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Frontiers in Marine Science 
Observations of Sargassum 
carbon influx and 
biogeochemical impact in 
La Parguera Marine Reserve 
Priscilla N. Molina-Cora1,2*, Julio M. Morell1,2*, 
Loraine Martell-Bonet2*, Luis R. Rodriguez-Matos2, 
Juliá n E.  Morell2 and Maribel Vé lez-Rivera2 

1Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico, 2Caribbean 
Coastal Ocean Observing System, Lajas, Puerto Rico 
The massive influx of pelagic Sargassum spp. species, also known as Sargassum 
inundation events (SIEs), first arrived at the Caribbean’s coastal waters in 2011. 
These events have been linked to hypoxia, among other ecological disturbances. 
Here, we report data from 2022 on (1) an assessment of the relative magnitude of 
particulate organic carbon (POC) load arising from SIEs into the La Parguera 
Marine Reserve (LPMR) basin off the southwest coast of Puerto Rico and (2) the 
biogeochemical impact of SIE in a nearshore mangrove key within the reserve, 
Monsio Jose Key Bay (MJKB). Our analysis yields that the carbon influx increased 
by 20% in the LPMR basin and by 103% in MJKB. Weekly observations of 
Sargassum input, along with the collection and analysis of water samples in 
MJKB, evidenced a cause-effect relation between Sargassum carbon loading and 
frequency of hypoxic (DO < 2 mg·L-1) and critically acidic conditions (Aragonite 
saturation, Ω < 2.0). During the 2022 Sargassum season, hypoxic conditions were 
detected in 43% of samples collected in MJKB. Considering the modulation 
of biogeochemical parameters by changes in tide height (Dh) and wind speed 
(m·s-1), stepwise multiple regression analyses (RDA-AIC model selection) showed 
that significant parameters influencing DO, pH, and W include the Sargassum 
carbon influx and Dh (p < 0.05). These findings strongly support the hypothesis 
that the additional input of POC influx enhances microbial mineralization rates 
responsible for depressed oxygen concentrations and acidic conditions, which 
could be detrimental to coastal ecosystems. This is particularly concerning in 
areas prone to SIEs where geomorphological features facilitate the entrainment 
of floating materials. Proper management requires the identification of 
vulnerable sites and Sargassum removal. Ongoing efforts towards that goal are 
underway for LPMR. 
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1 Introduction 

Pelagic Sargassum blooms form aggregations or ‘rafts’ (Brooks 
et al., 2018), of which significant amounts are advected into 
Caribbean waters. Rafts support a drifting ecosystem hosting a 
wide variety of marine species (Weis, 1968; Casazza and Ross, 2008; 
Brown, 2020) and are recognized by the South-Atlantic Fisheries 
Council of the National Oceanic and Atmospheric Administration 
as an essential fish habitat (NOAA, 2003; Huffard et al., 2014; 
Cashman and Nagdee, 2017). Since 2011, the seasonal occurrence of 
large pelagic blooms of Sargassum, including two predominant 
species (S. fluitans and S. natans), has become the new normal in 
the Tropical and Subtropical North Atlantic from Brazil to Africa 
(de Széchy et al., 2012; Hu et al., 2016; Putman et al., 2018; Wang 
et al., 2019; Johns et al., 2020). Pelagic Sargassum blooms have 
attracted attention due to their substantial arrival in vast quantities, 
also known as Sargassum inundation events (SIEs), along the coasts 
of  the Greater  Caribbean and  the Tropical Atlantic Regions

(Moreira and Alfonso, 2013; Mendez-Tejeda and Rosado, 2019; 
Wang et al., 2019). Once brought ashore by currents and winds 
(Putman et al., 2018; Wang et al., 2019), the accumulation of 
Sargassum on the coast has been reported to lead to detrimental 
conditions for coastal ecosystems, fisheries, and tourism (Cashman 
and Nagdee, 2017; van Tussenbroek et al., 2017; Cabanillas-Teran 
et al., 2019; Mendez-Tejeda and Rosado, 2019; Brown, 2020; 
Bernard et al., 2022; Sánchez et al., 2023). Although SIEs have 
been considered a temporary phenomenon (Marsh et al., 2022), 
recent studies indicate that recurrent blooms could be associated 
with climate change, fluctuations in hydrodynamic patterns, and 
the introduction of anthropogenic nutrients (Djakouré et al., 2017; 
Sonter et al., 2017; Putman et al., 2018; Wang et al., 2019; Gouvêa 
et al., 2020). Sargassum accumulates seasonally under the 
Intertropical Convergence Zone (ITCZ) (Johns et al., 2020). In 
this zone the equatorial and Northwest Africa coastal upwelling 
regions, the Amazon and Orinoco River outflows, and the Saharan 
dust transported by the easterly trade winds supply a significant 
amount of nutrients (Wang et al., 2019; Oviatt et al., 2019), 
providing optimal conditions to sustain a Sargassum bloom in the 
North Equatorial Recirculation Region (NERR) (Gower et al., 2013; 
Wang and Hu, 2016; Djakouré et al., 2017). Following the bloom, 
the Sargassum is transported westward and eastward, creating the 
great Atlantic Sargassum belt (Wang et al., 2019; Johns et al., 2020; 
Skliris et al., 2022). 

Given its effectiveness as a primary producer and storehouse of 
organic carbon (Krause-Jensen and Duarte, 2016; Gouvêa et al., 
2020), SIEs can represent a significant exogenous source of 
particulate organic carbon (POC) (Valiela et al., 1997). POC 
influx can be expected to result in hypoxia and ocean 
acidification due to increased metabolic demands (Burkholder 
et al., 2007; Lee et al., 2007; Martıńez-Lüscher and Holmer, 2010; 
van Tussenbroek et al., 2017). Hypoxic conditions associated with 
Sargassum have been linked to neritic fish and crustacean mortality 
(Rodrı ́ nez et al., 2019). However, although Sargassum’sguez-Martı ́
role in carbon dynamics in the Tropical and Subtropical Atlantic 
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oceanic domains has been well-documented (Krause-Jensen and 
Duarte, 2016; Wang et al., 2018; Gouvêa et al., 2020; Hu et al., 2021), 
the impact of pelagic Sargassum carbon that inundates Caribbean 
coastal ecosystems remains to be adequately assessed. Further 
studies identifying the magnitude and frequency of SIEs driven 
hypoxia and acidification events in representative critical 
ecosystems should provide a baseline for the development of 
models predicting biomass influx and retention as well as the 
resulting hypoxia and acidification. Said forecasting tools would 
support resource managers responsible for deploying impact 
mitigation measures. 

Here, we present data from a year-long (2022) time-series of 
observations focused on assessing the temporal variability of 
Sargassum biomass influx rates into the La Parguera Marine 
Reserve (LPMR) basin and at Monsio Jose Key Bay (MJKB) 
within the basin. The relative increase in POC loading resulting 
from Sargassum influx, both at the basin-wide scale and at MJKB, is 
estimated using available data on mangrove litterfall (Vega-
Rodrı ́ ́rez-Pe et al., 2022) and seagrass guez et al., 2008; Pe ́rez 
production for LPMR basin (Liboy, 1976; Hertler, 2002). 
Below we report serial observations of dissolved oxygen (DO) 
concentration, total alkalinity (TA) and pH at MJKB, collected in 
parallel to biomass influx measurements provided for assessing the 
magnitude, frequency and duration of hypoxia and acidification 
events in a mangrove key, a typical ecosystem in LPMR basin, 
arising from SIEs. 
2 Materials and methods 

2.1 Area of study 

This study was conducted in the coastal waters of LPMR off the 
southwestern coast of Puerto Rico (Figure 1), an area designated as 
a Nature Reserve in September 1979. The reserve consists of a series 
of reef cays with a dispersed distribution along the interior insular 
shelf hosting ecosystems, including coral reefs, seagrass meadows, 
and mangroves (Valdés-Pizzini and Schärer-Umpierre, 2014). Due 
to the prevalence of south-southeasterly winds, the area is 
particularly susceptible to SIEs (Hernández et al., 2022). 
Meteorologically, the LPMR basin is characterized by a wet 
season extending from August to November, and semiarid 
conditions prevail during the rest of the year (Garcıá-Troche 
et al., 2021; Ayala-Torres and Otero, 2023). Mangrove litterfall 
and seagrasses are the major organic carbon sources in LPMR. Net 
carbon production by planktonic autotrophs was not included as a 
source of POC in LPMR basin, as the only published information 
available (Odum et al., 1959) reports net autotrophy presumably 
supported by dissolved organic carbon (DOC) exported by 
mangrove forests. Moreover, Meléndez et al. (2022), using data 
from a decade of observations collected by La Parguera MapCO2 

buoy, located off a mid-shelf reef key in the LPMR basin, reported 
net heterotrophic conditions during the year as slightly autotrophic 
conditions only prevailing during winter months. 
frontiersin.org 
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2.2 Estimation of Sargassum carbon influx 

Six (6) Sargassum traps (Supplementary Figure A.1 in 
Supplementary Materials), constructed using PVC pipe and 
plastic mesh and measuring 0.63 x 0.5 x 0.63 m (depth x width x 
height), were deployed facing the prevailing southeasterly winds on 
the seaward edge of four reef islands on the outer southern 
boundary of LPMR basin. An additional trap was deployed in 
Monsio Jose Key Bay (MJKB) (17.9688°N, 67.076871°W), a 
nearshore mangrove-lined embayment (Figure 1). Traps were 
placed in 10 cm deep water to ensure water inflow even at low 
tide. Weekly sampling facilitated trap maintenance, allowing for 
continuous assessment of their condition. Traps were replaced as 
needed to ensure optimal functionality and uninterrupted sampling. 

Quantification of the weekly Sargassum biomass influx (kg·m

1·Wk-1) into the LPMR basin and MJKB was estimated by collecting 
the Sargassum accumulated in the traps, transferring it to a mesh 
bag, and weighing it on-site using an electronic fish scale. The 
Sargassum wet weight was converted to POC using an averaged 
carbon-to-wet weight ratio of 0.05 ± 0.01 published by Laffoley et al. 
(2014); Wang et al. (2018, 2019); and Gouvea et al. (2020) 
Frontiers in Marine Science 03 
(Supplementary Table A.1 in Supplementary Materials). The total 
weekly Sargassum carbon influx to the LPMR basin was estimated 
using the weekly mean capture of all traps located in the outer reefs, 
normalized by the trap width (meters) and multiplied by the width 
of the basin’s windward boundary (10.4 km). For MJKB, weekly 
mean values were multiplied by the width of the channel (69 m) 
facing the prevailing wind. Sargassum carbon influx rates to MJKB 
nearshore station were contrasted with estimates of carbon influx 
from mangrove litterfall. To achieve a more comprehensive 
assessment of the carbon contribution, we also estimated DOC 
from Sargassum using values reported by Powers et al. (2019). 
2.3 Estimating mangrove POC influx 

The mangrove litterfall rate for the LPMR basin and MJKB were 
estimated using the mean of reported litterfall observations in 
LPMR, 476 dry weights·m-2·yr-1 ́(Vega-Rodrıguez et al., 2008; 
Pérez-Pérez et al., 2022) and area estimates were derived from 
satellite imagery. Mangrove litter mass was converted to carbon 
using the 0.5 carbon/litter weight ratio reported by Golley et al. 
FIGURE 1
 

Satellite images showing (A) Puerto Rico in the Caribbean Sea, (B) the study area off the southwestern coast of Puerto Rico, and (C) the geographical
 
distribution of Sargassum trap location around La Parguera Marine Reserve, Lajas, Puerto Rico. The white circles indicate study sites: SC (San
 
Cristobal key; 17.942074°N, 67.076714°W), LA (Laurel key; 17.943191°N, 67.056441°W), ML (Media Luna key; 17.9395°N, 67.042871°W), C3A (17.9438°
 
N, 67.009188°W), C2A (17.9434°N, 67.005127°W), and C1A (17.9442°N, 67.002603°W) (Corral Key) and MJKB (Monsio José Key Bay; 17.9688°N,
 
67.076871°W). The red squared in MJKB marks the location where a Sargassum trap was located, and biogeochemical samples were collected.
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(1962) (Supplementary Table A.2 in Supplementary Materials). The 
estimated POC was converted to DOC using the 0.13 reported by 
Adame and Lovelock (2011). 
 

2.4 Estimating seagrass POC input 

Estimates of net carbon input from seagrasses are based on 
seagrass growth studies carried out in LPMR basin by Liboy (1976) 
and Hertler (2002). The mean seagrass productivity rate (4.56 ± 
2.01 g·m-2·day-1) calculated from data from both studies was used to 
obtain the seagrass POC production rate for the basin. Said rate is 
consistent with reports from other areas in the Caribbean (Linton 
and Fisher, 2004; Juman, 2005). Seagrass biomass was converted to 
carbon using the carbon-to-biomass ratio (0.32) reported by Bay 
et al. (1996) (Supplementary Table A.3 in Supplementary 
Materials). We estimated the exudation carbon by using the 
POC-to-DOC ratio (0.126) reported by Robertson et al. (1982). 
2.5 Biogeochemical observations at MJKB 

Although Sargassum traps were deployed throughout LPMR, 
the analysis of weekly seawater samples for assessing the 
biogeochemical impact of SIEs was exclusively conducted for 
MJKB in this study. Samples were collected within 3.5 meters of 
the MJKB Sargassum trap (17.968766°N, 67.076871°W) from 
January 2022 to December 2022 between 7:00 and 10:00 a.m. 
(local time) at 1-meter depth using a Van Dorn 3.5 L sampler, 
following the best practices guidelines (Dickson et al., 2007). One 
seawater sample was collected for each parameter, which allowed 
for duplicate analyses in the lab. Conductivity and temperature data 
were collected with an SBE25 CTD. Seawater samples for pH and 
TA were fixed immediately with a saturated solution of mercury 
chloride (HgCl2) to prevent biological alteration. Analysis for pH on 
the Total Scale was performed using a spectrophotometer with m

cresol purple indicator dye (pHT ± 0.003) (Dickson and Goyet, 
1996; Grasshoff et al., 2007). Total alkalinity determinations (TA ± 2 
mmol·kg-1) (Dickson et al., 2007) were carried out following the 
protocol described by Garcı ́ DO sample a-Troche et al. (2021). 
analysis was performed following the Winkler method (DO ± 
0.50 mg·L-1) (Grasshoff et al., 2007; Astor et al., 2013). Aragonite 
saturation state (W) values were estimated from pH and TA 
measurements  using  the  CO2SYS  program  (Lewis and 
Wallace, 1998). 
 

2.6 Statistical analysis 

Pearson’s correlation analysis was used to identify significant 
time-lagged correlations between the explanatory variable 
(i.e., weekly Sargassum carbon influx) and the dependent 
variables (i.e., DO). A MATLAB function was created to identify 
different weekly lags between the variables and show the significant 
Pearson’s correlation coefficient. The lagged Sargassum carbon 
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influx (kgC·m-1) and physical parameters, such as wind speed 
(m·s-1) and changes in tide height, calculated as Dh = (tide height 
at sampling time)/(mean low tide), were included in data analyses to 
determine their significance in modulating the measured and 
calculated biogeochemical parameters (i.e., DO, pH, W). Wind 
speed data were sourced from the National Buoy Center, and 
tidal data were obtained from NOAA Tides & Currents for 
Station 9759110, Magueyes Islands, PR. 

The MATLAB Fathom toolbox (Jones, 2017) was  used  to
perform a stepwise forward selection of explanatory variables in 
Redundancy Analysis (RDA) using Akaike Information Criteria 
(AIC). This analysis identified optimal variables that substantially 
explained the variation of biogeochemical parameters (i.e., response 
variables; DO, pH, W). Explanatory variables included in the RDA-
AIC analysis were Sargassum carbon influx, wind speed, and Dh. 
Subsequently, a permutation-based RDA with 1000 iterations was 
conducted using the optimal explanatory variables identified 
through the RDA-AIC analyses to derive the model statistics. 
Lastly, to gain a clearer understanding of the individual effects of 
the optimal explanatory variables on the response variables, a 
permutation-based Multiple Linear Regression via Least Squares 
Estimation with 1000 iterations were performed for each response 
variable independently. This enabled a more precise interpretation 
of the impact of each explanatory variable on the response variables, 
offering insights into their distinct roles within the broader model. 
3 Results 

3.1 Sargassum biomass influx 

During 2022, SIEs at LPMR basin started in April and extended 
until November. The mean weekly Sargassum biomass influx for the 
six (6) traps, located in the outer keys of the LPMR basin (Figure 2), 
ranged from non-detectable to a maximum of 24.80 kg·m-1·Wk-1 

occurring on the second week of May. An estimate of the mean 
weekly Sargassum biomass influx into the basin yields 7.85 ± 6.60 
kg·m-1·Wk-1 or 81,725 kg·Wk-1 for the whole basin. For the same 
period, the weekly Sargassum biomass influx rate into the MJKB 
averaged 2.13 ± 5.08 kg·m-1·Wk-1 with a maximum Sargassum input 
rate of 23.22 kg·m-1·Wk-1 (Figure 3). Extrapolation using the width 
of MJKB channel (69 m) aligned with the prevailing wind direction, 
yields a weekly mean Sargassum biomass loading rate for the 
embayment of 155 ± 327 kg·Wk-1. 
3.2 Carbon inputs to LPMR basin 

Figure 4 presents the estimates of POC production by 
mangroves (as litterfall) and seagrasses (leaf growth) as well as 
estimates of Sargassum POC influx into the LPMR basin. The 
weekly POC production of seagrasses and mangroves totaled 
18,209 kgC·Wk-1, while the POC loading arising from the 
Sargassum influx during high season in 2022 averaged 3,617 ± 
3,452 kgC·Wk-1 with a standard error of 241 kgC·Wk-1, thus
 frontiersin.org 
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FIGURE 3 

Estimated Sargassum biomass influx to MJKB, extrapolated by the width of the channel, during the 2022 season. 
FIGURE 2 

Estimated average over-trap (n = 6) of Sargassum biomass influx on the outer keys extrapolated by the width of the LPMR basin during the 2022 season. 
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representing about 20 ± 19% increase in POC input to LPMR 
basin (Figure 4). 

The weekly estimated exudates of DOC from the production of 
seagrasses and mangroves in the LPMR basin are 3,041 kgC·Wk-1 

(Supplementary Table A.4 in Supplementary Materials). At the 
same time, the DOC loading arising from the Sargassum influx 
during the high season in 2022 averaged 6 kgC·Wk-1, thus

representing a 0.2% minor fraction increase in DOC input to the 
LPMR basin. The comparison of the calculated POC and DOC 
fractions from Sargassum suggests that POC is the predominant 
contributor to the organic carbon pool in the LPMR basin. 
 

3.3 Carbon input to MJKB 

Weekly estimates of carbon loading from mangroves (as 
litterfall) and Sargassum to MJKB are presented in Figure 5. 
Nonetheless, for MJKB, the seagrass carbon was not considered 
because the study site does not harbor seagrasses. While carbon 
production by mangroves for the area in the MJKB, is estimated at 
7.5 ± 1.4 kgC·Wk-1, Sargassum, POC influx averaged 7.7 ± 16.3 
kgC·Wk-1, thus representing a 103% net increase in POC. 

The carbon exudation estimates by mangroves, primarily 
through litterfall, for MJKB are approximately 1.0 kgC·Wk-1 

(Supplementary Table A.5 in Supplementary Materials). In 
contrast, the DOC influx from Sargassum into the MJKB 
averaged 0.013 kgC, contributing to a minor increase of 1.3% 
in DOC. 
Frontiers in Marine Science 06
3.4 Biogeochemistry at MJKB 

Observations of biogeochemical data indicate that during the 
months before the arrival of Sargassum (winter season), pH ranged 
from 7.7 to 7.9, while W aragonite ranged from 2.2 to 3.0. DO values 
ranged from 3.28 to 5.24 mg·L-1, while temperature ranged from 
26.11 to 28.21°C (Supplementary Table A.6 in Supplementary 
Materials). After the onset of the Sargassum season in early May, 
we observed a sharp decrease in pH, Waragonite, and DO (Figure 6). 
Simultaneously, we observed a warmer seawater temperature. For 
this period, pH values ranged between 7.0 – 7.8, with increased 
seawater acidity observed during the summer months when W 

aragonite ranged between 0.5 – 2.8, values under critical levels are W < 
2.0. During the same period, DO values ranged from non-detectable 
to 4.67 mg·L-1, frequently reaching hypoxic or anoxic conditions. 
Temperature values ranged from 27.90 to 30.77°C, with higher 
temperature levels occurring between late summer and fall. The 
ecosystem’s gradual and modest recovery is evident towards the end 
of the season, albeit with sustained low DO and pH levels. These 
conditions persisted from mid-June to September. 

Data analyses were performed using a one-week lag on the 
Sargassum carbon influx based on the significant time lagged 
correlations identified by the Pearson’s correlation analysis using 
DO, pH and W data (Supplementary Table A.7 in Supplementary 
Materials). These results suggest that biogeochemical parameters 
exhibit measurable changes one week after a SIE, indicating 
Sargassum impact on the system’s chemical  dynamics.  The
stepwise RDA-AIC analyses showed that Dh and  Sargassum 
FIGURE 4 

Estimated weekly POC input rates from Sargassum and other primary sources in LPMR basin. 
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carbon influx were the optimal explanatory variables for the 
variance of DO, pH and W (Table 1). A significant portion of the 
response variables is explained by Dh independently, but adding 
Sargassum carbon influx further improves the model. Wind speed 
was not identified as an optimal explanatory variable by the AIC 
analyses. The RDA permutation test demonstrated that the model 
incorporating the optimal explanatory variables identified through 
RDA-AIC accounted for a significant proportion of the variance in 
the response variables (p < 0.05, r² = 0.34; Supplementary Table A.8 
in Supplementary Materials). 

Multiple linear regressions to assess the individual effects of Dh 
and Sargassum carbon influx on response variables (i.e., DO, pH, W) 
showed that DO is significantly influenced by Dh and Sargassum 
carbon influx (p < 0.05, r2 = 0.35; Table 2), with Sargassum carbon 
influx having a negative relationship and Dh having a positive 
relationship with DO. However, the response of pH and W is less 
well explained by Dh and Sargassum carbon influx (r2 = 0.14). The 
variation in Dh has a marginal influence on pH, whereas the influx 
of carbon from Sargassum has a minimal impact on W (Table 2). 
4 Discussion 

Sargassum inundation events in LPMR basin and MJKB exhibit 
a marked seasonal variability, with peak influx rates occurring in 
spring and summer and quickly subsiding between August and 
Frontiers in Marine Science 07 
December. In May 2022, the LPMR basin and MJKB experienced a 
major influx of Sargassum biomass, which has been corroborated by 
satellite image analyses reported by the University of South Florida 
Optical Oceanography Lab, which sets a new historical record for 
the month of May for all Caribbean regions, exceeding all major 
Sargassum blooms in previous years (Hu, 2022). The mean estimate 
of Sargassum biomass loading in LPMR basin indicates a substantial 
influx. The assumption is that the Sargassum collected in the traps 
represents the total Sargassum accumulation in the LPMR basin, 
which can lead to an overestimation of biomass influx. We 
emphasize that the purpose of this research is to estimate the 
amount of Sargassum POC entering the basin compared to well
known local POC sources. However, we compared our 2022 data on 
Sargassum biomass (wet weight) with data from Mexico in 2015. 
This comparison provides an insight into the influx estimate. Our 
data indicate that the LPMR basin received a monthly influx of 
49,360 kg·km-1 for July-August, an amount notably lower compared 
to the monthly ~817,000 kg·km-1 accumulated on Mexico’s 
coastline in 2015 (van Tussenbroek et al., 2017). 

The estimates reported in Section 4 for POC inputs to the 
LPMR basin indicate that, at the basin scale, Sargassum input 
represents a significant increase in carbon load (20%) over POC 
inputs from seagrass and mangrove litter. However, in MJKB, 
where the shoreline favors entrainment of buoyant material, the 
Sargassum inundation represented a 103% increase in carbon 
loading comparable with local carbon input from mangrove 
FIGURE 5 

Estimates of POC sources at MJKB during the 2022 Sargassum season. 
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litterfall. This means that environmental conditions (e.g., prevailing 
winds, hydrodynamics) at specific geographical areas with shoreline 
characteristics that are conducive to the retention of Sargassum, are 
particularly vulnerable to SIE (León-Pérez et al., 2023). In MJKB, 
this additional input of POC into the ecosystem most probably 
leads to hypoxia and acidification enhancement due to increased 
metabolic demands in the benthos and water column (Burkholder 
et al., 2007; Lee et al., 2007; Martıńez-Lüscher and Holmer, 2010; 
van Tussenbroek et al., 2017; Valiela et al., 1997; Rabalais et al., 
2002; Wallace et al., 2014). 
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The tidal height differential (Dh) plays a significant role in 
regulating DO, pH, and W through physical and biogeochemical 
processes. During periods of larger Dh, the influx of offshore water 
into MJKB facilitates water mass flushing, promoting oxygenation 
and mitigating declines in pH and W. Conversely, when Dh is

minimal and tidal exchange is limited, the “residence time” of water 
masses in MJKB may become stagnant, allowing biological 
processes such as respiration and the decomposition of Sargassum 
and other organic matter to drive reductions in DO, pH, and W. 
These findings indicate that tides actively shape the ecological and 
biogeochemical conditions at MJKB, even during SIEs. 

Monsio Jose Key Bay is characterized by fringe mangroves, 
which are host to a varied community of autotrophs and 
heterotrophs and function as essential nursery grounds for 
juvenile fish (Nagelkerken et al., 2008), SIEs may disrupt these 
ecosystems, leading to direct mortality, forced migration, 
heightened vulnerability to predation, shifts in food availability, 
and changes to life cycles (Rabalais et al., 2002; Vaquer-Sunyer and 
Duarte, 2008; Dubuc et al., 2019; Pérez-Posada et al., 2023). 
TABLE 1 Akaike Information Criterion (AIC) model with explanatory 
variables (Dh, Sargassum carbon influx) that explained DO, pH, W at 
Monsio Jose. 

Variable r2 r2Adjusted AIC 

Dh 0.21 0.19 34.69 

Sargassum carbon influx 0.32 0.28 31.27 
FIGURE 6
 

Time series of (A) Sargassum carbon influx, (B) Dissolved oxygen, (C) Ω aragonite, and (D) pH, for the 2022 season at Monsio Jose Key Bay (MJKB).
 
The red line represents the critical level for DO (<2 mg·L-1) and Ω (< 2). 
TABLE 2 Results of multiple regressions for DO, pH and W against Dh and Sargassum carbon influx. 

Response variable r2 Adjusted r2 p Intercept (beta, p) Sargassum carbon influx (beta, p) Dh (beta, p) 

DO 0.35 0.32 1·10−3 1.75, 2.00·10−3 -0.03, 2.00·10−3 1.33, 2.00·10−3 

pH 0.14 0.10 1·10−3 7.56, 2.00·10−3 -3.12·10−3, 0.06 0.13, 2.00·10−3 

W 0.14 0.09 1·10−3 1.86, 2.00·10−3 -0.01, 2.00·10−3 0.30, 0.08 
 

Significant p values are in bold. 
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Therefore, the constant arrival of Sargassum poses a threat to both 
flora and fauna. Hernández et al. (2022) suggest that the persistent 
influx of Sargassum may have negatively impacted vegetation cover, 
including mangroves and seagrasses, resulting in a decline in La 
Parguera. MJKB experienced 10 weeks of hypoxic conditions due to 
the accumulation of carbon-rich Sargassum biomass, with DO 
levels decreasing below the critical lethal concentration 50% 
(LC50) threshold of 2 mg O2/L (Vaquer-Sunyer and Duarte, 
2008). According to Vaquer-Sunyer and Duarte (2008), fish and 
crustaceans would perish from hypoxia in these circumstances 
before they could reach the critical threshold. 

The evolution of hypoxia was paralleled by a decline in 
aragonite saturation, which dropped below the critical threshold 
of W < 2.0  following SIEs  (Sánchez-Beristain et al., 2016), as 
i l lustrated  in  Figure  6. The  decrease  in  W could  be  
disadvantageous for many marine organisms, such as corals, 
clams, echinoderms, mussels, oysters, etc (Morse et al., 2006; 
Bates et al., 2009; Millero, 2013; Mollica et al., 2018). Also, the 
low pH and W levels could affect commercially important species’ 
breeding areas and the food web dynamics at lower trophic levels 
(Branch et al., 2013; Sutton et al., 2016; Clements and 
Chopin, 2017). 

The SIEs have a significant impact on the ecosystem and socio
economic consequences, disrupting tourism, limiting local 
recreational activities, and constraining fisheries due to reduced 
fish availability (Rodrı ́ ́ et al., 2019; Hamel et al., guez-Martınez 
2024). Additionally, there are challenges in developing cost
effective management strategies to remove Sargassum from 
shorelines (Hamel et al., 2024; León-Pérez et al., 2024). Our 
observations highlight the need for further assessment of impacts 
arising from Sargassum and the development of tools capable of 
forecasting SIEs and their biogeochemical impacts. The time series 
presented in this study was used to develop the CARICOOS’ coastal 
Sargassum inundation forecasting products (caricoos.org/ 
sargassum) and is an ongoing effort to validate the models. In 
this way we are enhancing predictive models and providing tools for 
coastal management strategies. 
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Djakouré, S., Araujo, M., Hounsou-Gbo, A., Noriega, C., and Bourlès, B. (2017). 
On the potential causes of the recent Pelagic Sargassum blooms events in the tropical 
North Atlantic Ocean. Biogeosci. Discuss. 2017, 1–20. doi: 10.5194/bg-2017-346 

Dubuc, A., Baker, R., Marchand, C., Waltham, N. J., and Sheaves, M. (2019). Hypoxia 
in mangroves: Occurrence and impact on valuable tropical fish habitat. Biogeosciences 
16, 3959–3976. doi: 10.5194/bg-16-3959-2019 

Garcı ́ ́a-Troche, E. M., Morell, J. M., Melendez, M., and Salisbury, J. E. (2021). 
Carbonate chemistry seasonality in a tropical mangrove lagoon in La Parguera, Puerto 
Rico. PloS One 16, e0250069. doi: 10.1371/journal.pone.0250069 

Golley, F., Odum, H. T., and Wilson, R. F. (1962). The structure and metabolism of a 
puerto rican red mangrove forest in may. Ecology 43, 9–19. doi: 10.2307/1932034 

Gouvea, L. P., Assis, J., Gurgel, C. F. D., Serrão, E. A., Silveira, T. C. L., Santos, R., 
et al. (2020). Golden carbon of Sargassum forests revealed as an opportunity for climate 
change mitigation. Sci. Total. Environ. 729, 138745. doi: 10.1016/j.scitotenv.2020. 

Gower, J., Young, E., and King, S. (2013). Satellite images suggest a new Sargassum 
source region in 2011. Remote Sens. Lett. 4, 764–773. doi: 10.1080/2150704X.2013.796433 

138745 
Frontiers in Marine Science 10 
Grasshoff, K., Kremling, K., and Ehrhardt, M. (2007). Methods of Seawater Analysis: 
Third, Completely Revised and Extended Edition (Weinheim, Germany: Wiley-VCH). 
doi: 10.1002/9783527613984 

Hamel, K., Garcia-Quijano, C., Jin, D., and Dalton, T. (2024). Perceived Sargassum 
event incidence, impacts, and management response in the Caribbean Basin. Mar. 
Policy 165, 106214. doi: 10.1016/j.marpol.2024.106214 

Hernández, W. J., Morell, J. M., and Armstrong, R. A. (2022). Using high-resolution 
satellite imagery to assess the impact of Sargassum inundation on coastal areas. Remote 
Sens. Lett. 13, 24–34. doi: 10.1080/2150704X.2021.1981558 

Hertler, H. (2002). Implications of resource management in La Parguera, Puerto 
Rico. Available online at: https://www.researchgate.net/publication/28673803 
(Accessed October 20, 2023). 

Hu, C. (2022). Outlook of 2022 Sargassum blooms in the Caribbean Sea and Gulf of 
Mexico. Available online at: https://optics.marine.usf.edu/projects/SaWS/pdf/ 
Sargassum_outlook_2022_bulletin05_USF.pdf (Accessed May 22, 2024). 

Hu, C., Hardy, R., Ruder, E., Geggel, A., Feng, L., Powers, S., et al. (2016). Sargassum 
coverage in the northeastern Gulf of Mexico during 2010 from Landsat and airborne 
observations: Implications for the Deepwater Horizon oil spill impact assessment. Mar. 
pollut. Bull. 107, 15–21. doi: 10.1016/j.marpolbul.2016.04.045 

Hu, C., Wang, M., Lapointe, B. E., Brewton, R. A., and Hernandez, F. J. (2021). On 
the Atlantic pelagic Sargassum’s role in carbon fixation and sequestration. Sci. Total. 
Environ. 781, 146801. doi: 10.1016/j.scitotenv.2021.146801 

Huffard, C. L., von Thun, S., Sherman, A. D., Sealey, K., and Smith, K. L. (2014). 
Pelagic Sargassum community change over a 40-year period: temporal and spatial 
variability. Mar. Biol. 161, 2735–2751. doi: 10.1007/s00227-014-2539-y 

Johns, E. M., Lumpkin, R., Putman, N. F., Smith, R. H., Muller-Karger, F. E., T. 
Rueda-Roa, D., et al. (2020). The establishment of a pelagic Sargassum population in 
the tropical Atlantic: Biological consequences of a basin-scale long distance dispersal 
event. Prog. Oceanogr. 182, 102269. doi: 10.1016/j.pocean.2020.102269 

Jones, D. L. (2017). Fathom Toolbox for MATLAB: software for multivariate 
ecological and oceanographic data analysis (St. Petersburg, FL, USA: College of 
Marine Science, University of South Florida). Available online at: https://www.usf. 
edu/marine-science/research/matlab-resources/index.aspx/ (Accessed March 3, 2025). 

Juman, R. A. (2005). The structure and productivity of the Thalassia testudinum 
community in Bon Accord Lagoon,Tobago. Rev. Biol. Trop. 53, 219–227. Available at: 
http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442005000300027 
&lng=en&nrm=iso&tlng=en. 

Krause-Jensen, D., and Duarte, C. M. (2016). Substantial role of macroalgae in 
marine carbon sequestration. Nat. Geosci. 9, 737–742. doi: 10.1038/ngeo2790 

Laffoley, D., Baxter, J. M., Thevenon, F., Oliver, J. D., Baxter, J. M., Thevenon, F., et al. 
(2014). The significance and management of natural carbon stores in the open ocean 
(Gland, Switzerland: IUCN (International Union for Conservation of Nature)). 

Lee, K. S., Park, S. R., and Kim, Y. K. (2007). Effects of irradiance, temperature, and 
nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 350, 144–175. 
doi: 10.1016/j.jembe.2007.06.016 
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(2022). Impacts of floating Sargassum accumulation on the fringing mangrove 
Rhizophora mangle in Southwestern Puerto Rico: A Case Study (Mayagüez, Puerto 
Rico: University of Puerto Rico at Mayagüez). 
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Sá ́nchez-Beristain, F., Garcıa-Barrera, P., and Calvillo-Canadell, L. (2016). Mares 
calcı ́ ́ ́ticos y aragonıticos: efectos en organismos formadores de arrecifes a traves del 
tiempo. TIP 19, 45–53. doi: 10.1016/j.recqb.2016.02.005 

Skliris, N., Marsh, R., Appeaning Addo, K., and Oxenford, H. (2022). Physical drivers 
of pelagic sargassum bloom interannual variability in the Central West Atlantic over 
2010–2020. Ocean. Dynamics. 72, 383–404. doi: 10.1007/s10236-022-01511-1 

Sonter, L. J., Herrera, D., Barrett, D. J., Galford, G. L., Moran, C. J., and Soares-Filho, 
B. S. (2017). Mining drives extensive deforestation in the Brazilian Amazon. Nat. 
Commun. 8, 1013. doi: 10.1038/s41467-017-00557-w 

Sutton, A. J., Sabine, C. L., Feely, R. A., Cai, W. J., Cronin, M. F., McPhaden, M. J., 
et al. (2016). Using present-day observations to detect when anthropogenic change 
forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences 
13, 5065–5083. doi: 10.5194/bg-13-5065-2016 

Valdés-Pizzini, M., and Schärer-Umpierre, M. (2014). People, habitats, Species, and 
Governance: An Assessment of the Social-Ecological System of La Parguera, Puerto 
Rico. Available online at: http://www.seagrantpr.org/catalog/files/books/La_Parguera. 
pdf (Accessed February 18, 2025). 

Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., and Foreman, K. (1997). 
Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem 
consequences. Limnol. Oceanogr. 42, 1105–1118. doi: 10.4319/lo.1997.42.5_part_2.1105 

́ ́van Tussenbroek, B. I., Hernandez Arana, H. A., Rodrıguez-Martınez, R. ́ E., 
Espinoza-Avalos, J., Canizales-Flores, H. M., González-Godoy, C. E., et al. (2017). Severe 
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