluster at 4.8-5.4

kyr (13 mounds) on the Namibian shelf (Tamborrino et al., 2019),

at 14.3-15.7 kyr (5 mounds) and 30.1-34.5 kyr (4 mounds) off

Morocco (Frank et al., 2011; Wienberg et al., 2009, 2010), and at

3.6-5.4 kyr (4 mounds) and 102–106 kyr (2 mounds) in the western

Mediterranean Sea (Wang et al., 2019; Wienberg et al., 2022). These

patterns indicate that CWC reef growth ceased after those specific

times rather than mass wasting consistently eroded mounds to the

same stratigraphic level.

Moreover, if mass wasting-induced erosion caused the hiatuses

in the mound record, its erosional products should be more

frequently observed. However, while turbidite and slump deposits

have occasionally been found near coral mounds, they rarely

contain CWC fragments (e.g., Lindberg and Mienert, 2005;

Rüggeberg et al., 2007). Instead, sedimentological evidence

suggests only small-scale slumping on the flanks of coral mounds

(e.g., de Haas et al., 2009; Huvenne et al., 2009; Eisele et al., 2014),

with no clear indications of large-scale erosion capable of removing

an entire mound surface layer. Furthermore, CWC fragments

embedded in fine muddy sediments are interpreted to stabilise

the mound flanks enabling slope inclinations of 20-80° (Freiwald,

2002), and thus to prevent slope failure on coral mounds (Kenyon

et al., 2003). Consequently, mass wasting does not appear to be a

dominant process shaping coral mounds.
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4 Conclusion

Most sedimentary records from coral mounds exhibit significant

hiatuses, some spanning over 100 kyr. Three potential causes for theses

hiatuses have been critically reviewed. Non-deposition and winnowing

explain the absence offine hemipelagic sediments, but do not affect larger

CWC fragments, preserving the coral record despite gaps in the mound

record. In contrast, mass wasting can mobilise large sediment volumes,

including coral fragments, resulting in an incomplete coral record.

Hydrodynamically-controlled non-deposition and winnowing,

enhanced by the mound effect that amplifies bottom currents around

the mound, are common processes on coral mounds. Only when CWC

reefs thrive on the mound, their framework locally decelerates currents,

allowing fine sediments to accumulate on the mound (baffling effect).

The role of mass wasting in mound formation remains inconclusive,

with small-scale slumping affecting mound flanks but playing a minor

role overall. The exposure of fossil CWCs (103 to 105 years old) on

mound surfaces, with consistent regional age patterns, suggests that

reef growth ceased at specific times rather than younger mound

deposits being consistently eroded to the same stratigraphic level by

mass wasting. This implies that hiatuses represent periods without reef

growth, and the preserved coral record in themound record is generally

complete, providing a valuable palaeo-archive of CWC reef

development. This is supported by evidence linking CWC reef

growth and decline to major palaeo-environmental changes (e.g.,

Bahr et al., 2020; Corbera et al., 2021; Fentimen et al., 2023; Frank

et al., 2009; Matos et al., 2015; Mienis et al., 2009; López Correa et al.,

2012; O’Reilly et al., 2022; Pirlet et al., 2011; Portilho-Ramos et al., 2022;

Raddatz et al., 2016, 2020; Wienberg et al., 2010, 2022).

Stratigraphically, sediment cores from coral mounds document

short reef growth phases (103 to 104 years) interrupted by hiatuses

spanning much longer time periods (up to 105 years). Thus, while

the elevated mound morphology already suggests a high temporal

resolution of the mound record, its incompleteness results in an

even higher resolution for the preserved coral record, documenting

reef and mound growth rates of several metres per kiloyear (e.g.,

Frank et al., 2009; Raddatz et al., 2022; Stalder et al., 2015; Titschack

et al., 2015; Wefing et al., 2017; Wienberg et al., 2018).

Consequently, coral mounds serve as reliable short-term yet

exceptionally well-resolved palaeo-records, especially for the

poorly studied intermediate water depths of the oceans.
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