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transformer approach with
cross-attention mechanism
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Meng Zhang2 and Chenghu Zhou1
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Beijing, China, 2Beijing Institute of Remote Sensing Information, Beijing, China
Coastal wetlands play a vital role in shoreline protection, material cycling, and

biodiversity conservation. Utilizing hyperspectral remote sensing technology for

wetland monitoring can enhance scientific management of these ecosystems.

However, the complex water-land interactions and vegetation mixtures in

wetlands often lead to significant spectral confusion and complicated spatial

structures, posing challenges for fine classification. This paper proposes a novel

hyperspectral image classification method that combines the strengths of

Convolutional Neural Networks (CNNs) for local feature extraction and

Transformers for modeling long-range dependencies. The method utilizes both

3D and 2D convolution operations to effectively capture spectral and spatial

features of coastal wetlands. Additionally, dual-branch Transformers equipped

with cross-attention mechanisms are employed to explore deep features from

multiple perspectives and model the interrelationships between various

characteristics. Comprehensive experiments conducted on two typical coastal

wetland hyperspectral datasets demonstrate that the proposed method achieves

an overall accuracy (OA) of 96.52% and 85.72%, surpassing other benchmarks by

1.0-8.64%. Notably, challenging categories such as mudflats andmixed vegetation

area benefit significantly. This research provides valuable insights for the

application of hyperspectral imagery in coastal wetland classification.
KEYWORDS

convolutional neural network, transformer, cross attention mechanism, hyperspectral
image classification, coastal wetland classification
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1 Introduction

Coastal wetlands play an irreplaceable role in maintaining

ecological balance, protecting biodiversity, regulating climate, and

purifying water quality (Santos et al., 2023; Sheaves et al., 2024).

Situated at the transition zone between land and sea, coastal

wetlands experience frequent water-land interactions, leading to

unique hydrological, soil, and biological community structures.

This transitional ecosystem is subject to the double influence of

the marine and land environments, with rapid ecological changes

and rich biodiversity, but at the same time, it is also very fragile and

easily disturbed by human activities and changes in the natural

environment (Li et al., 2023; Man et al., 2023). Effective monitoring

and precise categorization of coastal wetlands are of great

significance for developing scientific conservation measures and

sustainable management strategies (Agate et al., 2024).

However, coastal wetland ecosystems are characterized by high

environmental heterogeneity, mixed vegetation communities,

significant dynamic in surface cover and sampling difficulties,

posing serious challenges for wetland sample collection, large-

scale dynamic monitoring and fine feature classification.

Hyperspectral remote sensing technology, with its wide coverage

and nanometer-scale spectral resolution, can obtain continuous

spectral signatures of ground objects. This significantly reduces

reliance on field surveys and improves data acquisition efficiency,

thereby providing essential data support for fine identification and

dynamic monitoring of coastal wetlands. It has gradually become an

essential tools for scientific wetlands management, including

vegetation community structure analysis, intertidal zone dynamic

monitoring and ecological parameters inversion (Ingalls et al., 2024;

Jensen et al., 2024; Piaser et al., 2024; Yang et al., 2024). However, it

should be emphasized that accurate classification of hyperspectral

images is a fundamental prerequisite for these applications. Due to

severe spectral mixing and high similarity between classes,

achieving precise classification remains particularly challenging in

coastal wetland monitoring.

Hyperspectral classification technology has undergone a

paradigm shift from traditional machine learning to deep

learning. Early research mainly relied on traditional machine

learning methods such as support vector machine (SVM)

(Melgani and Bruzzone, 2004) and random forest (RF) (Chan and

Paelinckx, 2008), which primarily focused on spectral feature

extraction to achieve initial feature classification. However, due to

the curse of dimensionality of hyperspectral images, traditional

methods suffer from overfitting and struggle to effectively exploit

spatial contextual information. In recent years, deep learning

technology has achieved great success in the field of image

processing and has been widely used in hyperspectral image

classification. Convolutional neural network (CNNs) can

automatically extract spectral signatures and local spatial features

of the image, effectively alleviating dimensionality issues in

hyperspectral data through hierarchical feature learning (Hu

et al., 2015; Yue et al., 2015). Subsequently, recurrent neural

networks (RNNs) (Mou et al., 2017; Hang et al., 2019) and

generative adversarial networks (GAN) (Zhan et al., 2018; Zhu
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et al., 2018) have been introduced to hyperspectral classification,

further enhancing robustness to noise and sample imbalance

through spectral-temporal joint optimization and generative-

discriminative co-training. Recently, Transformer models have

also been successfully introduced into hyperspectral image

classification. Leveraging their strong capability to capture long-

range dependencies, Transformers effectively model spectral

sequence features and global spatial structures in hyperspectral

imagery (Hong et al., 2022; Peng et al., 2022; Yang et al., 2022).

Despite the success of deep learning in hyperspectral

classification, most existing methods have been developed and

evaluated on benchmark datasets representing agricultural (e.g.,

Indian Pines andWU-Hi datasets) or urban areas (e.g., Washington

DC Mall and Pavia University datasets), where the spatial and

spectral distributions are relatively regular. In contrast, coastal

wetlands exhibit highly heterogeneous spatial structures and

significant intra-class spectral variability due to complex water-

land interactions and vegetation mixtures. These characteristics

pose substantial challenges for generalizing existing models to

wetland ecosystems. Recent studies show that through the

rational design of the hybrid architecture of CNN and

Transformer, it is possible to fully utilize the local details and

global contextual information and provide stronger feature

representation capabilities in remote sensing classification, such as

building outline extraction (Chang et al., 2024), change detection

(Jiang et al., 2024), and crop classification (Xiang et al., 2023).

Specifically in the field of hyperspectral image classification, SSFTT

generates low-dimensional features through lightweight CNN

combination, converts the features into semantic information

through Gauss weighted tokenizer, and then inputs Transformer

encoder for global relationship modeling, taking into account both

efficiency and accuracy (Sun et al., 2022).

Inspired by these developments, we propose a novel

hyperspectral image classification method that integrates CNN

and Transformer architectures. The method first employs 3D and

2D convolution operations to extract shallow spatial-spectral

features. A dual-branch Transformer encoder then processes

different feature subsets in parallel—one focusing on spatial

features, the other on channel-wise information—thereby

enhancing multi-dimensional feature representation. A cross-

attention mechanism enables dynamic interaction and fusion

between branches, allowing the model to learn complex inter-

feature relationships and to reduce misclassification caused by

spectral similarity. This design balances local detail extraction

with global dependency modeling, improving classification

robustness in heterogeneous environments and providing

essential support for the scientific monitoring and management of

coastal wetlands. To validate the effectiveness of our method, we

conduct comprehensive experiments on two representative

hyperspectral datasets: the Yancheng wetland dataset and the

Yellow River Estuary wetland dataset.

The remainder of this paper is organized as follows. Section 2

provides a detailed description of the proposed hyperspectral image

classification method. Section 3 presents the experimental setup,

including dataset descriptions, evaluation metrics, and both
frontiersin.org
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quantitative and qualitative analysis of the results. Section 4 reports

ablation studies to evaluate the contribution of each module within

the proposed framework. Finally, Section 5 concludes the paper and

outlines potential directions for future research.
2 Materials and methods

2.1 Networks

To overcome the unique challenges inherent in wetland

ecosystems—characterized by pronounced environmental

heterogeneity, intricate spectral-spatial interactions, and subtle

inter-class variations—we propose a hierarchical deep learning

framework that systematically integrates local feature extraction

with global contextual modeling, thereby enhancing discriminative

capability for complex wetland land cover features. Our method

integrates CNNs and Transformer structures to capture both low-

level spectral-spatial features and high-level semantic

representations. The overall framework consists of four key

components: a spatial-spectral feature extractor, a dual-branch

Transformer encoder, a cross-attention mechanism, and a

Kolmogorov–Arnold Network (KAN) (Cheon, 2024; Liu et al.,

2025)module. Specifically, the spatial-spectral feature extractor

combines a 3D convolutional layer and a 2D convolutional layer

to preliminarily extract joint spatial and spectral features. The dual-
Frontiers in Marine Science 03
branch Transformer processes different feature subsets in parallel to

explore information from multiple perspectives, while the cross-

attention mechanism facilitates interaction between the two

branches and enhances the correlation modeling among features.

Subsequently, the KAN block is employed to perform final

classification by assigning a category label to each pixel, thereby

accomplishing hyperspectral image segmentation. To reduce

computational complexity, each image patch generates a single

feature cube after the initial feature extraction stage. The overall

architecture of the proposed method is illustrated in Figure 1, and

the structure and functionality of each component are described in

detail below.
2.1.1 Spatial-spectral feature extractor
Convolutional neural networks (CNNs) have demonstrated

strong capabilities in hierarchical feature extraction. Wetland

ecosystems exhibit complex spectral-spatial characteristics due to

their diverse vegetation, water bodies, and transitional land cover.

To effectively capture these features, we first employ a hybrid 3D-

2D CNN feature extractor for preliminary spectral-spatial

representation learning. The proposed feature extraction module

integrates a sequential 3D convolutional block and a 2D

convolutional block, each enhanced with Batch Normalization

(BN) and nonlinear activation. The 3D convolution block

primarily captures joint spectral and spatial information from
FIGURE 1

Schematic of the proposed algorithm framework. (1) Input hyperspectral patches undergo feature extraction to generate feature cubes. (2) The
cubes are decomposed along spatial and channel dimensions for dual-branch Transformer processing. (3) Cross-attention modules enable feature
interaction between branches. (4) Deep features are further extracted through additional dual-branch Transformer layers. (5) Final classification is
achieved via KAN Layer after feature fusion.
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each hyperspectral sample patch, while the 2D convolution block

further refines spatial patterns from the output of the 3D

convolution. This combination allows the model to effectively

learn local spatial structures and retain spectral integrity. By

leveraging the complementary strengths of both 3D and 2D

convolutional operations, the proposed module fully exploits the

multidimensional characteristics of hyperspectral imagery,

providing a robust feature foundation for the subsequent

classification task.

To prevent information loss at the image boundaries during

patch extraction, zero-padding is applied to the hyperspectral

images of coastal wetlands. The class label for each extracted

patch is assigned based on the ground-truth label of its central pixel.
2.1.2 Dual-branch transformer encoder
Although the 3D-2D CNN feature extractor effectively captures

low-level spectral-spatial patterns, wetland classification remains

challenging due to the inherent spatial heterogeneity and subtle

inter-class variations in coastal environments. To address these

limitations and enhance the model’s ability to model complex

spectral-spatial relationships and long-range dependencies, we

introduce a dual-branch Transformer architecture based on

feature cube decomposition. The feature cube generated based on

the Feature Extraction structure, which defines its dimension as (s

�s� C), is decomposed in this part along both spatial and channel

directions. In the spatial direction, as shown in Figure 2a, the feature

cube is decomposed into L spatial tokens of size L spatial tokens of

size (1� 1� C), where, L = s� s represents the total number of

spatial locations. This approach facilitates the modeling of inter-

channel relationships, as each spatial token aggregates all channel

information at a specific spatial location, enabling the capture of

local features. In the channel direction, as illustrated in Figure 2b,

the feature cube is decomposed into C   channel tokens (   s� s� 1).
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Each token focuses on a single channel and contains complete

spatial information corresponding to that channel, helping preserve

the spatial context.

For the spatial and channel branches, the input features are

processed through a 3D convolutional kernel to generate feature

chunks F  . As detailed in Equation 1, these chunks are then

augmented with learnable category markers Tcls and position

encoding parameters Epos to construct the final marker sequence

Tinput , which serves as the input to each Transformer encoder.

Tinput = concat½Tcls; F� + Epos (1)

The main function of Transformer Encoder is feature

extraction. It captures internal dependencies and high-level

representations of the input data through multi-head attention

mechanisms and feed-forward neural network.

2.1.3 Cross-attention mechanism
To enable dynamic feature interactions within our dual-branch

Transformer architecture, we propose a cross-attention mechanism

to facilitate adaptive feature enhancement between the two

branches. This mechanism automatically identifies and amplifies

the most discriminating features specific to different types of

features in wetlands. Specifically, the cross-attention layer enables

each element in one feature sequence to dynamically attend to and

aggregate relevant information from the other sequence. This

enhances feature correlations, provides richer contextual

information, and improves the discriminative capability of the

extracted features, thereby boosting classification accuracy. As

illustrated in Figure 3, after feature transformation through the

spatial and channel branches, cross-attention is applied to facilitate

further interaction between the features extracted from the two

branches. Specifically, one sequence is used to generate the query

matrix, while the other provides the key and value matrices. The dot
FIGURE 2

Schematic comparison of dual-branch Transformer architectures for hyperspectral feature decomposition. (a) Spatial transformer branch (b)
Channel branch transformer.
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product between the query and all keys yields attention scores,

which are normalized using the softmax function. The resulting

weights are then used to compute a weighted sum of the values,

forming the cross-attention output.

Specifically, prior to the cross-attention computation, this paper

employs an asymmetric projection strategy to achieve spatial/

channel feature space alignment. Spatial Transformer features

Xspa are projected into Query Qspa, Key Kspa and Value Vspa,

while the channel Transformer features Xcha are mapped to Qcha,

Kcha .and Vcha respectively. The CrossAttnProj (Cross Attention

Projection) operation asymmetrically maps dual-branch features to

Query/Key/Value tensors as shown in Equation 2:

CrossAttnProj(Xspa,Xcha) → (Qspa,Kcha,Vcha)

CrossAttnProj(Xcha,Xspa) → (Qcha,Kspa,Vspa)

(
(2)

The cross-attention is then computed bidirectionally, as

expressed in Equations 3 and 4:

Channel-Guided Spatial Attention(CGSA): leveraging channel

information to enhance spatial representations.

CACGSA(Qspa,Kcha,Vcha) = softmax
QspaK

T
chaffiffiffiffiffi

dk
p

 !
Vcha (3)

Spatial-Guided Channel Attention(SGCA): utilizing spatial

context to refine channel representations.

CASGCA(Qcha,Kspa,Vspa) = softmax
QchaK

T
spaffiffiffiffiffi

dk
p

 !
Vspa (4)
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In the formulas (2) and (3), Queries (Q) are always derived from

the target branch, Keys/Values (K=V) come from features of the

complementary branch, and dk denotes feature dimension of

the Key.

Following the cross-attention operation, deeper feature extraction

is required to better distinguish fine-grained intra-class characteristics.

To this end, we introduce an additional dual-branch Transformer

module following the cross-attention layer to further enhance high-

level semantic representation learning. This module effectively captures

the hyperspectral-spatial coupling characteristics of wetland data,

thereby generating more discriminative representations for

downstream classification. Finally, the complementary features from

both branches are integrated through concatenation-based fusion.

2.1.4 Classification layer
The classification layer serves as the final mapping module to

transform the extracted hierarchical features into categorical labels.

Given the intricate nonlinear relationships inherent in coastal

wetland ecosystems—interactions between different vegetation,

soil types and hydrological conditions—we employ a

Kolmogorov-Arnold Network (KAN) as a superior alternative to

conventional multilayer perceptron (MLP) classifiers. The design of

KAN is grounded in the Kolmogorov-Arnold representation

theorem, allowing the network to process and learn complex

relationships in input data in a way that approximates the

theorem. Similar to MLP, KAN has a fully connected structure.

However, unlike MLPs, which assign fixed activation functions to

neurons (nodes), KAN assigns learnable activation functions to the
FIGURE 3

Schematic illustration of cross-attention between spatial and channel transformer branches: Dual-path feature interaction via bidirectional attention.
CGSA (Channel-Guided Spatial Attention) enhances spatial features by querying channel branch KV, while SGCA (Spatial-Guided Channel Attention)
refines channel features using spatial branch KV.
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edges (weights) of the network. This edge-based activation design

provides greater flexibility in capturing nonlinear relationships

within high-dimensional data, allowing the network to better fit

intricate classification boundaries and improve performance in

complex ecological classification tasks.
2.2 Datasets

In order to verify the effectiveness of the proposed method in

coastal wetland hyperspectral image classification, two typical

coastal wetland hyperspectral datasets were selected in this study

—Yancheng wetland in Jiangsu Province and Yellow River Estuary

wetland dataset.

2.2.1 Yancheng dataset
The Yancheng wetland is located in the eastern part of Jiangsu

Province, China, and has a coastline of 582 kilometers, making it

one of the largest coastal silt-flat wetlands on the west coast of the

Pacific Ocean and on the edge of the Asian continent (Figure 4a).

This wetland is highly valuable for ecological diversity, and it

provides habitats for a variety of endangered species. In this

study, the hyperspectral image dataset of coastal wetland in

Yancheng, Jiangsu Province, acquired by the GF5_AHSI sensor,

with an image size of 1175×585 and containing 253 effective

spectral bands, was used. This dataset refers to the literature (Gao

et al., 2022), and the spectral image processing team of Beijing

Institute of Technology (BIT) deciphered the image by integrating

the field survey data and the high spatial resolution images, and

labeled the image with a total of 18 categories of feature classes,

including salt fields, pond, paddy fields, woodland, buildings, etc.

Table 1 presents the dataset partition, comprising 744 training

samples and 7,150 testing samples, with the training set

approximately accounting for 9.42% of the total samples, and

0.11% of the total pixels in the panoramic image.
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2.2.2 Yellow River Estuary dataset
The Yellow River Estuary wetland is located in the eastern part

of the Yellow River Delta. It is rich in biological resources and

provides habitat for many rare birds and plants (Figure 4b). In this

study, the hyperspectral image data set of the Yellow River Estuary

area was obtained by GF-5 AHSI sensor. The image size was

1185×1342, including 285 effective bands. Like the Yancheng

wetland dataset, this dataset was also obtained from the spectral

image processing team of Beijing Institute of Technology, and a

total of 18 types of ground objects were marked, including spartina

alterniflora, suaeda salsa, arable land, etc. Among them, Mixed area

1 is the mixed area of phragmites and tamarix, Mixed area 2 is the

mixed area of tamarix and spartina alterniflora, and Mixed area 3 is

the mixed area of tamarix, phragmites and spartina alterniflora.

Table 1 summarizes the sample partitioning for model training and

evaluation, with 1,420 samples allocated for training and 103,529

samples reserved for testing. The dataset samples represent 1.35% of

the total samples and 0.089% of the panoramic pixels. This sparse

training configuration intentionally challenges the model’s

generalization capability under limited supervision.
3 Results

3.1 Experimental settings

In order to validate the effectiveness of the proposed method, we

chose to conduct performance comparison experiments with

several representative hyperspectral image classification related

algorithms, including SVM (Melgani and Bruzzone, 2004),

HE3DCNN (He, Li and Chen, 2017), HybridSN (Roy et al.,

2020), SpectralFormer (Hong et al., 2022), SSFTT (Sun et al.,

2022) and FactoFormer (Mohamed et al., 2024).

Specifically, this study employs the cross-entropy loss function

(CrossEntropyLoss) as the optimization objective for the model,
FIGURE 4

Location and false-color composite images of typical wetland datasets. (a) Yancheng wetland (b) Yellow River Estuary wetland.
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utilizing the Adam optimizer for parameter updates. To enhance

the training process, we implement a stepwise learning rate decay

strategy where the learning rate is multiplicatively reduced by a

factor (set to 0.95 for both datasets in our experiments) after every

½ epochs =10� training epochs. This scheduling strategy enables

refined parameter adjustment during later training stages, thereby

significantly improving convergence stability. For the Yancheng

dataset, the patchsize is set to 5, with an initial learning rate of 9.8e-

5 and a weight_decay of 9.9e-5. In contrast, for the Yellow River

Estuary dataset, the patchsize is configured as 3, with both the initial

learning rate and weight_decay set to 9.9e-5. For the SVM, we chose

the radial Gaussian kernel function (RBF) for the classification task,

and the penalty parameter   c ∈ ½0:01, 100� and the kernel function

parameter g ∈ ½0:001, 0:1� were determined by random search.

HE3DCNN is a hyperspectral image classification model that

combines 3D convolution and pyramid structure, the network

settings refer to the literature, and the patchsize is set to 9 and 7

for Yancheng and Yellow River Estuary dataset respectively.

HybridSN is a hybrid 2D and 3D convolutional approach, the

dimensionality reduction procedure employes PCA with 15

principal components for both datasets, and the patchsize is 11,

the learning rate of the optimizer is set to 0.001, and the value of

weight_decay parameter is 1e-6. SpectralFormer is based on the

Transformer architecture, which enhances the model’s ability to
Frontiers in Marine Science 07
capture and represent spectral features through the perspective of

serialization processing, in the Yancheng dataset, the patchsize is set

to 5, and the bandpatch is set to 3, while in the Yellow River Estuary

dataset, patchsize is set to 7, and bandpatch is set to 3. Other

parameters are the same for both dataset, such as the mode is CAF,

learning rate is set to 5e-4, and weight_decay is set to 5e-3. SSFTT is

a hybrid structure of CNN and Transformer, for the Yancheng

dataset, PCA is applied with 21 retained principal components,

patchsize is set to 7, and the learning rate is set to 0.001, whereas in

the Yellow River Estuary dataset, the number of PCA principal

components is set to 15, and the patchsize is set to 11. In the

FactoFormer method, for both datasets, the learning rate and the

weight_decay are set to 1e-4, and the patchsize of Yancheng and

Yellow River Estuary dataset are set to 5 and 3, respectively. In all

the experiments, the epoch of each method is set to 200, and an

early termination mechanism is adopted to prevent overfitting.

All experiments are conducted in a PyTorch environment

running on a Windows 11 64-bit system with the following

hardware configuration: an Intel Core i9-10900K Ultra 9 1850H

processor (2.3GHz), 32GB RAM, 1TB SSD, and an NVIDIA RTX

3080 GPU (10GB VRAM). The computational environment utilizes

CUDA 12.4 and cuDNN 9.0 for accelerated processing.

In order to quantitatively analyze the effectiveness of the

proposed method and other comparative methods, four
TABLE 1 Number of training and testing samples for coastal wetland datasets.

The Yancheng dataset The Yellow River Estuary dataset

No. Name Training Testing No. Name Training Testing

1 Sea 209 2186 1 Spartina alterniflora 162 15462

2 Offshore area 140 1448 2 Pond 98 6867

3 Salt field 6 104 3 Woodland 159 3298

4 Pond 20 173 4 Phragmite 75 7636

5 Spartina anglica 7 76 5 Typha orientalis presl 9 24

6 Mudflats 25 243 6 Intertidal phragmite 9 1407

7 Aquaculture pond 25 238 7 Ecological reservoir 50 3874

8 Paddy field 87 745 8 Arable land 98 10869

9 Estuarine area 27 248 9 Lotus pond 50 6448

10 River 27 272 10 Oilfield 162 7994

11 Woodland 19 196 11 Salt fields 75 8614

12 Barren 25 129 12 Suaeda salsa 147 10676

13 Building 37 489 13 River 49 1831

14 Fallow land 26 208 14 Mixed area 1 25 1604

15 Rainfed cropland 28 176 15 Mixed area 2 81 5455

16 Suaeda salsa 14 71 16 Mixed area 3 9 128

17 Irrigation canal 10 28 17 Mudflats 81 5879

18 Phragmites 12 120 18 Sea 81 5463

Total 744 7150 total 1420 103529
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quantitative assessment metrics were introduced, including overall

accuracy (OA), average accuracy (AA), kappa coefficient (k), and
classification accuracy for each land cover category. A larger value

for each indicator indicates a better classification effect.
3.2 Quantitative analysis

Through comprehensive comparison with representative

hyperspectral image classification approaches (Tables 2, 3), our

method demonstrates competitive performance on both coastal

wetland datasets (Yancheng and Yellow River Estuary). The

tabulated results highlight our method’s superiority, with optimal

and sub-optimal metrics indicated in bold and underlined

text, respectively.

3.2.1 Yancheng dataset
Table 2 shows the performance comparison results of each

classification algorithm on Yancheng dataset. Experimental results

reveal that the conventional SVM approach, relying exclusively on

basic spectral feature processing, demonstrates classification

deficiencies. The method underperforms notably for water-related

categories, including sea (Class 1), aquaculture pond (Class 7), and
Frontiers in Marine Science 08
irrigation canal (Class 17), achieving an OA value of 88.59%.

HE3DCNN employs 3D convolution for spectral-spatial feature

extraction and incorporates a pyramid structure for multi-scale

feature fusion, achieving an overall accuracy (OA) of 89.51% on the

Yancheng dataset. HybridSN method achieves a detailed joint

spatial-spectral feature extraction process due to combining the

structural features of 2DCNN and 3DCNN and obtains 91.12% OA

value, but performs poorly on river, fallow land, rainfed cropland,

etc (Class 10/14/15/17/18). SpectralFormer learns spectrally

localized sequence information from neighboring bands of

hyperspectral images and designs cross-layer jump connections to

significantly improve the robustness of feature representation,

which achieves OA of 94.01% and AA of 87.87% for the

classification task on the Yancheng dataset, but performs poorly

on categories such as mudflats (Class 6) and phragmites (Class 18).

The SSFTT achieves joint extraction of spatial and spectral features

by combining the advantages of CNN and Transformer, showing

competitiveness in OA, AA and KAPPA, but poor performance in

the river category (Class 10). The FactoFormer method employs a

dual-branch spatial and spectral channel modeling process and

introduces self-supervised pre-training mechanism, attains 94.94%

OA on Yancheng dataset, though performance degrades for

aquaculture ponds (Class 7) and irrigation channels (Class 17).
TABLE 2 Class-specific classification accuracy (%) using different methods on the Yancheng dataset (bold and underlined values indicate optimal and
suboptimal indicators respectively).

Class SVM HE3DCNN HybridSN SpectralFormer SSFTT FactoFormer Proposed method

1 81.71 92.91 92.50 99.13 94.74 100.00 98.12

2 100.00 98.90 99.93 100.00 99.31 100.00 100.00

3 58.65 25.00 56.73 69.23 64.42 48.08 54.81

4 87.86 71.68 77.46 80.35 80.92 80.35 79.19

5 100.00 82.89 100.00 86.84 90.79 94.74 100.00

6 83.13 77.78 87.65 78.60 94.24 87.65 95.47

7 75.63 82.77 89.50 90.76 92.02 77.31 92.02

8 97.32 95.44 99.46 96.38 97.18 98.26 99.73

9 98.39 84.68 94.35 98.79 95.56 93.55 98.39

10 81.25 95.96 58.09 94.12 71.69 95.59 97.79

11 97.96 84.69 100.00 100.00 100.00 100.00 100.00

12 100.00 62.79 96.90 94.57 98.45 98.45 98.45

13 80.37 85.48 93.46 83.03 99.18 86.91 97.14

14 95.67 85.10 82.69 87.98 95.19 92.31 91.35

15 93.75 95.45 68.18 78.98 98.30 96.02 97.16

16 80.28 66.20 88.73 84.51 95.77 67.61 76.06

17 78.57 100.00 57.14 100.00 82.14 64.29 96.43

18 68.33 59.17 57.50 58.33 65.83 80.83 78.33

OA(%) 88.59 89.51 91.12 94.01 94.24 94.94 96.52

AA(%) 86.60 80.38 83.35 87.87 89.76 86.77 91.69

k 0.8668 0.8761 0.8951 0.9289 0.9319 0.9398 0.9587
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The proposed method in this study integrates the advantages of

CNN and Transformer, and adopts the dual-branch spatial and

channel modeling design to ensure more comprehensive

information acquisition. Cross-attention further realizes the

fusion of different forms of features and a more detailed feature

extraction process, which enables the proposed method to have a

better classification performance on the Yancheng dataset, and

outperforms other comparative methods in terms of OA, AA,

and Kappa.
3.2.2 Yellow River Estuary dataset
Table 3 demonstrates the performance comparison results of

each classification algorithm on the Yellow River Estuary dataset.

The distinctive feature of this dataset is that the vegetation mixing

region of tamarisk, phragmites and spartina alterniflora is

considered (class 14/15/16), and the proportion of training

samples in the whole region is exceptionally limited. As can be

seen from the results, the performances of all the classification

methods on this dataset decreased, with the OA values dropping to

the range of 77.08% to 85.72%. The SVMmethod is accurate for the
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classification of typha orientalis presl (class 5) and river (class 13),

and so are the other methods in the paper, but performs moderately

well in the recognition of most of the features. The HE3DCNN

method is the most effective for the extraction of the oil field (class

10), but the recognition efficacy for the mixed zone is significantly

decreased, especially for mixed area 2 (class 14) and 3 (class 16). The

HybridSN method excelled in the extraction of spartina alterniflora

(class 1) and mixed area 2 (class 15), but performs poorly in the

identification of areas of phragmites and tamarisk mixing. The

SpectralFormer method performs well for intertidal phragmite

(class 6) and for mixing areas 3 (class 16), but performs poorly

on aquaculture pond (class 7), river (class 10), and mixed area 2

(class 15) categories. The SSFTT method performs best in pond

(class 2), intertidal phragmites (class 6), and oil field (class 10)

extraction and is accurate for the identification of the mixed area 3

(class 16). FactoFormer is accurate for the identification of sea(class

18), and has the best performance for the salt field (class 11), which

is superior to the other methods, but does not perform well for the

mixed area 3. The proposed method demonstrated overall superior

classification performance on the Yellow River Estuary dataset, with

overall accuracy (OA=85.72%) and average accuracy (AA=86.08%)
TABLE 3 Class-specific classification accuracy (%) using different methods on the Yellow River Estuary dataset (bold and underlined values indicate
optimal and suboptimal indicators respectively).

Class SVM HE3DCNN HybridSN SpectralFormer SSFTT FactoFormer Proposed method

1 91.19 91.55 96.98 85.75 79.39 95.87 91.73

2 87.81 69.74 92.46 78.72 99.33 71.33 81.93

3 95.45 97.18 86.45 92.78 67.62 94.21 97.73

4 66.41 77.85 83.16 53.41 77.30 74.16 62.70

5 100.00 100.00 100.00 100.00 100.00 100.00 100.00

6 77.19 46.34 76.83 90.62 92.25 87.42 84.65

7 89.18 89.21 89.24 79.84 84.23 92.20 94.48

8 74.02 89.82 90.46 88.62 78.35 89.61 98.64

9 71.25 71.68 70.46 72.83 74.12 77.08 80.29

10 88.10 98.86 91.53 49.04 94.43 88.49 89.93

11 68.12 45.15 48.68 66.95 64.60 82.34 70.10

12 85.84 95.06 86.95 90.12 94.26 84.92 95.04

13 100.00 99.13 100.00 100.00 98.36 100.00 100.00

14 51.12 16.96 30.11 49.94 43.33 44.26 50.94

15 70.03 95.29 90.89 72.81 85.26 79.60 83.83

16 92.19 25.00 91.41 99.22 100.00 84.38 100.00

17 67.89 67.89 66.75 67.89 64.65 67.89 67.89

18 61.08 95.31 89.99 96.01 97.79 100.00 99.60

OA(%) 78.77 82.17 83.56 77.08 81.82 84.72 85.72

AA(%) 79.83 76.22 82.35 79.70 83.07 84.10 86.08

k 0.7695 0.8059 0.8212 0.7513 0.8026 83.38 0.8446
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significantly better than all the comparative methods, and the

Kappa coefficient (0.8446) reached the reliability level of “almost

perfect agreement”. The method accurately recognizes three

categories (class 5/13/16), performs best in five other categories
Frontiers in Marine Science 10
(class 3/7/8/9/17), and achieves secondary-best performance in four

categories (class 11/12/14/18). Overall, for the Yellow River Estuary

dataset, this paper’s method outperforms other comparative

methods in categorization and excels in mixed zone extraction.
FIGURE 5

Full classification maps obtained by different models on the Yancheng dataset. (a)groundtruth (b) SVM (c) HE3DCNN (d) HyBridSN (e) SpectralFormer
(f) SSFTT (g) FactoFormer (h) proposed method.
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3.3 Qualitative analysis

To visually evaluate the performance of different classification

methods in coastal wetland scenarios, this part generates complete

fully labeled classification maps for the 2 datasets of Yancheng and

Yellow River Estuary respectively, as shown in Figures 5, 6.

3.3.1 Yancheng dataset
From the wetland fully labeled classification map, it can be seen

that most classification methods have significant attenuation of

accuracy in specific feature types, constrained by the heterogeneity

of complex wetland ecosystems and the separability between feature

classes. For the Yancheng dataset, the SVMmethod is ineffective on

aquaculture pond (class 7) and irrigation canals (class 17), and it is

easy to misclassify aquaculture pond as pond and misclassify

irrigation canals as fallow land. Similarly, the HE3DCNN method

has significant streaking noise on the sea surface and misclassify the

aquaculture pond as phragmites. The HyBridSN method has more

severe streaking on the sea surface, and performs poorly in the

extraction of river (class 10), fallow land (class 14), rainfed cropland

(class 15), irrigation canal (class 17) extraction, misclassifying

rainfed cropland as salt field, or due to the similarity in SWIR
Frontiers in Marine Science 11
reflectance properties of salt field crystals and arid rainfed cropland.

The SpectralFormer method misclassified features the extraction of

spartina anglica (class 5), mudflats (class 6), buildings (class 13),

rainfed cropland (class 15), etc. The SSFTT has severe streaking on

the sea surface, and the accuracy of rivers (class 10) and phragmites

(class 18) is poor, and misclassified near-shore vegetation into salt

field or sea water due to the influence of seawater impregnation of

the intertidal vegetation. FactoFormer performs poorly for

aquaculture ponds (class 7) and irrigation canals (class 17), and is

prone to misclassify aquaculture ponds (class 7) as ponds or rivers.

In most of the misclassified categories (class 7/10/15/17/18), the

proposed method performs stably and shows obvious advantages in

the stability of classification of typical wetland features.
3.3.2 Yellow River Estuary dataset
For the Yellow River Estuary dataset, the SVM method

misclassifies arable land (class 8) as oilfield, Mixed area 2 (class 15)

as other categories, suaeda salsa as salt fields, and the offshore north of

the Yellow River Estuary (class 18) as other water bodies such as

pond. HE3DCNN in the sea surface (class 18) has regular streak

noise, misclassifies intertidal phragmite (class 6) as oilfield or suaeda

salsa, misclassifies salt fields (class 11) into pond or ecological
FIGURE 6

Full classification maps obtained by different models on the Yellow River Estuary dataset (a) groundtruth (b)SVM (c) HE3DCNN (d) HyBridSN
(e) SpectralFormer (f) SSFTT (g) FactoFormer (h) proposed method.
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reservoir, and performs poorly in mixed vegetation area (class 15/16).

The HyBridSN method demonstrates strong classification accuracy

for spartina alterniflora (class 1), typha orientalis presl (class 5), and

river (class 13). However, it shows notable misclassification issues in

other categories, including weak Sea detection and frequent

confusion between intertidal Phragmites (class 6) and suaeda salsa

(class12). The SpectralFormer method misclassifies suaeda salsa as

Salt Fields, ecological reservoir (class 7) as pond or sea, and confused

oilfield (class 10) with mixed area 2 (Class 15). Additionally, it

erroneously labels the boundary between river and sea as salt fields.

The SSFTT method shows significant large-scale misclassification in

the sea area, and woodland (class 3) is misidentified as the tamarix-

spartina alterniflora mixed growing area. Arable land (class 8) exists

confusion with pond, lotus pond and other water bodies, mixed area

1 (class 14) is misidentified as phragmite community. The self-

supervised pre-training mechanism of FactoFormer effectively

suppresses the misclassification of sea, but at the same time, there

are some limitations, misclassifying wetland water bodies as ocean

types, misclassifying pond (class 2) as salt fields, and extracting poorly

for the mixed region of tamarisk-phragmite-spartina alterniflora

(class 16, mixed area 3).The research method in this paper shows

confusing classification with ponds in the offshore area north of the

Yellow River Estuary. Systematic comparative experiments

demonstrate that this misclassification prevails across multiple
Frontiers in Marine Science 12
benchmark methods (SVM, HE3DCNN, HyBr idSN,

SpectralFormer, and SSFTT). We attribute this phenomenon to: (1)

spatial adjacency between coastal waters and pond complexes, and

(2) hydrological connectivity (e.g., tidal channels) inducing feature

homogenization in spectral-spatial domains. Overall, our method

exhibits superior robustness to other methods for the easily

confounded categories (class8/11) and mixed vegetation areas

(class14/15/16).
4 Discussion

To comprehensively evaluate the contribution of each module

in the proposed method, we conducted systematic ablation studies

on both the Yancheng and Yellow River Estuary datasets by

examining different component combinations. The proposed

framework consists of five key components: Feature Extractor

(FE), Dual-Branch Transformer1 (DBT1), Cross Attention (CA),

Dual-Branch Transformer2 (DBT2), and KAN modules. Through

incremental removal of each module, we analyzed their individual

and collective effects on model performance across the two datasets.

Specifically, Table 4 presents the overall performance comparison of

the Yancheng dataset under different ablation cases, while Table 5

details the classification accuracy of each feature category across
TABLE 4 Ablation study configurations (✓: present; ×: absent) on Yancheng dataset (optimal results are bolded).

Cases
Components Indicators

FE DBT1 CA DBT2 KAN OA(%) AA(%) k

1 × ✓ ✓ ✓ ✓ 63.47 31.63 0.5577

2 ✓ × ✓ ✓ ✓ 95.68 86.31 0.9486

3 ✓ ✓ × × ✓ 95.30 88.69 0.9444

4 ✓ ✓ × ✓ ✓ 96.06 87.45 0.9531

5 ✓ ✓ ✓ × ✓ 93.80 86.01 0.9268

6 ✓ ✓ ✓ ✓ MLP 91.69 88.13 0.9026

7 ✓ ✓ ✓ ✓ ✓ 96.52 91.69 0.9587
TABLE 5 Detailed categorization results of ablation experiments on the Yancheng dataset (optimal results are bolded).

Class Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Proposed method

1 100.00 98.99 95.56 99.27 93.55 86.18 98.12

2 100.00 100.00 100.00 100.00 100.00 99.93 100.00

3 56.73 23.08 38.46 29.81 33.65 55.77 54.81

4 0.00 84.98 80.92 83.24 80.35 75.14 79.19

5 2.63 30.26 50.00 34.21 26.32 56.58 100.00

6 95.47 95.06 94.65 91.36 95.88 90.53 95.47

7 0.42 88.24 91.18 89.08 89.08 89.50 92.02

8 13.15 99.87 99.73 99.06 98.79 97.99 99.73

(Continued)
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TABLE 6 Detailed categorization results of ablation experiments on the Yellow River Estuary dataset (optimal results are bolded).

Class Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Proposed method

1 2.92 93.47 93.82 93.02 92.82 90.23 91.73

2 88.93 82.00 85.38 81.17 84.14 81.93 81.93

3 13.10 99.70 99.30 99.82 97.79 97.30 97.73

4 15.57 67.26 66.13 70.99 49.70 73.11 62.70

5 0.00 100.00 100.00 100.00 100.00 100.00 100.00

6 0.07 87.92 80.38 84.51 73.13 69.94 84.65

7 0.09 96.54 96.62 95.95 95.51 88.05 94.48

8 76.95 97.12 97.09 92.10 98.63 98.74 98.64

9 3.74 73.98 72.15 75.96 69.26 80.97 80.29

10 66.88 91.52 90.23 92.98 90.41 81.44 89.93

11 0.30 69.93 73.08 72.83 77.15 56.52 70.10

12 0.00 93.25 96.62 94.99 98.00 95.63 95.04

13 100.00 100.00 100.00 100.00 100.00 100.00 100.00

14 3.62 48.13 62.22 46.76 52.49 57.86 50.94

15 20.13 77.76 64.82 75.51 74.35 71.11 83.83

16 37.50 100.00 49.22 92.19 100.00 47.66 100.00

17 13.64 67.89 67.31 67.43 37.32 67.55 67.89

18 95.73 100.00 100.00 100.00 100.00 100.00 99.60

OA(%) 30.51 85.54 85.45 85.58 84.71 83.51 85.72

AA(%) 30.47 85.91 83.02 85.34 84.48 81.00 86.08

k 0.2543 0.8427 0.8416 0.8431 0.8335 0.8205 0.8446
F
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TABLE 5 Continued

Class Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Proposed method

9 4.03 98.79 98.79 100.00 100.00 98.79 98.39

10 72.43 97.79 99.26 98.90 98.16 96.32 97.79

11 2.55 100.00 100.00 100.00 100.00 100.00 100.00

12 45.74 100.00 99.22 100.00 99.22 100.00 98.45

13 46.01 97.75 98.16 98.77 92.64 91.82 97.14

14 0.00 95.67 97.60 98.56 99.04 98.56 91.35

15 5.11 96.02 95.45 96.59 97.16 94.89 97.16

16 0.00 74.65 77.46 76.06 70.42 71.83 76.06

17 0.25 100.00 100.00 100.00 96.43 100.00 96.43

18 0.00 72.50 80.00 79.17 77.50 82.50 78.33

OA(%) 63.47 95.68 95.30 96.06 93.80 91.69 96.52

AA(%) 31.63 86.31 88.69 87.45 86.01 88.13 91.69

k 0.5577 0.9486 0.9444 0.9531 0.9248 0.9026 0.9587
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these cases. The Yellow River Estuary dataset follows the same

ablation approach, with its detailed classification results

summarized in Table 6. Figures 7, 8 present the panoramic

prediction results of the Yancheng and Yellow River Estuary

datasets under different ablation study cases, respectively.
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The ablation study results demonstrate that each component of

the proposed model contributes significantly to the final wetland

classification performance. Specifically:

The FE module effectively captures joint spatial-spectral

features of the wetland hyperspectral data through its 3D CNN
FIGURE 7

Full classification maps of the Yancheng dataset under different ablation study cases. (a) our model without FE module (b) without DBT1 module
(c) without CA and DBT2 module (d) without CA module (e) without DBT2 module (f) with MLP as the classification head.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1613565
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2025.1613565
architecture, while the subsequent 2D CNN further enhances

spatial feature abstraction. This design proves particularly

effective for characterizing environments with high spatial

heterogeneity. When the FE module is removed (Case 1), the

model experiences a substantial performance degradation, with

OA dropping to 63.47% for the Yancheng dataset and merely

30.51% for the Yellow River Estuary dataset. These results not

only confirm the module’s critical role in wetland feature extraction

but also underscore its particular importance in scenarios

characterized by high environmental heterogeneity.

When the DBT1 module is ablated (Case 2), the overall

classification accuracy remains high. However, performance

deteriorates significantly for certain fine-grained categories.

Specifically, the model exhibits notable deficiencies in Salt field and

Spartina anglica in the Yancheng dataset, as well as the mixed

vegetation community of tamarix and spartina alterniflora (Mixed
Frontiers in Marine Science 15
Area 2) in the Yellow River Estuary dataset. This observation suggests

that the DBT1 module plays a critical role in enhancing the model’s

ability to discriminate subtle inter-class variations, particularly inmixed

wetland vegetation. By leveraging parallel spatial and channel long-

range dependency modeling, DBT1 provides more discriminative

feature representations for downstream processing.

The CA module improves the model’s discriminative capacity

for subtle variations by effectively integrating spatial and channel-

wise interaction features. Ablation of the CA module (Case 3) leads

to performance degradation in several key categories: classification

accuracy decreases for Sea, Salt field and Spartina anglica in the

Yancheng dataset, accompanied by pronounced streak anomaly on

sea surface classification. Similarly, the model exhibits significantly

reduced accuracy for Mixed Area 2 and 3 in the Yellow River

Estuary dataset compared to the full model. These results

demonstrate that the CA module plays a crucial role in enhancing
FIGURE 8

Full classification maps of the Yellow River Estuary dataset under different ablation study cases. (a) our model without FE module (b) without DBT1
module (c) without CA and DBT2 module (d) without CA module (e) without DBT2 module (f) with MLP as the classification head.
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feature discrimination, particularly for challenging cases involving

fuzzy boundaries and mixed vegetation communities, through

feature interaction capability.

The DBT2 module serves as a secondary refinement unit to

enhance classification stability in complex land cover scenarios.

Ablation studies (Case 5) reveal that the full model (Case 7)

achieves consistent improvements in OA, AA, and KAPPA

metrics across both datasets, demonstrating the necessity of deep

feature extraction following cross-attention. Comparative analysis

between Cases 4 and 3 shows that DBT2 improves classification

accuracy for Sea in the Yancheng dataset while eliminating sea

surface streak anomaly. Similarly, in the Yellow River Estuary

dataset, DBT2 enhances classification performance for mixed

vegetation communities (Mixed Area 2 and 3). These results

indicate that DBT2’s dual-branch Transformer architecture,

through its secondary refinement of spatial and channel features,

improves the model’s discriminative capacity for different water

bodies and mixed vegetation environments.

Compared to using MLP as the classification head (Case 6), the

KAN module (Case 7) strengthens model discriminability through

nonlinear feature mapping, improving overall classification accuracy

across both datasets. The KAN module’s adaptive nonlinear learning

capability enables more effective modeling of dynamic wetland cover

variations, demonstrating strong compatibility with the heterogeneous

nature of wetland environments.

The ablation studies comprehensively validate the efficacy and

synergistic integration of the proposed modular architecture: (1)

The FE module establishes fundamental feature representations to

address environmental heterogeneity; (2) The DBT1 module refines

feature expression to capture inter-class variations; (3) The CA

module enhances feature interactions for improved characterization

of complex vegetation communities; (4) The DBT2 module enables

deeper feature abstraction, particularly for discriminating distinct

water bodies and mixed vegetation features; and (5) The KAN

module’s nonlinear classification head adapts to fuzzy boundaries

and dynamic surface cover changes. Collectively, this hierarchical

framework provides an effective solution for wetland hyperspectral

image classification, by synergistically integrating hierarchical

feature extraction with multidimensional feature interaction.
5 Conclusion

In this paper, we propose a hyperspectral image classification

method tailored for coastal wetlands. The method integrates the

advantages of convolutional neural network (CNNs) and

Transformer architectures, and progressively extracts low, middle,

and high level features sequentially through hierarchical framework.

Specifically, 3D and 2D convolutional layers are employed to fully

capture low-level spectral and spatial features, while the

combination of dual-branch Transformers with a cross-attention

mechanism enable multi-dimensional feature fusion and the
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extraction of high-level semantic representations. Experiment

results demonstrate that the proposed method significantly

enhances classification performance on hyperspectral images of

coastal wetlands, particularly for typical land cover types such as

mudflats and mixed vegetation areas. In future work, strategies to

improve model performance under small-sample conditions will be

explored. These may include the application of semi-supervised

learning, self-supervised learning, and domain adaptation

techniques to effectively utilize both limited labeled samples and

large volumes of unlabeled data, thereby enhancing the

generalization ability of the model.
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