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Fish keypoint detection for
offshore aquaculture: a robust
deep learning approach with
PCA-based shape constraint
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Taiping Yuan1,2, Zhenhua Li3, Xiaohua Huang1,2*

and Gang Wang4

1South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,
Guangzhou, China, 2Sanya Tropical Fisheries Research Institutes, Sanya, China, 3School of Marine
Engineering Equipment, Zhejiang Ocean University, Zhoushan, China, 4Fisheries Engineering
Institution, Chinese Academy of Fishery Sciences, Beijing, China
Introduction: Fish keypoint detection is a prerequisite for accurate fish behavior

analysis and biomass weight estimation, and is therefore crucial for efficient and

intelligent offshore aquaculture. Traditional keypoint detection networks typically

employ coordinate regression methods, which do not impose any constraints on

the output of the regression head or the training process of the neural network.

As a result, output keypoints of such networks do not always conform to the

shape of a fish and the training process can be affected by incorrect labels,

leading to errors in subsequent tasks.

Methods: To address these issues, this paper proposes a robust deep learning

approach characterized by three improvements. 1) A shape model of fish that

includes the average shape of fish, principal components of fish keypoints, and

corresponding eigenvalues is constructed using principal component analysis (PCA)

and unscented transform. 2) A customized version of anchor boxes is introduced

and referred to as “anchor fish”, which along with the shape model, can be used to

encode and decode fish keypoints. 3) Shape variation loss, calculated based on the

eigenvalues in the shapemodel, is added as part of the loss function to constrain the

output of the regression head. Moreover, we built a fish keypoint dataset using

infrared cameras mounted on a truss-structure net cage.

Results and discussion: Comparative experiments on our dataset using the

keypoint evaluation method from COCO are conducted. The results show that

our method achieves an AP50 value of 0.656, significantly outperforming the

well-designed YOLO5Face, which produces an AP50 value of 0.503.

Furthermore, we have comprehensively explored the impact of key

hyperparameters on detection performance and robustness to labeling outliers

in the training set. The code is available at https://github.com/LMX-BY/fish_

landmark_detection_using_PCA_based_fish_shape_model.
KEYWORDS

offshore aquaculture, fish keypoint detection, deep learning, shape encoding, principal
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1 Introduction

Computer vision is gaining popularity in offshore aquaculture,

driven by its ability to enable long-term, automated monitoring and

data analysis for aquaculture processes (Yang et al., 2021). One of

the key challenges in aquaculture that computer vision aims to

address is fish keypoint detection. This task involves identifying the

two-dimensional coordinates of semantic points on a fish, such as

the head, the tail, and the fins, in images, and determining which

points belong to the same individual. Unlike object detection, which

outputs bounding boxes ( (Zou et al., 2023), keypoint detection

provides more granular information for aquaculture applications.

By analyzing keypoints, it is possible to estimate both the size and

quantity of fish, as well as more sophisticated tasks such as motion

tracking and behavior analysis (Zhao et al., 2021).

Fish keypoints detection depends on careful sensor selection

and placement, as well as effective algorithm design. Typically, fish

images are captured using either underwater cameras (Labao and

Naval, 2019; Salman et al., 2020) or above-water cameras (Li et al.,

2022; Han et al., 2020). Underwater cameras, despite their ability to

capture close-up images, have significant practical limitations,

including a narrow field of view, poor image quality, and a

tendency to biofouling, which necessitates frequent cleaning and

results in high maintenance costs (Reyes et al., 2020; Salama et al.,

2018). In contrast, our setup employs above-water infrared cameras

(Li et al., 2024), offering a wider field of view, clearer images, and

insensitivity to lighting conditions, all while minimizing

maintenance costs. This configuration is particularly well-suited

for long-term monitoring of fish species that exhibit nocturnal

water-surface activity, such as the Cobia (Rachycentron canadum).

Keypoint detection algorithms vary based on the application

scenario, such as human keypoint detection (also known as pose

estimation), which involves significant occlusion and variations in

shape and appearance. Therefore, it is common to use heat maps as

outputs to represent the position distribution of each keypoint.

Those algorithms can be categorized into two main approaches:

top-down (Newell et al., 2016; Wei et al., 2016; He et al., 2017; Sun

et al., 2019) and bottom-up (Newell et al., 2017; Cheng et al., 2020;

Li et al., 2020). The top-down approach begins by employing an

object detection method to identify individual objects, followed by

extracting keypoints from the image patches that contain these

objects. This approach is particularly well-suited for situations

where the objects are sparsely distributed. The bottom-up

approach first detects keypoints and then assembles those

keypoints into individuals, making it highly effective for both

small-scale objects and densely populated scenes. At the same

time, to extract more representative features, various network

structures and training methods have been proposed. By

introducing the idea of multi-stage feature extraction

(Ramakrishna et al., 2014) into deep learning, stacked hourglass

network (Newell et al., 2016) are proposed. This network aggregate

multiple lightweight networks with down-sampling and up-

sampling processes to learn multi-scale spatial relationships
Frontiers in Marine Science 02
between keypoints, thereby improving accuracy. Xiao et al. (2018)

designed a simple and single-stage network structure, referred to as

SimpleBaseline, which utilizes ResNet as the backbone and

incorporates a single down-sampling and up-sampling network to

output high-resolution heat maps. Their reported accuracy

surpasses that of Stacked Hourglass Networks. To further

improve the efficiency of SimpleBaseline, Zhong et al. (2021)

proposed a lightweight up-sampling unit and deep supervision

pyramid architecture. Li et al. (2019) analyzed the reasons for the

lower accuracy observed in multi-stage methods compared to

single-stage methods and suggested improvement strategies, such

as adopting more sophisticated single-stage modules and coarse-to-

fine supervision training.

Another typical scenario is facial keypoint detection. Given that

the face occupies a relatively small portion of an image, heatmap

based outputs are not necessarily required. Before the advent of

deep learning, a common approach was to formulate facial keypoint

detection as an optimization problem (Saragih et al., 2011; Cao

et al., 2014), where parameters such as scaling, rotation, translation,

and Point Distribution Model (PDM)-based shape coefficients

(Cootes and Taylor, 1992) were optimized. The loss function was

composed of both shape and keypoint appearance losses. Another

notable method (Kazemi and Sullivan, 2014) attempted to learn an

ensemble of regression trees as a cascade of regression functions to

achieve super-real-time performance. Building on deep learning

features, Baltrusaitis et al. (2013) introduce a keypoint appearance

loss and propose a non-uniform regularized keypoint mean-shift

algorithm to solve the optimization problem for keypoint

alignment. However, complex scenarios with varying lighting,

shape, and viewpoint have exposed the limitations of these

carefully designed methods. In contrast, end-to-end deep

learning-based keypoint detection has demonstrated superior

performance. Yashunin et al. (2020) introduce the MaskFace,

which is very similar to Mask R-CNN, with the key difference

being that it employs a one-stage object detection network.

RetinaFace (Deng et al., 2019) extends a typical target detection

network by adding a regression head, which directly translates the

feature vector at the corresponding image location to keypoint

coordinates. Additionally, an FPN and a context module are

integrated to extract and aggregate multi-scale image features,

further enriching the network’s representation capabilities.

Building on YOLOv5, Qi et al. (2022) introduced several key

improvements, including the adoption of Wing Loss (Feng et al.,

2018) as the cost function for keypoint regression and the utilization

of ShuffleNetV2 as the backbone network, thereby achieving a

balance between speed and accuracy.

Deep learning-based algorithms have also been applied to

improve the performance of fish keypoints detection. A prevalent

approach is the top-down approach (Dong et al., 2023; Wu et al.,

2022; Suo et al., 2020), which yields better results when combined

with advanced object detection networks and keypoint regression

networks, such as YOLOv5 and Lite-HRNet. Yu et al. (2023)

designed a bottom-up keypoint regression network. Unlike the
frontiersin.org
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usual approach of directly regressing keypoints, this network

integrates the heatmap of keypoints, the offset of the target

center, and the size of the target in the head. However, the

authors did not provide the advantages of this approach. For

scenarios where only a single fish is present in an image, Saleh

et al. (2023) designed a lightweight network, MFLD-net, which can

be deployed on low-cost devices. Kumar et al. (2022) compared the

heatmap-based method with the coordinate-regression method and

concluded that the heatmap-based approach using U-Net

architecture performs better.

Analysis of existing methods reveals that both heatmap-based

and coordinate regression-based methods lack explicit constraints on

the distribution of output keypoints, potentially resulting in invalid

shapes. Taking fish keypoints as an example, the four keypoints of a

typical fish should follow a specific distribution. As shown in Figure 1,

both sets of keypoints on the left and right sides consist of four points

each, yet the keypoints on the left form valid fish shapes, whereas

those on the right represent impossible combinations.

To tackle the aforementioned challenges while maintaining

both efficiency and accuracy, this study adopts a coordinate

regression-based deep learning network as its foundational

architecture. Building on this, a shape model of fish is developed

using a fish keypoint dataset, which is then utilized to encode fish

keypoints. The encoded keypoints values serve as the output of the

regression head, ensuring that the decoded keypoints conform to

the distribution of a valid fish shape. Moreover, by introducing the

shape variation loss, our method can mitigate the impact of error

labels on the training process, thereby making the model more

robust to outliers. Our network has been validated using the Cobia

dataset captured by above-water infrared cameras, but its versatility
Frontiers in Marine Science 03
allows it to be applied to a wide range of fish species and various

scenarios. The key contributions of this paper are:
• A shape model of fish is constructed using principal

component analysis (PCA) and unscented transform

data augmentation.

• Anchor fish is designed to facilitate effective positive

sampling selection and, when used in conjunction with

the shape model, enables efficient encoding and decoding of

fish keypoints.

• The shape variation loss, calculated based on the

eigenvalues in the shape model, is incorporated into the

keypoint detection loss function to constrain the output of

the regression heads.

• By combining the aforementioned three improvements, we

propose a fish keypoint detection network that builds upon

the RetinaFace and achieves robust fish keypoint detection.

• A fish keypoint dataset is constructed from images captured

by above-water infrared cameras deployed on a truss net

cage. Detailed comparative experiments are conducted to

evaluate our method using this dataset.
2 Methods

2.1 Network architecture

Our architecture is built on a one-stage object detection

framework, as illustrated in Figure 2. It consists of a feature
FIGURE 1

A schematic diagram of fish shapes composed of four keypoints. The left column shows valid fish shapes, while the right column shows invalid fish shapes.
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extraction and aggregation module (backbone and neck), multiple

classification and regression heads, and a non-maximum

suppression module. A key innovation of our design is the

inclusion of a decoding module, which plays a crucial role in

ensuring robustness. The feature extraction network processes the

pre-processed raw image and generates multiple feature maps,

which are then fed into the classification and regression heads.

These heads produce classification and regression results, but unlike

traditional one-stage detection networks, our regression head

outputs encoded keypoints based on the shape model of fish, and

then the decoding module recovers the actual keypoint coordinates.

This encoding and decoding process serves as a shape constraint,

preventing the output of outliers that can occur with coordinate-

based regression heads. During training, we introduce the concept

of “anchor fish”, similar to anchor boxes, but specifically designed

for fish keypoint detection. This enables efficient positive sample

selection and facilitates the encoding and decoding of keypoints.

Following this, we will provide a detailed description of the

decoding module and the shape constraint strategies. The other

components of the network, such as the backbone and neck, can be

implemented using commonly used architectures such as

RetinaFace and YOLOv5.
2.2 Shape model of fish

Inspired by the Point Distribution Model (PDM) proposed by

Cootes and Taylor (1992), we use the principal components and

corresponding eigenvalues offish keypoints, obtained through PCA,

to construct a shape model of fish. From a probabilistic perspective,

PCA can be viewed as fitting the data to a multi-dimensional

Gaussian distribution. In this context, the principal components

and eigenvalues correspond to the major axes of the Gaussian

ellipse and the variances of the samples’ projections onto these axes.
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Generally speaking, with a Gaussian representation, we can utilize

the Mahalanobis distance to identify outliers, as it measures the

distance between a sample and the Gaussian distribution. Similarly,

using this PCA-based model, we can determine whether a shape

composed of four points is a valid representation of a fish shape.

By performing alignment, the PDM model inherently

disregards the translation and rotation of the shape. To address

this limitation, we apply data augmentation to the aligned data. The

construction of the PCA-based shape model of fish can be

summarized in four key steps: (1) Alignment of Fish keypoints,

(2) PCA of Aligned keypoints, (3) Data Augmentation via

Unscented Transformation, and (4) PCA of Augmented

keypoints. The complete workflow is shown in Figure 3 and the

method’s detailed introduction is as follows.

The keypoint vector of the ith fish in the dataset is defined as

g ½i� = ½x½i�1 , y½i�1 , x½i�2 , y½i�2 , x½i�3 , y½i�3 , x½i�4 , y½i�4 �T , where the keypoint indices 1,
2, 3, 4 correspond to the coordinates of the fish head, the left fin, the

tail, and the right fin, respectively, within the image coordinate

system. Thus, the set of fish keypoints constructed from all

individuals in the training set is denoted as Dtrain =

< g ½i� >i=Ntrain
i=1

n o
, where Ntrain represents the number of fish

samples in the training set. This set, Dtrain, serves as the input for

building the shape model of fish.
(1) Alignment of Fish keypoints: The aligned keypoints set

Daliged = < g ½i�aliged >
i=Ntrain
i=1

n o
is obtained by translating all

samples to a common coordinate system, with the fish head

at the origin and the fish tail aligned with the y-axis.

(2) PCA of Aligned keypoints: This step yields the average

shape of fish galiged_mean, the principal component matrix

Ualiged = ½u½1�aliged, u½2�aliged,…, u½8�aliged�, and the corresponding

e i g e n v a l u e v e c t o r Saliged = ½l½1�
aliged, l

½2�
aliged,…, l½8�

aliged�.
FIGURE 2

Model architecture for fish keypoints detection. The main difference between this architecture and a typical keypoint regression network lies in the
decoding module, which plays a crucial role in ensuring robustness.
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Fron
Specifically, l½i�
aliged measures the variance of the sample data

along the corresponding principal components u½i�aliged.

(3) Data Augmentation Based onUnscented Transformation: The

alignment in step (2) assumes a precise head-to-head match

between the anchor fish and ground truth fish, which limits its

ability to capture cases where they don’t align perfectly. To

overcome this limitation, we can employ data augmentation to

generate new samples by introducing translation and rotation

perturbations. This can help mitigate the issue, but the large

size of the original dataset means that the augmented dataset

would be prohibitively large, making PCA computationally

costly. Fortunately, since PCA represents the input data as a

multidimensional Gaussian distribution, we can apply the

unscented transform to obtain a compact set consisting of

sigma points. By applying data augmentation to these sigma

points, we can significantly reduce the required sample size.

Specifically, using the PCA results from step (1), which

model a multidimensional Gaussian distribution, the sigma

points set Dweighted_unscented = < w½i�
unscented;  g

½i�
unscented >

i=2Nd
i=0

n o
can be derived using Equations 1, 2.

g ½0�unscented = galiged_mean

g ½i�unscented = galiged_mean +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Nd + a)l½i�

aliged

q
• u½i�aliged     i = 1eNd

g ½i�unscented = galiged_mean −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Nd + a)l½i�Nd �

aliged

q
• u½i−Nd�

aliged ,    i = Nd + 1e 2Nd

(1)
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w½0�
unscented =

a
Nd+a

w½i�
unscented =

1
2(Nd+a)

     i = 1e 2Nd

(2)

where Nd represents the dimension of the galiged_mean, and a is a

tunable parameter that controls the distance of the sigma points

from themean. In this paper,Nd is 8 and a is set to 3. Since each

sample inDweighted_unscented has a different weight, it is essential to

resample them to ensure that all weights are equalized to 1.

Finally, the resampled samples are subjected to rotation and

translation perturbations to generate the augmented keypoints

Daugmented = < g ½i�augmented  >
i=Naugmented

i=1

n o
. The extent of these

perturbations can be controlled by setting different ranges for

rotation and translation.

(4) PCA of Augmented keypoints: By performing PCA on

Daugmented, the final shape model, represented as

galiged_mean,

Uaug = ½u½1�aug, u½2�aug,…, u½8�aug� a n d Saug = ½l½1�
aug, l

½2�
aug,…,

l½8�
aug�,

can be obtained.
2.3 Anchor fish

Object detection networks often use anchor boxes as prior

knowledge of object location and size, allowing the bounding box

regression head to learn the deviation between the ground truth and
FIGURE 3

Data flow diagram for building the PCA based shape model of fish. It consists of four steps: (1) Alignment of Fish keypoints, (2) PCA of Aligned
keypoints, (3) Data Augmentation via Unscented Transformation, and (4) PCA of Augmented keypoints.
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its corresponding anchor box, thereby balancing the loss between

large and small objects and improving accuracy. We propose the

anchor fish set (Figure 4), which plays a similar role to anchor boxes

but is more suitable for fish keypoint regression. The average shape

of fish galiged_mean serves as a baseline for generating the anchor fish

set. As shown in Figure 4, each grid point in the feature map is

associated with a set of 8 anchor fish, consisting of the average shape

of fish and multiple fish keypoint vectors generated by rotating the

average shape around that point. The anchor fish set Danchor =

< a½i� >i=Nanchor
i=1

n o
, comprising these 8 anchor fish at each grid point

in all output feature maps, has two main functionalities: firstly,

identifying positive samples during training; secondly, encoding

ground truth keypoints during training and decoding the outputs of

the regression heads during detection.

A schematic diagram of the anchor fish set and the positive

samples selection process (PSS) is shown in Figure 4. Advanced

feature extraction networks often employ multi-resolution modules,

such as FPN, which generate feature maps at various resolutions. As a

result, the inputs to PSS consist of feature maps at different

resolutions, their corresponding anchor fish, and the ground truth

keypoint vectors represented in the coordinate system of those feature

maps. Additionally, PSS requires computing the similarity between

each anchor fish in the anchor fish set and every ground truth fish,

prompting the definition of a fish-to-fish distance function. By setting

a distance threshold, anchor fish with a distance less than the

threshold are selected as positive samples for training, while those

with a distance greater than the threshold are deemed negative

samples. This process completes the selection of positive and
Frontiers in Marine Science 06
negative samples, as well as the matching of positive samples

(anchor fish) with ground truth fish, denoted as match_atog(i) = j.

Several options exist for fish-to-fish distance, including Euclidean

distance and Mahalanobis distance. To minimize computational

burden and improve training efficiency, this study adopts the

Euclidean distance between two vectors as the fish-to-fish distance

function. Once a match is established between a specific anchor fish

and a specific ground truth fish, the anchor fish can serve as the

average shape for performing principal component-based encoding

on its matched ground truth fish, denoted as Equation 3:

pc_encoder(g ½i�, a½j�)   = Uaug½1 :Nselected_dim�T • (g ½i� − a½j�) (3)

where Nselected_dimrepresents the number of the principal

components used for encoding. In our application, Nselected_dim

needs to satisfy the condition 0 < Nselected_dim ≤ 8.
2.4 Loss function

The shape model introduced in Section 2.2 provides not only

the principal directions of the fish keypoints dataset but also the

variances associated with these directions. As a result, we can

compute the Mahalanobis distance between the regression head

output and the shape distribution. This allows us to determine the

degree of variation that is reasonable for a typical fish within specific

principal directions. By using this distance as a loss score, we can

further constrain the output to conform to the fish shape

distribution. Accordingly, we propose a loss function consisting of
FIGURE 4

Illustration of anchor fish and positive/negative sample selection process. The yellow dashed fish represents the anchor fish, the green solid fish
represents the ground truth fish (GT), and the red dashed fish and blue dashed fish represent the positive and negative samples, respectively,
selected from the anchor fish.
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three parts: classification loss, encoded keypoints loss, and shape

variation loss,

Loss = w1Lcls + w2Lencoded_landmark + w3Lshape_variation (4)

where w1, w2and w3 are hyperparameters that modulate the

impact of different loss components on the total loss.

The index set of positive samples is denoted as Pos, having a

cardinality of NPos, and the index set of negative samples is denoted

as Neg , having a cardinality of NNeg. The output of the ith

classification head is c½i�, where c½i�½1� and c½i�½0�is the probability

of the fish and background respectively. The collection of all

classification head outputs forms the set C. Then, the

classification loss can be computed using the softmax loss, as

shown in Equations 5, 6:

Lcls(C, Pos,Neg) =

− o
i∈Pos

Log(c
⌢½i�½1�) − o

i∈Neg
Log(ĉ ½i�½0�)

NPos + NNeg
(5)

c
⌢½i�½k� = exp (c½i�½k�)

o
k∈ 0,1f g

exp (c½i�½k�) (6)

Encoded keypoints loss reflects the deviation between the output of

the regression head and the encoded ground truth keypoints. To

compute this loss, we use smooth L1. Let p½i� be the output of the

regression head for the ith anchor fish, and let P be the set of all

regression head outputs. Then, the classification loss can be computed

using thesoftmax loss, as shown in Equation (5) and Equation (6):

Lencoded_landmark(P,Dtrain,Danchor, Pos)

=

o
i∈Pos

o
j∈ 1,2,…,Nselected_dimf g

smoothL1(p
½i�½j� − pc_encoder(match_atog(i);  a½i�)½j�)

NPos

                 

(7)

Similar to Mahalanobis distance, the shape variation loss is

computed as follows:

Lshape_variation(P,Saug, Pos)

=

o
i∈Pos

o
j∈ 1,2,…,Nselected_dimf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p½i�½j� · p½i�½j�

l j½ �
aug

s
NPos

(8)
3 Experimental setup and results

Before conducting experiments, we first established our own

fish image dataset using above-water infrared cameras and

constructed the PCA-based shape model of fish. The experiments

are designed to focus on comparing performance across different

network architectures and key hyperparameters. In the comparison

experiments, our dataset is split into training, validation, and test

sets, comprising 406, 45, and 157 images, respectively. All training

processes are run for 500 epochs.
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3.1 Establishing dataset

The images of our dataset were derived from continuous 24-

hour infrared video footage recorded by cameras (Hikvision DS-

2CD6626B-IZHRS, manufactured by Hangzhou Hikvision Digital

Technology Co., Ltd in Hangzhou, China) mounted on a truss-

structure net cage located in the water off Kuishan Island, Zhuhai,

China, as illustrated in Figure 5a. We specifically selected videos

recorded during nighttime (8:00 p.m. – 04:00 a.m.) and under

moderate wind conditions (4–7 m/s) during June and July, and then

randomly sampled image frames from these videos for labeling. We

used this selection criterion because it was extremely difficult to

distinguish fish in daytime images due to significant camera-to-

water-surface distance, turbid seawater condition and intense

specular reflections, which severely obscured fish outlines

(Figure 5b). Conversely, nighttime images provided significantly

enhanced fish visibility necessary for reliable detection (Figure 5c).

Furthermore, the selected wind speeds induced greater fish activity

within the net cage, providing a more diverse range of fish postures

essential for training a model with good generalization.

The dataset comprises 608 images, and the image size was 3 ×

1920 × 1080. The fish keypoints were annotated using Labelme

(v5.3.1), an open-source annotation tool. There are a total of 12,516

fish annotated with bounding boxes and 8,066 fish annotated with

keypoints. The disparity between the number of bounding boxes and

keypoint annotations arises from the fact that some fish keypoints are

not clearly visible in the images, and were therefore not annotated.

Examples of the labeled dataset are shown in Figures 5d, e.
3.2 Constructing the PCA-based shape
model of fish

Figure 6 illustrates the fish shapes generated by individually

varying the average shape along each principal component

direction, based on formula g ½i�(k) = galiged_mean + k
ffiffiffiffiffiffi
l½i�p

u½i�. The
degree of deviation from the average shape of fish along a

principal component u½i� is represented by k, which takes on 11

uniformly selected values ranging from -3 to 3. Additionally, we

present a curve showing the eigenvalues in descending order, as

shown in Figure 7.

The fish shapes in the first column of Figure 6 are generated

from the original principal components, with all fish heads aligned

to the origin and tails extending along the y-axis. These shapes

demonstrate that different principal components capture various

modes of shape variation. Specifically, the first and second principal

components account for changes in fish length and width, while the

third to fifth principal components capture shape changes resulting

from different swimming poses. In contrast, the shapes generated by

the 6th to 8th principal components are nearly identical to the

average shape, indicating that these components have a negligible

impact on shape variation. This is because the variance of the

keypoint training samples projected in these directions is extremely

small, close to zero. The second column of Figure 6 displays fish
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shapes generated by applying unscented transform-based data

augmentation to the original PCA results. The perturbations in

the x-direction, y-direction, and orientation-direction are set to en

pixels, ixe pixels, and ls0nd respectively. The results show that, in

addition to modeling size and swimming pose, the principal

components also capture the displacement and rotation of a fish.

Furthermore, the eigenvalue curve reveals that the eigenvalues

associated with the original principal components from index 6 to

8 are near zero, indicating minimal contribution to shape variation.

However, after augmentation, all eigenvalues have increased,

indicating an increase in the uncertainty of the shape distribution.
3.3 Comparison experiments on different
keypoint regression networks

The core idea of our experimental design is to improve a simple

keypoint detection network through our encoding method, thereby

surpassing the performance of a finely designed network.
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Consequently, we chose RetinaFace and YOLO5face as baseline

models for they are both widely used networks and exhibit

significant performance disparity in keypoint detection task. While

RetinaFace has a comparatively straightforward network structure,

YOLO5Face is a state-of-the-art, highly engineered detector building

upon YOLOv5, incorporating advanced modules like a ShuffleNetV2-

based backbone, a Stem structure, CSP (Cross Stage Partial) blocks,

SPP (Spatial Pyramid Pooling) module, and the wing loss function.

YOLO5Face used in our experiment adopts the YOLOv5s

architecture, and all hyperparameters are sourced from the

authors’ open-source code, which is available at the following

URL: https://github.com/deepcam-cn/yolov5-face. RetinaFace

employs VGG16 as its backbone, combined with a FPN and

context module as its neck. Given the relatively small size of a

fish in the full image, a two-layer FPN structure is used, with

downsampling ratios of 8 and 16, respectively. In contrast, our

method uses the same backbone and neck as RetinaFace, but

incorporates anchor fish, PCA-based keypoint encoding with

perturbations of tu pixels, ixe pixels, and ls0nd and a loss
(a)

(b) (c)

(d) (e)

((( )))

FIGURE 5

(a) Offshore truss-structure net cage with above-water infrared cameras for fish data collection; (b) Images collected during the day; (c) Images
collected at night; (d, e) Labeled images.
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Index Original Principle Components Augmented Principle Components

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

FIGURE 6

Fish shapes generated by principal components: original (left) vs. augmented (right).
FIGURE 7

Original and augmented eigenvalues in descending order. The results show that after data augmentation, all eigenvalues have increased.
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function defined by Equation 4 with three loss weights

(classification loss, encoded keypoints loss, and shape variation

loss) set to 2, 1, and 0.07, respectively. Furthermore, this experiment

also evaluates the accuracy of using only anchor fish for

classification, without performing keypoint regression. It is worth

mentioning that the weights for the classification loss and the

encoded keypoints loss are set to 2 and 1, respectively, through

empirical tuning. While these values were not exhaustively grid-

searched, they ensured stability and convergence throughout the

training process. The weight for the shape variation loss is
TABLE 1 Comparison results of different keypoint regression networks.

Detection Network AP50 AP75 AP

RetinaFace 0.431 0.028 0.126

YOLO5Face 0.503 0.217 0.256

RetinaFace + Our method without regression 0.347 0.007 0.083

RetinaFace + Our method 0.656 0.064 0.231
The bolded values in the table indicate the best value within each column.
TABLE 2 Comparison results of different perturbation parameters and number of selected principal components.

Perturbation
parameters

Number of selected
principal

components
AP50 AP75 AP

PCA_Original 5 0.513 0.030 0.152

PCA_Original 6 0.538 0.035 0.164

PCA_Original 7 0.554 0.057 0.172

PCA_Original 8 0.628 0.091 0.238

PCA_1_1_2p5 5 0.544 0.030 0.155

PCA_1_1_2p5 6 0.549 0.044 0.170

PCA_1_1_2p5 7 0.563 0.053 0.188

PCA_1_1_2p5 8 0.640 0.101 0.245

PCA_2p5_2p5_5 5 0.511 0.033 0.152

PCA_2p5_2p5_5 6 0.528 0.034 0.157

PCA_2p5_2p5_5 7 0.560 0.053 0.180

PCA_2p5_2p5_5 8 0.631 0.090 0.233

PCA_5_5_10 5 0.546 0.036 0.165

PCA_5_5_10 6 0.557 0.040 0.171

PCA_5_5_10 7 0.587 0.040 0.186

PCA_5_5_10 8 0.634 0.090 0.240
The bolded values in the table indicate the best value within each column.
TABLE 3 Comparison results of different loss weights.

Perturbation
parameters

Loss weight AP50 AP75 AP

pca_5_5_10 (2,1,0) 0.634 0.090 0.240

pca_5_5_10 (2,1,0.01) 0.629 0.087 0.230

pca_5_5_10 (2,1,0.02) 0.639 0.077 0.232

pca_5_5_10 (2,1,0.03) 0.631 0.080 0.229

pca_5_5_10 (2,1,0.05) 0.633 0.069 0.223

pca_5_5_10 (2,1,0.07) 0.656 0.064 0.231

pca_5_5_10 (2,1,0.09) 0.652 0.070 0.223

pca_5_5_10 (2,1,0.1) 0.652 0.075 0.235

(Continued)
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TABLE 3 Continued

Perturbation
parameters

Loss weight AP50 AP75 AP

pca_5_5_10 (2,1,0.2) 0.632 0.084 0.229

pca_5_5_10 (2,1,0.3) 0.628 0.089 0.232

pca_5_5_10 (2,1,0.4) 0.623 0.074 0.222

pca_5_5_10 (2,1,0.5) 0.635 0.063 0.219

pca_5_5_10 (2,1,0.7) 0.632 0.074 0.221

pca_5_5_10 (2,1,0.9) 0.597 0.063 0.206
F
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The bolded values in the table indicate the best value within each column.
RetinaFace

YOLO5Face

RetinaFace + Our method

without regression

RetinaFace + Our method

FIGURE 8

Fish keypoints detection results of different networks. The red fish represent the detection results, and the green fish represent the ground truth. The
red boxes highlight the outputs of invalid fish shape. The first row to the fourth row correspond to RetinaFace, YOLO5Face, Improved RetinaFace
using our method without regression, and Improved RetinaFace using our method, respectively. The results show that our network consistently
outputs valid fish shapes.
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determined through the comparative experiments described in

Section 3.4, with the optimal setting being 0.07.

To evaluate the performance of keypoint detection, we adopt the

evaluation method mentioned in the widely used COCO dataset (Lin

et al., 2014). This method defines the Object Keypoint Similarity

(OKS), which is used to calculate the similarity between two sets of

input keypoints. Based on OKS, Average Precision (AP) can be

further calculated, and its function is similar to the Intersection over

Union (IoU). We set the parameter “kpt_oks_sigmas” to [0.06, 0.06,

0.06, 0.06] and configured “maxDets” to 80. Results are presented in

Table 1. The results show that our method (fifth row) achieved the

best performance on the AP50 metric, with a score of 0.656,

significantly outperforming the other three methods. Notably, our

method outperforms RetinaFace across all AP metrics without

altering the network architecture, solely by employing the three

methods proposed in this paper. Additionally, our method

surpasses the network with only anchor fish-based classification,

validating the necessity of the regression head. However, our

method has its limitations. Specifically, the AP75 metric is only

0.064, lower than YOLO5Face’s 0.217. As shown in Figure 8, the

keypoints detected by YOLO5Face are closer to the ground truth, but

it may output invalid fish shapes (indicated by red boxes) and tend to
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miss more fish without anchor fish. In contrast, our method outputs

valid shapes, but loses information after decoding. This is because the

shape model derived from aligned keypoints fails to accurately

capture translation and rotation, even after unscented transform-

based augmentation, in contrast to coordinate-based regression.
3.4 Comparison experiments on different
hyperparameters

This experiment examines the effect of varying the number of the

selected principal components Nselected_dim used for encoding (which

influences the size of the output encoded feature vector) and selecting

different perturbation parameters for unscented transform on the AP

metric. To isolate the impact of shape variation loss, the loss weights

for all models are set to 2, 1, and 0. The “PCA_Original” represents a

network without unscented transform-based data augmentation. In

contrast, the “PCA_a_b_c” networks incorporate data augmentation

with perturbation parameters a, b, and c, which correspond to orr

pixels, ixe pixels, and nde°n respectively. The results in Table 2 reveal

that accuracy increases with the number of the selected principal

components. However, larger perturbations in data augmentation do
FIGURE 9

Comparison results of different loss weights. The value of AP50 metric increases first and then decreases, while the value of AP75 shows a
“fluctuation-decrease” trend.
TABLE 4 Comparison results using training sets that consist of different
proportions of outliers.

Loss weight 10% outliers 20% outliers 30% outliers

(2,1,0) 0.57 0.54 0.49

(2,1,0.05) 0.57 0.57 0.49

(2,1,0.1) 0.59 0.58 0.55

(2,1,0.2) 0.59 0.55 0.52
TABLE 5 Comparison of computational efficiency before and after the
integration of our method into RetinaFace.

Metric RetinaFace
RetinaFace +
our method

Relative
change

Number of
model parameters

9.59 M 9.64 M + 0.05 M

GFLOPS 623.84 623.86 + 0.02

Inference time
per image

0.04 s 0.04 s + 0 s
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not always yield better results. The optimal accuracy is achieved with

the parameter setting of 1_1_2p5.

Furthermore, we utilize PCA_5_5_10 as the base network and

investigate the impact of shape variation loss weight on accuracy. As

shown in Table 3; Figure 9, adjusting the weight of the shape

variation loss results in noticeable fluctuations in accuracy.

However, the overall trend suggests that as the weight increases,

the AP50 metric initially improves before subsequently

deteriorating. The peak AP50 accuracy of 0.656 is achieved when

the weight is set to 0.07, resulting in a 0.22 improvement over the

zero-weight baseline. In contrast, the AP75 metric exhibits a pattern

of fluctuating decline, and the AP75 accuracy corresponding to the

peak AP50 accuracy is notably lower. This may be attributed to the

fact that shape variation loss can be viewed as a form of

regularization, which enhances the model’s generalization ability

by mitigating overfitting to the training set.
3.5 Comparison experiments with outliers

We verified the performance after training the model on a

training set with outliers under different shape variation losses. In

this experiment, we used three training sets that consisted of 10%,
Frontiers in Marine Science 13
20%, and 30% outliers, respectively. The outliers were made

deliberately by shuffling their keypoint orders, meaning

misarranging the order of the head, tail, and fins. Then we set

different weights to the shape variation loss and test the model’s

performance. The results in Table 4 show that increasing the weight

of shape variation loss improves the model’s AP50 performance

when the dataset is compromised by outliers, and the higher

proportion of outliers exist, the more significant role shape

variation loss plays. However, an excessively high weight of shape

variation loss can be detrimental to precision. These results

demonstrate the robustness of our model to incorrect labels.
3.6 Efficiency validation experiment

This experiment verifies the efficiency of the RetinaFace model

before and after improvement using our method. The computer we

used is equipped with an NVIDIA RTX 3090 GPU (32GBVRAM) and

an Intel Core i9-12900K CPU, and the input image size is 3szee900Knt.

The key efficiency metrics are summarized below in Table 5.

We can see that the integration of our method incurs only a small

change in the number of parameters (0.5% increase) and almost

negligible change in GFLOPS (0.02 increase). In addition, the
(a) (b)

(c) (d)

FIGURE 10

Illustration of the detection results of low-visibility fish. The green quadrilaterals indicate the labeled fish, the red quadrilaterals indicate the detected
fish, and the red dots indicate the unlabeled low-visibility fish. (a, b) Images with labeled fish; (c, d) Images with labeled and detected fish.
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inference time before and after improvement is almost the same, at 0.04

seconds per image. These efficiency metrics confirm the practical

suitability of our method for real-time aquaculture monitoring systems.
4 Discussion

From the results in Table 1, it can be seen that the AP75 value of

YOLO5Face is 0.217, which is significantly higher than the AP75

value of 0.064 for the method proposed in this paper. This seems to

indicate that our method involves a sacrifice in high-precision

keypoint regression. However, comparing the original RetinaFace

and its improved version, it is clear that our method has improved the

AP75 metric for RetinaFace from 0.028 to 0.064, more than doubling

it, confirming its ability the enhance precision for a simple detection

network. The higher AP75 of 0.217 achieved by YOLO5Face is largely

due to its superior network architecture (ShuffleNetV2 backbone,

CSP blocks, Wing loss, etc.). To improve AP75 while preserving the

shape validity, we propose two approaches that we will carry out in

our future studies. One approach is to adopt a more advanced

network, such as YOLOv5Face. Another method involves setting

both the PCA encoding head and the traditional local coordinate

regression head in the network and fusing their outputs using a

weighted fusion or filtering algorithm. We believed that with further

refinements of our method, we could boost the AP75 metric while

maintaining high AP50 and shape validity.

The robustness claimed in our work primarily relates to

resilience against outliers, similar to the core principle of the
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RANSAC (Random Sample Consensus) algorithm, which

mitigates the influence of outliers during model fitting. Our

method similarly exhibits robustness in two critical aspects:
(1) Outlier Rejection During Inference: It explicitly constrains

the output keypoints to form valid fish shapes, preventing

implausible predictions.

(2) Outlier Tolerance During Training: It demonstrates

resilience against mislabeled training data, reducing their

adverse impact on keypoint regression performance.
From the results in Table 3, it can be observed that the shape

variation loss introduces a trade-off between the AP50 and AP75

values. This is due to that a high weight assigned to the shape

variation loss might lead to an increase in landmark loss during

training. Through further analysis, it can be seen that if the labeled

fish in the training set fits well with the anchor fish, the shape

variation loss will be small enough that the trade-off will not occur,

even with a higher weight being assigned to it. When the labeled fish

in the training set deviates too far from the anchor fish, shape

variation loss will increase and assigning a high weight to it will lead

to an increase in encoded keypoint loss during the training process.

However, whether this trade-off benefits the model’s performance

depends on what causes the labeled fish to deviate from the anchor

fish. If the deviated fish have valid fish shapes but are too large or

small, or their poses differ from the anchor fish, increasing the

weight of the shape variation loss will impair the model’s ability to

learn high-precision coordinate regression. On the other hand, if
(a) (b) (c)( )) ( ))) (((((( )))))))))

(d) (e) (f)

FIGURE 11

Examples of failure cases of our method. The green quadrilaterals indicate the labeled ground truth fish, the red quadrilaterals indicate the detected
fish: (a) FP caused by specular reflection; (b) FP caused by confusing the head and tail; (c) FN caused by small or low-visibility fish; (d) FN caused by
overlapping; (e) FN caused by low classification score; (f) Large keypoint error caused by the tail mislocalization.
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the deviations are caused by incorrectly labeled coordinate values or

coordinate order, the larger value of shape variation loss is

beneficial, for it will prevent the model from fitting into

incorrectly labeled keypoints. An example can be seen from

section 3.5.

In the training set, some low-visibility fish have unlabeled

keypoints, and thus these keypoints are not learned by the model.

We conducted the following validation specifically for low-visibility

fish. As we can see in Figure 10, there are 18 and 15 annotated fish

(green quadrilaterals) in Figures 10a, b respectively, 12 and 6 low-

visible fish (red dots) in Figures 10c, d respectively. Notably, our

model detected 27 and 16 fish (red quadrilaterals) as shown in

Figures 10c, d respectively. Further analysis of the fish detected by

our model, we can see that there are a total of 43 fish detected, which

significantly exceeds the 33 annotated ones. Comparison between

the annotated fish and detected ones shows that 29 detections

correctly correspond to annotated ones, with only 4 missing, and 1

false positive. Comparison between the low-visible fish and detected

ones shows that 13 detections correctly correspond to the low-

visible ones, with 5 missing, but no false positive.

By analyzing the detection results on the test set, the failure

cases can be divided into three categories:
Fron
(1) Low-visibility fish that are not labeled but detected, which

should not be treated as a real failure.

(2) Detected fish that are either false positives (FP) or false

negatives (FN). Further analysis shows that FP are mainly

caused by specular reflections (Figure 11a) or confusion

between the fish head and fish tail (Figure 11b), while FN

mostly occur when fish is too small or unclear for detection

(Figure 11c), or when fish overlap (Figure 11d). In some

rare cases, fish with clear outline are still missed, mainly

because the anchor fish closest to them is misclassified as

background (Figure 11e).

(3) Detected fish with significant deviations in keypoints,

which are often caused by tail mislocalization (Figure 11f).
5 Conclusions

In this paper, we have established a fish keypoint dataset using

images captured by above-water infrared cameras and proposed

three strategies to improve an existing keypoint detection network

RetinaFace. These strategies significantly improve the AP50 score,

avoid the generation of invalid fish keypoints, and prevent the

model from fitting to outliers in the training set, thus ensuring

robustness. This is highly beneficial for subsequent size and

quantity estimation as well as behavior analysis tasks in offshore

aquaculture. Our approach involves principal component-based

shape encoding and a loss function that incorporates shape

variation loss to constrain the output of regression heads.

Additionally, we utilize anchor fish as a prior for fish objects to
tiers in Marine Science 15
improve detection rates. We conducted comparative experiments

using a dataset from above-water infrared cameras installed on a

truss net cage to validate the effectiveness of our method. The results

demonstrate that our method outperforms the well-designed

YOLO5Face keypoint detection network in AP50 metrics, with

each output keypoint vector constituting a valid fish shape. To

further investigate the characteristics of our proposed methods, we

conducted comparative experiments on three key hyperparameters

and different rate of outliers in the training set. The experimental

results elucidate the characteristics of our method and its robustness

to incorrect labels. Notably, our method can be used to improve any

anchor-based object detection network, especially those with

carefully designed architectures, thereby achieving higher AP50

and AP75 values.
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