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Detecting small seamounts
in multibeam data using
convolutional neural
networks
Tobias Ziolkowski1*, Colin W. Devey1 and Agnes Koschmider2

1GEOMAR - Helmholtz Centrum for Ocean Research Kiel, Kiel, Germany, 2Process Analytics Group,
University of Bayreuth, Bayreuth, Germany
Seamounts play a crucial role in marine ecosystems, ocean circulation, and plate

tectonics, yet most remain unmapped due to limitations in detection methods.

While satellite altimetry provides large-scale coverage, its resolution is

insufficient for detecting smaller seamounts, necessitating high-resolution

multibeam bathymetry. This study introduces a deep-learning-based

framework for automated small seamount detection in multibeam bathymetry,

combining a CNN-based filtering step with U-Net segmentation to enhance

accuracy and efficiency. Using multibeam bathymetric data from the SO305–2

expedition, the proposed approach successfully identified 30 seamounts, many

of which were undetectable using satellite altimetry. A hyperparameter

optimization study determined the optimal U-Net configuration, achieving a

Dice Coefficient of 0.8274 and a Mean IoU of 0.7514. While the model performed

well within the training dataset, cross-regional generalization remains

challenging, with reduced accuracy observed in areas of highly variable

seafloor morphology. The results highlight the limitations of satellite altimetry,

as only 14 of the 30 detected seamounts were visible in satellite-derived datasets.

This underscores the necessity of high-resolution multibeam surveys for

capturing fine-scale seafloor features. In contrast to time-intensive manual

annotation—which can require several hours to accurately delineate each

individual seamount—the automated U-Net-based segmentation approach

analyzed 146,060 km² of multibeam data within seconds, offering substantial

time savings and scalability for large-scale mapping efforts. Beyond geological

mapping, automated seamount detection has broad applications in marine

ecology, environmental monitoring, and plate tectonics research. Future work

should focus on integrating physical principles and geological constraints, such

as typical seamount morphology, size distributions, and tectonic setting, to

improve classification accuracy.
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1 Introduction

Seamounts, underwater mountains formed by volcanic activity,

are significant features of the ocean floor, providing important

information about plate tectonics and influencing, for example,

marine ecosystems, ocean circulation and global geochemical

cycles. Mapping these structures is essential for advancing

oceanographic and geological research. However, most seamounts

remain unmapped due to limitations in detection methods.

Satellite altimetry has been widely used to detect large

seamounts through gravity anomalies, but its resolution

constraints hinder the identification of smaller structures. Kim

and Wessel (2011) detected seamounts taller than 1,500 meters,

estimating between 25,000 and 140,000 seamounts exceeding 1,000

meters in height while suggesting that up to 25 million seamounts

above 100 meters remain uncharted. More recently, Gevorgian et al.

(2023) expanded the global seamount catalog by identifying 19,325

new seamounts, increasing the total to 43,454. Despite these

advances, the reliability of satellite altimetry in detecting small

seamounts remains uncertain, particularly given the influence of

data resolution and noise.

Multibeam bathymetry enables direct, high-resolution mapping

of the seafloor, offering far greater detail than satellite-based methods.

However, while the surveys themselves remain time-intensive and

spatially constrained, the subsequent analysis and annotation of

collected data present an additional bottleneck. To address this

challenge, this study introduces an automated deep-learning-based

framework to accelerate the detection and classification of small

seamounts in multibeam datasets. The approach combines

convolutional neural networks (CNNs) for initial filtering with a

U-Net-based segmentation model to delineate potential seamount

regions. By replacing manual annotation with a scalable two-step

pipeline, the method significantly reduces the time and effort required

for post-survey analysis—especially for identifying small seamounts

often missed in global databases.

An additional challenge lies in understanding the morphological

properties of small seamounts. Smith (1988) proposed a height-to-

base radius ratio of 0.21, but it remains unclear whether this

relationship holds for smaller seamounts or if geometric variations

require adjustments in altimetry-based models. Addressing this

question is critical for improving detection methodologies.

To systematically evaluate this approach, the study addresses

the following research questions:
Fron
1. How does a filtering-based approach improve the

identification of small seamounts in multibeam

bathymetric data compared to manual identification?

2. What are the optimal hyperparameters for training a U-Net

model to achieve the highest segmentation accuracy for

small seamount detection?

3. How well does the proposed framework generalize across

different geographic regions, and what limitations arise

when applying a model trained in one ocean basin

to another?
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4. What is the effective lower detection limit of satellite

altimetry for small seamounts, and how does this

compare to detections from high-resolution multibeam

bathymetric data?
Beyond geological mapping, automated seamount detection has

broad applications in marine science. In submarine topography

studies, this methodology can be extended to detect and classify

other undersea features, such as ridges, trenches, and hydrothermal

vent fields (Huang et al., 2024). In marine ecology, seamounts serve

as biodiversity hotspots, providing habitat for deep-sea organisms;

automating their detection can support conservation efforts (Clark

et al., 2010). Additionally, accurate seamount mapping contributes

to research on seafloor geodynamics, volcanic activity, and plate

tectonics (Matabos et al., 2022). Automated bathymetric analysis

also plays a critical role in environmental monitoring and deep-sea

mining, assisting in landslide risk assessment and resource

extraction planning (Jones et al., 2021; Usui and S, 2022).
2 Literature review

Seamount classification has been a focal point in marine

geosciences, employing a range of methods from satellite

altimetry to high-resolution multibeam bathymetry. Early studies,

such as Smith (1988) and Mitchell (2001), primarily relied on

satellite-derived gravity data to detect and classify seamounts.

While effective for large-scale features, these approaches are

inherently constrained by resolution limitations, as only larger

seamounts generate sufficiently strong gravitational anomalies to

be visible in global datasets. Multibeam bathymetry provides a

higher-resolution alternative, enabling the detection of smaller

features. However, its limited spatial coverage and the manual

effort required for classification restrict its scalability for

global mapping.

To address these challenges, machine learning techniques have

been explored for automated feature extraction in bathymetric

datasets. Cracknell and Reading (2014) compared various

supervised learning algorithms for lithology classification,

identifying Random Forests as a robust choice due to its spatial

accuracy, while SVMs and k-NN exhibited computational

inefficiencies and sensitivity to noise. Despite their success in

broad geological classification, these methods rely on hand-

engineered features, making them unsuitable for detecting

complex, small-scale seamounts.

Recent advances in deep learning have significantly improved

seafloor classification by automatically extracting hierarchical

features from raw data. Valentine and Kalnins (2013) introduced

an autoencoder-based framework to detect seamount-like features

based on reconstruction errors, reducing human bias but requiring

extensive training data. Similarly, Liu et al. (2024) employed YOLO

V7 Tiny for detecting deepsea features under challenging imaging

conditions, achieving high accuracy but struggling to generalize

across diverse bathymetric terrains.
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Several CNN architectures have been widely explored in

geospatial and seafloor classification applications, including

VGG16 (Simonyan and Zisserman, 2015), ResNet50 (He et al.,

2016), InceptionV3 (Szegedy et al., 2016), and MobileNetV2

(Sandler et al., 2018). These models offer varying trade-offs in

feature representation, computational efficiency, and robustness:
Fron
• VGG16 is a deep yet simple architecture, utilizing small

convolutional filters to extract structured features, making it

effective for hierarchical representation. However, its high

computational demand limits its efficiency for large-

scale datasets.

• ResNet50 introduces residual connections, allowing deeper

networks while mitigating vanishing gradient issues,

making it well-suited for complex pattern recognition in

bathymetric data.

• InceptionV3 employs multi-scale convolutions, enhancing

adaptability to seamounts of varying size and morphology.

• MobileNetV2, optimized for computational efficiency, uses

depthwise separable convolutions but lacks the necessary

depth and architectural components for detailed segmentation.
Given the need for efficient large-scale filtering in seamount

detection, we conduct a comparative analysis of these models in

Section 4.1 to evaluate their effectiveness in generating feature

vectors for clustering and classification.

For detailed bathymetric segmentation, U-Net (Ronneberger et al.,

2015) was selected as the core architecture due to its proven ability to

combine high segmentation accuracy with computational feasibility.

Originally developed for biomedical imaging, U-Net’s encoder-decoder

design, augmented with skip connections, ensures that both contextual

and spatial information is preserved—critical for detecting small,

irregularly shaped seamounts in multibeam bathymetric data. Unlike

classification models that provide a single output per image or object

detectors that require bounding boxes, U-Net performs dense pixel-

wise labeling, which is particularly suited for the continuous and

ambiguous topography of the seafloor. Its relatively low data

requirements and efficient training regime further make it a practical

solution for seafloor mapping tasks where labeled data is limited.

Other segmentation architectures, though effective in image

processing, exhibit notable limitations:
• DeepLabV3+: Chen et al. (2018), while capturing multi-

sca le context through atrous convolut ions , i s

computationally expensive.

• Mask R-CNN: He et al. (2017) excels in instance

segmentation but relies on predefined object boundaries,

making it less suitable for the continuous, often ambiguous

topographies of seamounts.

• YOLO-based models: Wang and Bochkovskiy (2022), while

optimized for real-time object detection, lack the

granularity required for detailed segmentation.
tiers in Marine Science
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Given these considerations, U-Net provides the best balance

between segmentation accuracy and computational efficiency. Its

architecture is uniquely suited for small seamount segmentation,

enabling robust detection even under conditions of sparse training

data and morphologically complex targets.

The increasing availability of high-resolution bathymetric

datasets has led to a surge in the application of deep learning

across marine geosciences, environmental monitoring, and

geospatial data fusion. Chitre et al. (2024) demonstrated machine

learning applications in bathymetric data processing, while

Cherubini et al. (2024) utilized Copernicus Marine Service and

EMODnet data for marine habitat modeling. Similarly, Deng et al.

(2024) applied deep learning to analyze the environmental impact

of floating offshore wind turbines.

Beyond environmental modeling, deep learning has also been

applied in geospatial data fusion and numerical homogenization.

Khalil et al. (2024) integrated airborne electromagnetic and

borehole data with bathymetric analysis to enhance coastal

mapping, while Qin et al. (2024) developed multi-scale satellite-

derived bathymetry models to improve spatial resolution.

Despite these advancements, detecting small seamounts

remains challenging due to:
• Limited labeled training data for small-scale features.

• High variability in seafloor morphology, making

classification difficult.

• Dist inguish ing true seamounts f rom noise in

multibeam bathymetry.
Many models, including Random Forests, SVMs, and XGBoost,

struggle to generalize across diverse regions. Unsupervised

clustering techniques, though useful in segmenting bathymetric

images, often fail to distinguish small seamounts from

background noise.

To address these challenges, this study introduces a two-step

deep learning framework combining CNN-based feature filtering

with U-Net segmentation:
1. Feature Clustering: The dataset is first filtered to pre-select

seamount candidates using CNN-generated feature vectors.

2. Seamount Segmentation: The U-Net model is then applied

to refine the classification, ensuring robust detection.
Additionally, this study explicitly tests cross-regional

generalization, training on Atlantic Ocean bathymetry and

evaluating on Indian Ocean datasets to assess model adaptability.

By integrating these innovations, this study presents a scalable,

high-accuracy framework for small seamount detection, addressing

the key limitations in machine learning-based seafloor

classification. The following sections outline the methodology,

experimental setup, and results to demonstrate the effectiveness of

this approach.
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3 Methodology

3.1 Image filtering

Our framework processes large-scale bathymetric data into

manageable subsets, facilitating the efficient detection of potential

seamount features. The methodology, illustrated in Figure 1,

involves five key steps: image creation, segmentation, feature

calculation, clustering, and manual labeling.

Image Creation: The input consists of multibeam bathymetric

data that has been preprocessed to correct artifacts and improve

overall quality. To ensure clean input data, outlier detection and

removal were performed using the optimized filtering method

described by Ziolkowski et al. (2024), which enhances data

reliability by eliminating spurious depth values from multibeam

echo-sounder measurements. High-resolution seafloor maps were

subsequently generated using Python’s Matplotlib library, applying

the viridis color scheme to represent depth variations. This

perceptually uniform colormap enhances contrast between flat

seafloor and elevated features such as seamounts, facilitating the

ability of the U-Net architecture to learn and distinguish relevant

morphological patterns during the segmentation process. To ensure

that every 256×256 image uses the same absolute depth-to-color

mapping (and thus identical contrast), we compute a single pair of

“global” depth limits (global min, global max) over the entire input

survey before tiling. After interpolating each 24×24 chunk and

resizing it to 256×256, we clip every pixel to [global min,global max]

and linearly rescale to [0,1]. In this way, no two images from the

same survey ever have different contrast ranges—each pixel’s color

always maps back to the same meter-value. Segmentation: To

efficiently manage the computational challenges of seafloor

mapping, the data is divided into 256 × 256 pixel images with

10% overlap, ensuring that no seamount is truncated at the segment

edges. This step enables efficient downstream processing while

retaining critical morphological details in each region and

ensuring that the image size is large enough to fully visualize

entire seamount structures. We chose 256 × 256 as our image size

because it is a common power-of-two input for U-Net. We briefly

tested 128 × 128 (faster but lost small-feature fidelity) and 512 × 512

(higher fidelity but 4× more memory/time) and found that 256 ×

256 provided the best trade-off. Pixel resolution is kept fixed across
Frontiers in Marine Science 04
all surveys: each chunk is first interpolated to a 24 × 24 grid at 0.001°

resolution—covering 0.024° × 0.024° in latitude/longitude—and

then resized to 256 × 256 pixels. Hence each pixel corresponds to

9.375 × 10° (10 m, depending on latitude), both during training and

application. Even if a new dataset has different raw point densities,

our pipeline “forces” it onto that same 0.024°footprint per image, so

the model always sees a consistent meter-per-pixel scale. In

summary, by fixing grid resolution=0.001 and chunk size=24 and

always resampling to 256 × 256, we guarantee identical pixel

resolution from training to application, regardless of which survey

file is used. Feature Calculation: CNNs compute feature vectors for

each segmented image, capturing key characteristics such as texture

and structure. These vectors provide a compact, descriptive

representation of the seafloor features, enabling effective analysis.

Clustering: Feature vectors are clustered into 10 groups using

unsupervised methods, which ensures that images with similar

morphological characteristics are grouped together, significantly

reducing dataset complexity and focusing attention on potential

seamount regions. The choice of k=10 was not arbitrary but reflects

a balance between two competing needs: capturing the major

morphological variations in our CNN-derived feature space and

keeping the number of clusters low enough for efficient human

review. In practice, we found that ten clusters cleanly separated

large, flat or gently sloping patches from steeper, seamount-like

textures. Increasing k beyond 10 rarely produced qualitatively new

seamount candidate groups—most extra clusters simply subdivided

empty or flat-area images—while fewer than ten clusters began to

merge distinct seamount morphologies with background.

Labeling: A domain expert reviews and labels the clusters. This

human oversight ensures accurate identification of potential

seamount candidates. Images of flat seafloor and background are

excluded from further analysis, while the potential seamount cluster

is retained for subsequent steps. On average, the cluster-level review

takes under five minutes per survey: the expert scans a handful of

thumbnails from each of the 10 clusters (100 images total) in about

2–3 minutes, discards the clearly “background” clusters, and flags

only a few as “seamount candidates.” If desired, they can then page

through those candidate clusters for extra confidence—but the

minimal filtering step is complete in under five minutes, since no

individual “yes/no” decision is made on all 5–804 images. The result

of this methodology is a refined dataset of labeled clusters. Only the
FIGURE 1

Workflow for filtering images containing potential small seamounts from multibeam bathymetric data. The process involves five key steps: (1)
creation of a high-resolution seafloor map, (2) segmentation into smaller images for efficient processing, (3) feature extraction using CNNs, (4)
filtering of images based on calculated feature vectors, and (5) manual labeling of filtered images to identify potential seamount candidates for
further analysis.
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clusters containing potential seamounts undergo further analysis to

detect the summits and extents of each seamount.
3.2 Workflow for training and evaluating a
CNN for seamount detection

The workflow shown in Figure 2 outlines the process for preparing,

training, and evaluating a UNet architecture to detect seamounts in

multibeam data, beginning after the pre-selection of images likely to

contain seamounts (Figure 1).Data Input:The workflow starts with the

selected images containing regions that most likely include seamounts,

as shown in Figure 2. These images serve as the input for the

subsequent labeling and model training steps.

Summit Detection and Extent Mapping: Using labelme, seamount

features are manually annotated to create masks for training. Black

polygons outline the extent of each seamount. This step ensures

accurate identification of key morphological features essential for the

training process. Although all annotations were created by a single

domain expert to maintain consistency, this introduces potential

subjectivity and bias into the ground truth masks. Future work

should consider inter-annotator agreement studies or collaborative

labeling strategies to better quantify annotation reliability and improve

robustness of training data.

Mask Generation: The annotated summit and extent data are

used to generate binary masks for each seamount, where black areas

represent the seamount and white areas indicate the background.

These masks serve as the ground truth for training the UNet

architecture, establishing the expected output for each input image.

Model Training: The UNet architecture is trained using the input

images and their corresponding masks. The model learns to map the

input image features to the expected output, enabling it to detect and

delineate seamounts in multibeam bathymetric data accurately.

Model Evaluation: The trained model is evaluated using the mean

Intersection over Union (mean IoU) metric, which measures the

overlap between the predicted and manually labeled masks and

ranges from 0 (no overlap) to 1 (perfect overlap). A higher mean

IoU indicates better model performance in identifying and segmenting

seamounts, providing a reliable assessment of its accuracy. Generally,
Frontiers in Marine Science 05
mean IoU values between 0.75 and 0.85 are considered acceptable for

complex medical segmentation tasks, particularly when segment

boundaries are difficult to define, such as in tumor segmentation or

vessel segmentation (Amri et al., 2025; Peng et al., 2025; Moradmand

and R, 2025). In addition to mean IoU, the Dice coefficient is another

widely used metric in image segmentation, particularly in medical

imaging. It measures the similarity between predicted and ground-

truth segmentations and ranges from 0 (no overlap) to 1 (perfect

overlap). The Dice coefficient is particularly useful in imbalanced

datasets, where positive class pixels (e.g., segmented structures) are

much fewer than background pixels (Chamseddine et al., 2025; Yang

et al., 2025; Alyahyan, 2025).

To optimize model training, the Dice loss function is employed,

which is derived from the Dice coefficient. It is commonly used in

medical image segmentation because it mitigates the effect of class

imbalance by emphasizing the similarity of foreground structures

rather than treating all pixels equally. Dice loss is especially beneficial

for detecting small and irregularly shaped structures, making it a

suitable choice for seamount segmentation, where feature boundaries

are often ambiguous (Zhang et al., 2025; Shen et al., 2025). In future

studies, implementing cross-validation labeling rounds with multiple

annotators and calculating inter-annotator metrics such as Cohen’s

kappa (Cohen, 1960) could further strengthen the training dataset

quality and reduce the likelihood of label noise.

This workflow represents a comprehensive pipeline for training

and evaluating a UNet model tailored for the automatic detection of

small seamounts. It combines human expertise in labeling with

advanced machine learning techniques, enabling efficient and

accurate analysis of multibeam bathymetric data.
4 Results and discussion

4.1 Analysis of model performance in
seamount image filtering using feature
vectors

Seamount images show complex patterns and structural

ambiguity, posing significant challenges for automated feature
FIGURE 2

Workflow illustrating the processing pipeline for training a UNet architecture to detect small seamounts in multibeam data. The pipeline begins with
raw multibeam data input, followed by extent mapping to annotate seamount features. Masks are then generated to prepare training images, which
are used to train the UNet model. The workflow concludes with model evaluation to assess performance and accuracy in detecting and delineating
seamounts.
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extraction. The results indicate that models with stronger feature

extraction capabilities, such as VGG16 and ResNet50, produced

more precise feature vectors, leading to better clustering

performance and higher agreement with manual labeling.

Models that rely on lightweight architectures and reduced

feature complexity, such as MobileNetV2, demonstrated lower

performance, particularly in separating clusters when faced with

highly uneven cluster sizes. InceptionV3, while effective in

capturing variations in shape and color, exhibited reduced

clustering precision when confronted with uniform textures

across different clusters. Below, the performance of each model is

discussed in terms of cluster separation, agreement with manual

labeling, strengths, and weaknesses, as summarized in Table 1.
Fron
• VGG16: VGG16 achieved the highest agreement with

manual labeling (97–100%), demonstrating robust and

interpretable feature extraction, leading to clear cluster

separation. Its architecture is particularly suited to

datasets with clear patterns, making it ideal for

applications requiring consistent and robust feature

extraction. However, its tendency to over represent large

clusters limited its effectiveness for highly complex or

imbalanced datasets.

• ResNet50: ResNet50 performed well in scenarios requiring

the extraction of more complex or abstract patterns,

achieving 81–90% agreement with manual labeling. It is a

viable alternative for datasets with higher structural

variability or subtle morphological differences. However,

its performance was less consistent than VGG16,
tiers in Marine Science 06
par t i cu lar ly in datase t s wi th l imi ted textura l

differentiat ion, where it struggled to maintain

stable clustering.

• InceptionV3: InceptionV3 showed strong multi-scale feature

extraction but lower consistency, with agreement scores

ranging from 66–94%. It is recommended for datasets with

significant variability in patterns and colors, but it is less

effective for uniform image distributions. Its performance

was hindered when dealing with color homogeneity within

clusters, leading to occasional misclassification.

• MobileNetV2: MobileNetV2 had the lowest agreement with

manual labeling (18–82%), reflecting its difficulty in handling

fine-grained textures and separating clusters effectively. This

was especially evident in datasets where clusters varied

significantly in size, ranging from single instances to over

3000 images. While computationally efficient, MobileNetV2

should be avoided in tasks requiring detailed feature

extraction, such as seamount identification, due to its

inability to handle complex patterns.
The analysis highlights VGG16 as the optimal model for

seamount identification due to its ability to extract robust features

and achieve high agreement with manual labeling. ResNet50 is a

strong alternative for datasets with complex patterns but suffers

from inconsistencies in cluster separation. InceptionV3 is useful for

datasets with diverse features but struggles with uniform patterns,

while MobileNetV2 is unsuitable for this application due to its

limited feature extraction capabilities and poor clustering

performance. These insights provide a clear basis for selecting
TABLE 1 Summary of clustering results across different CNN architectures for seamount image classification.

Model Total Selected % sel. Cluster distribution Matches Manual %
match

Clusters

VGG16 16816 11266 66.99 300–2000 per cluster, good separability 124 127 97.64 15

VGG16 16816 5834 34.69 Uniformly distributed 127 127 100.00 10

VGG16 16816 6818 40.54 One large cluster with 10k,
others balanced

120 127 94.49 5

ResNet50 16816 11927 70.93 400–1600 per cluster,
good differentiation

103 127 81.10 15

ResNet50 16816 8151 48.47 Uniformly distributed 86 127 67.72 10

ResNet50 16816 9430 56.08 One large (8k), others 2500 each 115 127 90.55 5

InceptionV3 16816 11178 66.47 129–1900, not perfectly separable 102 127 80.31 15

InceptionV3 16816 14404 85.66 Slightly uneven distribution 120 127 94.49 10

InceptionV3 16816 15419 91.69 One larger cluster, rest uniform 84 127 66.14 5

MobileNetV2 16816 6687 39.77 Very uneven, 1–3059 per cluster 23 127 18.11 15

MobileNetV2 16816 9430 56.08 Very uneven distribution 105 127 82.68 10

MobileNetV2 16816 9433 56.10 Very uneven distribution 69 127 54.33 5
fr
The table lists the number of total and selected images, the percentage selected, and a qualitative description of cluster distribution. “Cluster Distribution” refers to how images are grouped in
terms of size variation, uniformity, and dominance. The “% Match” indicates the percentage of selected images matching the manually curated seamount labels.
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appropriate models based on the specific requirements of seamount

image clustering tasks.
4.2 Training of the U-Net architecture for
seamount detection

The dataset used for training the U-Net architecture consists of

high-resolution bathymetric and geological data collected during

two research cruises, MSM75 and MSM88, in the Atlantic Ocean.

These datasets provide detailed information on seafloor

morphology, fault structures, and small seamounts, making them

well-suited for an image-based deep learning approach.

The MSM75 cruise, conducted in 2018, focused on four key

areas along the Reykjanes Ridge, a slows preading ridge influenced

by the Iceland hotspot. This dataset includes 15 m resolution ship-

based bathymetry, ROV-based ground-truthing, and geochemical

analyses of glass samples, capturing variations in magma

composition, fault density, and seamount morphology. These

features are strongly influenced by factors such as distance from

the hotspot and the magmatic or tectonic accretion state of axial

volcanic ridges (AVRs) (Le Saout et al., 2023). Given the distinct

geological and morphological variations within the dataset, it

provides an excellent basis for training a segmentation model

capable of distinguishing complex seafloor structures.

Complementing this, the MSM88 cruise dataset, collected using

a Kongsberg EM 122 multibeam system at approximately 100 m

horizontal resolution, covers a much larger area—approximately

153,121 square kilometers—spanning from the Cabo Verde

Exclusive Economic Zone (EEZ) to the EEZs of Guadeloupe,

Dominica, and Martinique. This dataset includes diverse Atlantic

seabed morphologies, ranging from flat sedimented plains to

seamounts, fracture zones, and the Mid-Atlantic Ridge. The large

volume of depth soundings (86 million) ensures high spatial

coverage and variability, further enhancing the robustness of the

training data.

Table 2 provides an overview of the spatial extent, resolution,

and depth ranges of the three datasets used for training and testing.

The diversity of these datasets enhances the robustness and

applicability of the model across different seafloor morphologies.

These datasets are particularly well-suited for training the U-

Net model, as they provide high-resolution seafloor imagery with

detailed geological labels. The combination of fine-scale bathymetry

from MSM75 and the broader regional coverage of MSM88 ensures

that the model learns to generalize across varying seafloor

structures, improving its ability to segment and classify geological

features effectively.
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4.3 Hyperparameter selection and training
strategy

In this section, we analyze the impact of different

hyperparameter configurations on the performance of the U-Net

architecture for seamount detection. The evaluation focuses on

validation loss, mean Intersection over Union (IoU), and validation

mean IoU, as summarized in Table 3. The goal of this analysis is to

identify the optimal parameter constellation for final model

training, ensuring high segmentation accuracy and robustness.

Mean Intersection over Union (IoU) is a widely used metric in

image segmentation, quantifying the overlap between predicted and

ground truth masks. It is calculated as the ratio of the intersection to

the union of both masks, ranging from 0 to 1, where higher values

indicate better segmentation performance (Dwarakanath and

Kuntiyellannagari, 2025).

Several key hyperparameters were varied during the grid search,

including the number of filters, kernel size, dropout rate, learning

rate, and batch size. One of the primary considerations is the

number of filters in the convolutional layers, which defines the

depth of feature extraction. A lower filter count, such as 16, may fail

to capture sufficient spatial details, whereas a significantly higher

count, such as 256 or more, increases computational costs and the

risk of overfitting, particularly given the relatively small dataset size.

To balance feature richness and computational efficiency, 32 and

128 filters were selected, following insights from prior research in

biomedical segmentation tasks (Iqbal et al., 2022; Srinivasan

et al., 2024).

Another crucial factor is the kernel size, which determines the

receptive field of convolutional layers. Smaller kernels, such as 3 × 3,

are effective for fine-grained detail extraction, while larger kernels,

such as 5 × 5, allow for broader spatial pattern detection in

bathymetric structures. The study focused on comparing these

two kernel sizes, as excessively large kernels (e.g., 7 × 7) could

introduce computational challenges and potentially over-smooth

small-scale features.

To mitigate overfitting and enhance generalization, dropout

rate was varied between 0.1 and 0.5. Dropout serves as a

regularization technique by randomly deactivating neurons

during training, preventing the model from relying too heavily on

specific features. This variation allowed for an assessment of the

trade-off between preventing overfitting and ensuring sufficient

information retention for effective segmentation.

Additionally, the learning rate plays a vital role in determining

how quickly the model updates its weights during training. A low

learning rate encourages stable convergence, whereas a higher

learning rate accelerates training but increases the risk of
TABLE 2 Summary of bathymetric datasets used for training and evaluation.

Dataset Cruise ID Area covered (km2) Resolution Depth range (m)

MSM75 MSM75 ∼10,000 15 m 102–2,044

MSM88 MSM88 ∼153,000 100 m 1,500–6,000

SO305/2 SO305/2 ∼12,000 100 m 492–5,664
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overshooting optimal weight values. To identify an optimal balance,

the study compared learning rates of 0.0001 and 0.001, ensuring

that the model could learn effectively without instability or

divergence. We use the Adam optimizer (with the learning rate

chosen via our hyperparameter search). Adam combines the

benefits of momentum and adaptive learning rates, which helps

stabilize training on our relatively small U-Net dataset.

Lastly, the batch size was explored to assess its effect on training

efficiency and model performance. Smaller batch sizes allow for

more frequent weight updates per iteration, while larger batch sizes

contribute to more stable gradient estimations. To maintain a

balance between computational efficiency and convergence

stability, batch sizes of 16 and 64 were evaluated.

Their selection was guided by best practices in deep learning,

computational efficiency, and the unique characteristics of

bathymetric data. Specifically, the dataset was divided into 80%

training and 20% validation sets using stratified sampling to

preserve class balance and ensure a robust evaluation of model

performance. We combined labeled images from both MSM75 and

MSM88 into a single pool, then applied an 80/20 split with random

state=42, so the training/validation split is fixed across all runs. For

augmentation, we rotated each normalized 256×256 image by 90°

and 180°, producing two extra images per original (three total).

These practices are widely adopted in the geospatial and marine

sciences communities and have been recommended for applications

involving multibeam bathymetry and habitat mapping (Summers

et al., 2021; Roelfsema et al., 2021). Their influence on model

performance is analyzed in the following sections, with a focus on

preventing overfitting and supporting generalization across diverse

seafloor morphologies.

The following sections discuss the results of these

hyperparameter configurations, analyzing their influence on

model performance and the trade-offs they introduce in the

context of seamount segmentation.
4.3.1 Number of filters
In our implementation, the number of filters doubles at each

successive “down” step in the encoder and then halves again in the

decoder. The results indicate that models using 32 filters generally

outperform those with 128 filters in terms of mean IoU and

validation mean IoU. The best-performing configuration (32

filters, kernel size 5, dropout rate 0.1, learning rate 0.0001, batch

size 64) achieves a validation mean IoU of 0.722, higher than

configurations with 128 filters, which generally yield IoU values

below 0.66.

Models with 128 filters and a large kernel size (5) tend to

perform poorly, particularly in cases where the dropout rate is high

or the learning rate is large. Several configurations with 128 filters,

kernel size 5, dropout rate 0.5, and a learning rate of 0.001 resulted

in extremely poor performance (mean IoU < 0.21). These results

suggest that larger models may overfit or fail to generalize when

handling small-scale features in seamount detection.
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4.3.2 Kernel size
A kernel size of 5 consistently improves model performance

compared to a kernel size of 3. The best-performing models all use a

5 × 5 kernel, which appears to enhance the model’s ability to

capture seamount structures in multibeam data. Notably, the

highest validation mean IoU (0.722) is obtained with a 5 × 5

kernel, 32 filters, dropout rate 0.1, learning rate 0.0001, and batch

size 64.

Configurations with a 3 × 3 kernel tend to yield slightly lower

performance, with validation mean IoU values ranging from 0.584

to 0.660. While smaller kernels may still be effective, the data

suggests that capturing larger contextual information with a 5 × 5

kernel improves segmentation quality. Larger kernels (e.g., 7 × 7)

were not tested due to increased computational complexity and

potential over-smoothing of small seamount features.

4.3.3 Dropout rate
The best-performing models use a dropout rate of 0.1, while

higher dropout rates (0.5) lead to a decline in performance.

Configurations with dropout 0.5 frequently result in unstable

training, with validation mean IoU values dropping below 0.55 in

most cases. This suggests that excessive regularization hinders the

network’s ability to learn fine-grained features necessary for

segmenting small seamounts. Lower dropout values (<0.1) were

avoided to prevent potential overfitting, while higher values (>0.5)

were not considered due to excessive information loss

during training.

4.3.4 Learning rate
A learning rate of 0.0001 is generally more stable and results in

higher mean IoU values than 0.001. Many configurations with a

learning rate of 0.001 exhibit poor performance, with validation loss

values reaching 0.828, indicating divergence or unstable training.

Notably, when a learning rate of 0.0001 is used in combination

with a kernel size of 5 and dropout rate of 0.1, the model achieves

the best performance. These findings suggest that a lower learning

rate prevents the model from overshooting optimal weights, leading

to better generalization. Higher learning rates (>0.01) were

excluded due to the risk of divergence, while lower rates

(<0.0001) were avoided as they could lead to excessively

slow training.

4.3.5 Batch size
The best-performing models generally use a batch size of 64.

While some configurations with batch size 16 perform well

(validation mean IoU around 0.66), they do not outperform batch

size 64 when combined with optimal hyperparameters.

Interestingly, several models with batch size 16 and 128 filters

perform significantly worse, possibly due to instability in training. A

larger batch size appears to contribute to better gradient estimation and

stable convergence. Extremely large batch sizes (>128) were not tested

due to GPU memory constraints and the risk of poor generalization.
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4.3.6 Optimal configuration and conclusions
Based on this analysis, the best-performing configuration is:

32 filters, kernel size 5, dropout rate 0.1, learning rate 0.0001,

batch size 64.

This configuration achieves the highest validation mean IoU of

0.722, suggesting that it provides the most reliable segmentation

performance for small seamounts. These results emphasize the

importance of choosing a balanced architecture that prevents

overfitting while ensuring stable learning dynamics. The findings also

reinforce that hyperparameter tuning is essential for optimizing deep

learning models in seamount segmentation, as poor configurations can

severely impact model accuracy and generalization ability.

4.3.7 Balancing generalization and model
complexity

In deep learning applications, particularly those involving

image segmentation, managing the balance between model

complexity and generalization is crucial to avoid overfitting or

underfitting. These phenomena directly influence a model’s ability

to perform accurately on unseen data and are especially critical

when working with spatially diverse and sparsely labeled

bathymetric datasets.

Overfitting occurs when a model learns the training data too

well, including its noise and minor fluctuations, leading to poor

generalization on validation or test data. This typically manifests as

a low training loss combined with a high validation loss. In contrast,

underfitting arises when the model is too simplistic to capture the

underlying patterns of the data, resulting in high errors on both

training and validation sets.

To ensure that the U-Net model maintains a strong balance

between learning capacity and generalization, we monitored

validation loss, mean Intersection over Union (IoU), and

validation mean IoU across training epochs (see Table 3). These

metrics help assess both segmentation accuracy and model

robustness. In particular, consistently high validation mean IoU

values without significant divergence from training performance

indicate strong generalization ability.

Additionally, to avoid overfitting, regularization strategies such

as dropout, early stopping, and data augmentation were applied.

Stratified sampling was used to divide the dataset into 80% training

and 20% validation subsets, preserving class balance and ensuring

that all seamount categories are proportionally represented.

The observed performance trends align with best practices

established in machine learning literature. For example,

Sivakumar et al. (2024) emphasize the trade-off between training

and testing ratio and its effect on generalization in image processing.

Similarly, Manikandan et al. (2024) highlight the impact of

architectural complexity on overfitting and underfitting in

segmentation tasks using U-Net, supporting our methodological

choices for small seamount detection.

While the model demonstrates strong validation performance, a

limitation remains its sensitivity to out-of-domain (OOD) data—

bathymetric inputs that differ significantly from the training

distribution in terms of seafloor morphology, resolution, or noise

characteristics. Such domain shifts frequently occur in real-world
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deployments and may degrade model reliability. Future work

should therefore explore strategies such as domain adaptation,

transfer learning, and uncertainty quantification. These

approaches can improve robustness by enabling the model to

generalize to morphologically diverse regions, reducing the risk of

false positives or negatives in unfamiliar tectonic settings. Transfer

learning, in particular, has shown promise in segmentation tasks

with sparse annotations and heterogeneous data domains, such as

in medical imaging (Tajbakhsh et al., 2016).
4.4 Application of workflow to real-world
data

The data shown in Figure 3 were acquired during SO305-2, a

transit across the Indian Ocean after exiting the territorial waters of

Indonesia and Malaysia. Using the EM122 swath mapping system,

high-resolution bathymetric data were collected along this

tectonically active region, which exhibits significant deformation

of the oceanic plate. The dataset reveals detailed seafloor

morphology, uncovering previously uncharted geological features

in this underexplored area.

As the survey approached the Central Indian Ridge (CIR), it

focused on the Argo transform fault and its fracture zones. The

EM122 system detected numerous small seamounts, many less than

1000 meters in diameter, which remain undetectable in lower-

resolution satellite altimetry. This highlights the limitations of

satellite-based mapping for smaller topographic features and

underscores the advantages of multibeam systems in resolving

fine-scale bathymetric details.

This high-resolution dataset provides a valuable resource for

developing and validating automated seamount detection

algorithms. It offers detailed bathymetric imagery across varied

tectonic settings, making it an ideal testbed for refining detection

methods and improving our understanding of small seamount

distribution and morphology.

A total of 11,139 images were generated from the SO305–2

expedition data during preprocessing, with 30 seamounts manually

labeled. To prepare the dataset for seamount detection, a filtering

and clustering process (Section 4.1) reduced the dataset to 6,626

images, effectively eliminating 40% of the original data. As shown in

Figure 4, clusters 1, 6, and 7 were selected for further processing, as

they most likely contain seamount images, while the remaining

clusters primarily represent flat seafloor or other irrelevant features.

Clusters 0 and 2, identified as potential artifacts likely caused by

noise, were excluded from further analysis. Additionally, 30

seamounts were manually identified within the dataset, and all 30

seamounts from the original data were retained in the selected

images, ensuring comprehensive coverage of the target structures

for model training. For model training, we used the 256×256 images

generated from the MSM75 and MSM88 datasets, in which 138

seamounts had been manually labeled. The U-Net was trained on

this combined pool of MSM75/MSM88 images.

The model was trained using the optimal hyperparameters

identified in Section 4.3. To prevent overfitting and ensure
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optimal performance, early stopping was implemented, monitoring

validation loss and halting training once no further improvements

were observed. Additionally, model checkpointing was used to save

the model whenever a lower validation loss was achieved, ensuring

retention of the best-performing version for further evaluation. The

progression of validation loss throughout training is shown in

Figure 5, exhibiting a steady decline until approximately epoch

37, after which further reductions become minimal.

Throughout training, the model demonstrated a progressive

improvement in segmentation performance, as reflected in the

increasing Dice Coefficient and Mean IoU, while validation loss

steadily decreased. Dice Loss, commonly used in segmentation tasks

to mitigate class imbalance, is derived from the Dice Coefficient, a

similarity measure evaluating the overlap between two sets. As for

class imbalance, most images have no seamount pixels, and even in

images that do, seamounts cover only about 10–20% of pixels—

hence our use of Dice Loss. By emphasizing misclassified regions,

Dice Loss helps capture fine-grained structures, making it

particularly effective for segmenting objects with irregular

boundaries (Zheng et al., 2025).

During the initial training phase (epochs 1–10), the model

exhibited low Dice scores, ranging from approximately 0.14 to

0.21. However, validation loss dropped sharply from 0.85 to 0.26

within this period, with the first major performance improvement

occurring around epoch 5, marking the transition to more stable

learning. This trend is illustrated in Figure 6, which depicts the

evolution of the Dice Coefficient over epochs.

In the mid-training phase (epochs 11–30), the model continued

improving, with validation loss reaching its minimum (0.1734) at

epoch 37. The Dice Coefficient rose significantly, surpassing 0.82,

while the Mean IoU exhibited a steady upward trend, further

indicating the model’s ability to generalize effectively. The

trajectory of the Mean IoU over training epochs, as visualized in

Figure 7, reflects this improvement.

During the late training phase (epochs 30–50), signs of

overfitting emerged as validation loss plateaued. The Dice

Coefficient fluctuated between 0.81 and 0.86, while the Mean IoU

remained relatively stable, showing minimal gains beyond epoch 37.

These observations suggest that further training did not yield

additional benefits, indicating that the model had reached its

optimal performance.

The best performance was recorded at epoch 37, where

validation loss reached its minimum (0.1734), and the model

attained a Dice Coefficient of 0.8274 and a Mean IoU of 0.7514—

representing the peak segmentation accuracy observed during

training. These results suggest that the model successfully learned

meaningful feature representations for image segmentation, with

performance stabilizing beyond this epoch. Consequently, epoch 37

was identified as the optimal balance point between learning

and generalization.

After training, the U-Net model was applied to the filtered

dataset to generate segmentation results for seamount detection.

Model predictions were compared to manually labeled seamounts

to assess performance. The U-Net successfully identified all 30

seamounts in the dataset, demonstrating high detection accuracy.
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The predicted outlines closely matched the ground truth, with only

minor deviations in shape and boundary precision, suggesting that

the model effectively captures key morphological characteristics

of seamounts.

Figure 8 displays all 30 manually labeled seamounts alongside

their corresponding model predictions, highlighting the robustness

of the proposed workflow in accurately detecting and segmenting

small seamount structures.

To further illustrate the challenges of detecting small

seamounts, Figure 9 presents examples of false predictions made

by the U-Net model. The misclassification of certain regions as

seamounts can be attributed to the complexity of seafloor

morphology and the inherent subjectivity of manual labeling.

Seafloor features vary significantly, and even human interpreters

may disagree on what qualifies as a seamount. Given this

subjectivity, discrepancies between model predictions and

reference labels are expected due to human error or differing

interpretations of the data.

A common characteristic among false positives is the presence

of localized seafloor elevations, which appear as yellow regions in

the bathymetric data. Although not actual seamounts, these features

share topographic similarities with true seamount structures,

making misclassification understandable. However, a key

limitation of the U-Net model is its occasional inability to

accurately capture the typical circular morphology of small

seamounts. Instead, elongated or irregularly shaped elevations are

sometimes misclassified as seamounts despite lacking the distinct

topographic characteristics that define them.

These observations suggest that while the model effectively

identifies seafloor elevations, it could be further improved in

distinguishing true seamounts from other raised features. Future

refinements could involve integrating morphological constraints

during training or applying post-processing techniques to filter out

elongated structures that do not conform to the expected circular

shape of small seamounts.

In Section 2, this study identified three key challenges in small

seamount detection: (1) the scarcity of manually labeled training

data, (2) the difficulty of segmenting irregular and morphologically

diverse features, and (3) the need for models that generalize across

varying seafloor conditions. To address the first challenge, a training

set of 138 seamounts was manually labeled using high-resolution

multibeam bathymetry, providing a diverse and representative

dataset for supervised learning. The second challenge was

mitigated through the use of the U-Net architecture, whose

encoder-decoder structure and skip connections allow for precise

pixel-wise segmentation of irregular and fine-scale seafloor features.

Lastly, the model’s generalization capability was enhanced by

filtering the dataset with a CNN-based clustering approach,

reducing noise and guiding the network’s attention to relevant

regions. Together, these strategies enabled effective training and

application of a robust segmentation model capable of detecting

small seamounts with high accuracy in real-world data.

Figure 10 highlights the 30 seamounts identified in the SO305–2

dataset, revealing a significant number of previously undetected

features. A major limitation of satellite-derived global seamount
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datasets, such as those based on vertical gravity gradient (VGG)

data, is their inability to resolve smaller seamounts (Yesson et al.,

2011). Consequently, only 14 of the 30 identified seamounts were

visible in satellite altimetry data, while the remaining 16 were too

small to be detected. This underscores the importance of

high-resolution.
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As shown in Table 4, 16 of the 30 identified seamounts (well-

known = 2) were completely absent from global satellite datasets. In

their study, Gevorgian et al. (2023) improved upon previous

altimetry-based seamount detection methods, identifying

seamounts as small as 421 meters in height, with most detections

exceeding 700 meters due to the limitations of the VGG method.
TABLE 3 Hyperparameter tuning results for U-Net.

Filters Kernel size Dropout
rate

Learning
rate

Batch size Val loss Mean IoU Val mean IoU

32 3 0.5 0.0001 64 0.403 0.584 0.584

128 3 0.5 0.0001 16 0.315 0.513 0.516

128 3 0.1 0.001 16 0.575 0.541 0.546

32 3 0.1 0.0001 64 0.298 0.616 0.617

32 3 0.1 0.0001 16 0.292 0.606 0.606

32 5 0.1 0.0001 16 0.214 0.637 0.636

32 3 0.1 0.001 16 0.301 0.609 0.615

128 5 0.1 0.001 64 0.828 0.207 0.101

128 5 0.5 0.0001 16 0.828 0.193 0.095

32 5 0.1 0.001 64 0.828 0.299 0.153

128 5 0.1 0.0001 16 0.318 0.606 0.628

32 3 0.5 0.001 16 0.828 0.309 0.161

128 5 0.1 0.001 16 0.828 0.199 0.094

32 5 0.1 0.0001 64 0.225 0.721 0.722

32 3 0.1 0.001 64 0.798 0.463 0.460

32 3 0.5 0.0001 16 0.493 0.544 0.548

128 5 0.1 0.0001 64 0.353 0.596 0.609

128 3 0.1 0.0001 64 0.275 0.659 0.660

128 5 0.5 0.001 16 0.505 0.462 0.469

128 5 0.5 0.0001 64 0.369 0.606 0.616

32 5 0.5 0.001 16 0.545 0.427 0.492

128 3 0.5 0.0001 64 0.295 0.650 0.652

128 3 0.5 0.001 64 0.828 0.209 0.100

128 3 0.5 0.001 16 0.828 0.194 0.094

32 3 0.5 0.001 64 0.828 0.318 0.167

32 5 0.5 0.0001 16 0.220 0.696 0.698

128 5 0.5 0.001 64 0.828 0.196 0.093

32 5 0.1 0.001 16 1.000 0.343 0.363

128 3 0.1 0.001 64 0.555 0.459 0.460

128 3 0.1 0.0001 16 0.291 0.649 0.651

32 5 0.5 0.001 64 0.828 0.201 0.095

32 5 0.5 0.0001 64 0.218 0.713 0.715
The configuration with 32 filters, kernel size 5, dropout rate 0.1, learning rate 0.0001, and batch size 64 achieved the highest validation mean IoU of 0.722 (highlighted in bold), indicating optimal
performance for seamount segmentation.
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FIGURE 3

Joint working area of the E-POLIO and M2Argo projects during the SO305–2 cruise, shown along the transit route from Singapore to Port Louis.
The boxed area indicates the survey region focused on the ARGO fracture zone.
FIGURE 4

Clusters generated after the filtering process, highlighting distinct seafloor morphologies. Clusters 1, 6, and 7 likely contain seamount images,
making them suitable for further analysis. All other clusters primarily represent flat seafloor or similar features and can be excluded from the U-Net
detection process for small seamount detection.
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This marked a significant improvement over earlier studies, such

Kim and Wessel (2011), who noted that traditional altimetry-based

methods struggled to detect features smaller than 1,500 meters due

to the limited resolution of gravity anomaly data. These findings

underscore the limitations of satellite-derived data in detecting

smaller seamounts and highlight the necessity of high-resolution

mul t ibeam ba thymet r i c su rveys fo r comprehens ive

seafloor mapping.

Additionally, 10 seamounts (well-known = 1) were previously

cataloged by Gevorgian et al. (2023) and Kim and Wessel (2011),

but our method provided independent validation of their existence
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using direct multibeam observations. These seamounts, ranging

from 315 to 2,005 meters in height, demonstrate that our approach

can both confirm and refine existing seamount inventories through

high-precision bathymetric measurements.

Interestingly, one feature predicted in previous seamount

catalogs (well-known = 0) was not confirmed in our multibeam

dataset. This discrepancy suggests a false positive in the satellite-

derived data, potentially caused by noise, interpolation artifacts, or

misclassification of other seafloor features as seamounts. Such cases

highlight the importance of direct validation using high-resolution

mapping to ensure the accuracy of global seamount databases.
FIGURE 5

Validation loss over epochs during model training. The red dashed line indicates the epoch where the best model was saved based on the lowest
validation loss.
FIGURE 6

Validation Dice coefficient over epochs. A higher Dice coefficient indicates better segmentation performance. The red dashed line highlights the
best model.
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Overall, these findings emphasize the crucial role of multibeam

sonar in capturing fine-scale seafloor topography and identifying

small seamounts that remain undetected in satellite altimetry data.

While altimetry-based methods provide valuable large-scale global

coverage, they systematically underestimate the number of small

seamounts due to resolution constraints. By applying machine

learning-based segmentation on high-resolution bathymetry, our

approach bridges the gap between broad-scale satellite surveys and

precise, localized mapping techniques.
5 Conclusion

This study introduced a deep-learning-based framework for

detecting small seamounts in multibeam bathymetric data,

addressing key limitations of traditional classification methods
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and satellite altimetry. The proposed two-step approach—

combining CNN-based filtering with U-Net segmentation—

significantly improved detection accuracy and efficiency. The

findings provide insights into each of the research questions

posed in the introduction:
• How does a filtering-based approach improve the

identification of small seamounts in multibeam

bathymetric data compared to direct classification

methods? The results demonstrated that CNNbased

filtering enhances seamount detection by pre-selecting

relevant image subsets, reducing noise and improving

segmentation accuracy. Unlike direct classification

methods, which attempt to classify entire images, the

filtering process focuses only on regions likely to contain

seamounts, reducing false positives and computational
FIGURE 7

Validation mean Intersection over Union (IoU) over epochs. The IoU metric evaluates the overlap between predicted and ground truth segmentation
masks, with higher values indicating better performance.
FIGURE 8

Comparison of manually selected images containing seamounts and their corresponding U-Net model predictions. The predicted seamounts closely
align with the actual seamount locations, indicating the model’s high detection performance.
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Fron
complexity. This two-step strategy outperformed

traditional direct classification methods, ensuring that the

segmentation model processes only meaningful data.

• What are the optimal hyperparameters for training a U-Net

model to achieve the highest segmentation accuracy for

small seamount detection? A grid search analysis identified

the best-performing hyperparameter configuration: 32

filters, a kernel size of 5 × 5, a dropout rate of 0.1, a

learning rate of 0.0001, and a batch size of 64. These settings

balanced feature extraction depth, regularization, and

training stability, yielding the highest segmentation

accuracy, with a Dice Coefficient of 0.8274 and a Mean
tiers in Marine Science 15
IoU of 0.7514. Models with excessively high filter counts or

dropout rates exhibited overfitting or unstable convergence,

highlighting the need for a balanced architecture in

seamount segmentation tasks.

• How well does the proposed framework generalize across

different geographic regions, and what limitations arise

when applying a model trained in one ocean basin to

another? While the model performed well on the SO305–

2 dataset, cross-regional generalization remains a challenge.

When tested on new datasets, the model maintained high

accuracy for seamounts with well-defined topographic

signatures, but performance declined in regions with
FIGURE 9

Examples of false predictions made by the U-Net model. In these cases, the model incorrectly labeled certain seafloor features as seamounts, likely
due to local elevation changes or elongated structures that share some morphological characteristics with true seamounts. These misclassifications
highlight the challenges in distinguishing small seamounts from other topographic variations in bathymetric data.
FIGURE 10

Map showing the 30 seamounts identified during the SO305/2 expedition. Seamounts detected by our model and also reported by Gevorgian et al.
(2023) and Kim and Wessel (2011) are marked in white. Green dots indicate newly discovered seamounts that were not previously documented,
while the red dot represents a location where a seamount was expected based on Gevorgian et al. (2023) and Kim and Wessel (2011), but no actual
seamount was found. These findings highlight the effectiveness of multibeam systems in detecting previously unknown seamounts. The expedition
started in Singapore (top right) and concluded in Mauritius (bottom left).
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highly variable seafloor morphology. This suggests that

further fine-tuning or domain adaptation strategies may

be necessary when applying the model to seamounts formed

under different tectonic and geological conditions.

• To what extent can satellite altimetry reliably detect small

seamounts, and how do its results compare to high-

resolution multibeam bathymetric data? The results

confirmed that satell ite altimetry systematically
tiers in Marine Science 16
underestimates the number of small seamounts due to

resolution constraints. Of the 30 seamounts detected in

the SO305–2 dataset, only 14 were visible in satellite-

derived data, highlighting the importance of high-

resolution multibeam bathymetry for capturing fine-scale

seafloor features. Additionally, satellite-derived databases

contained false positives, underscoring the need for direct

validation using multibeam sonar.
TABLE 4 Seamount characteristics including height, altimeter-derived height, well-known status, and coordinates.

Seamount ID Height (m) Altimeter (m) Well-known Longitude Latitude

6 111 1078 2 70.788 -11.854

20 124 1260 2 66.558 -13.593

13 148 1430 2 66.968 -13.083

8 151 1578 2 70.373 -11.912

12 176 1755 2 67.013 -13.042

7 180 1888 2 70.663 -11.840

9 190 1833 2 67.860 -12.708

17 193 1969 2 67.224 -13.173

21 243 2410 2 66.444 -13.649

14 248 2532 2 66.724 -13.242

11 249 2429 2 67.063 -13.014

10 252 2584 2 67.177 -12.916

32 308 3046 2 58.736 -19.382

18 315 3164 1 67.022 -13.287

22 345 3434 2 66.102 -13.904

28 357 3641 2 62.755 -17.514

5 402 3953 1 71.005 -11.802

23 454 4567 1 65.905 -14.011

25 512 5097 1 66.207 -15.075

29 548 5555 2 62.293 -17.798

31 571 5704 2 59.426 -19.263

26 625 6308 1 64.703 -16.332

30 632 6274 1 61.429 -18.285

24 662 6667 1 65.720 -14.133

27 789 7880 1 64.504 -16.515

2 824 8317 1 84.125 -2.619

16 998 9927 1 66.325 -13.516

4 1091 10930 1 73.057 -11.147

3 1142 11413 1 83.245 -3.324

15 1402 13975 1 66.474 -13.341

19 2005 20124 1 66.710 -13.476

1 – – 0
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Beyond geological applications, the automated detection of

seamounts has broader implications for marine ecology,

environmental monitoring, and plate tectonics research. Future

work should focus on improving cross-regional generalization,

integrating morphological priors into deep-learning models, and

expanding the dataset to further enhance classification accuracy. In

addition, improving the annotation process through inter-annotator

validation or collaborative labeling could reduce subjectivity and

improve the reliability of training labels, which is particularly

important in seafloor datasets where feature boundaries can be

ambiguous. In particular, the integration of domain adaptation or

transfer learning methods holds promise for improving model

performance in morphologically diverse or OOD seafloor regions,

enabling broader applicability of the framework without requiring

extensive manual relabeling or retraining. To further enhance

robustness in real-world applications, future models should also

incorporate strategies for handling OOD inputs, including

uncertainty estimation and domain-specific priors to reduce

prediction errors in unfamiliar seafloor environments. By bridging

the gap between machine learning and marine geosciences, this

framework contributes to the advancement of automated seafloor

mapping and global seamount inventories, improving our

understanding of the ocean floor.
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