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1 Introduction

Rivers and lakes serve as critically important water bodies on Earth’s surface. Currently,

freshwater algal blooms have become a global ecological phenomenon, occurring in diverse

water bodies such as lakes, rivers, and reservoirs across temperate and tropical regions, and

have increased significantly over the past several decades. Since the 1980s, around 68% of

the world’s lakes have undergone a persistent rise in algal bloom intensity (Ho et al., 2019;

Sukharevich and Polyak, 2020). The degradation of water quality and eutrophication in

global freshwater systems have emerged as significant environmental challenges,

predominantly driven by anthropogenic activities and accelerating climate change

(Suresh et al., 2023; Van Vliet et al., 2023; Liu et al., 2020; Wang et al., 2020). The

occurrence of algal blooms in inland waters poses a serious threat to aquatic ecosystems and

public health and safety (Brooks et al., 2016). Waters affected by algal blooms often exhibit

high levels of eutrophication, and the subsequent death of blooms can deplete dissolved

oxygen, resulting in black bloom events. Beyond degrading water aesthetics and severely

damaging aquatic ecosystems, algal blooms also pose health risks to humans and animals

through their associated toxins.

Remote sensing demonstrates distinct advantages in aquatic environmental monitoring

through its comprehensive spatial information acquisition, operational efficiency, and cost-

effectiveness. It enables the timely detection of marine environmental risks such as algal

blooms and oil spills, and supports the rapid identification of water quality anomalies in

coastal bays and estuarine rivers, as well as pollution source tracking. These capabilities

have established novel research pathways for forecasting river-to-ocean pollution events

through enhanced spatiotemporal monitoring frameworks. For example, Chen et al. (2023)

used 30 years (1990–2019) of data to analyze the spatial and temporal characteristics of the

Harmful algal blooms (HABs) along the Chinese coasts. To assess the feasibility of remote

sensing for detecting HABs in small to medium-sized waterbodies, Liu et al. (2022) applied

data from three satellites—Planetscope, Sentinel-2 and Landsat-8—to analyze the impacts

of spatial resolution, spectral band availability, and waterbody size on detection accuracy.

Similarly, Binding et al. (2018) investigated algal bloom dynamics in Lake Winnipeg using
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satellite-derived chlorophyll-a (Chl-a) and metrics of bloom

intensity, spatial extent, severity, and duration over the MERIS

mission period. Current remote sensing monitoring of algal blooms,

however, predominantly targets large water bodies (e.g., oceans,

lakes, and reservoirs), while riverine algal blooms have received

disproportionately less attention. This disparity is primarily

attributed to the lower bloom frequency in river systems

compared to lentic ecosystems, coupled with the heightened

requirements for retrieval accuracy and stability imposed by

complex river hydrodynamics (Rolim et al., 2023).

Algal bloom retrieval models with remote sensing are primarily

classified into three categories: empirical, semi-empirical, and

physical models (Li et al., 2025; Yang et al., 2025; Vasilakos et al.,

2020; Lu et al., 2020; Chen et al., 2022; Yang et al., 2022; Chang

et al., 2015). Empirical and semi-empirical models primarily rely on

statistical analysis to establish relationships between remote sensing

signals and Chl-a concentrations through extensive field-measured

datasets (EI-Rawy et al., 2020; Yang et al., 2023; Xiao et al., 2022).

These models demonstrate operational simplicity and

computational efficiency, but exhibit limited generalizability

beyond specific study areas. In contrast, physical models are

grounded in rigorous radiative transfer theory, which

quantitatively describes the relationship between aquatic

components and satellite-derived irradiance through specific

absorption coefficients and scattering coefficients of water

constituents (Li et al., 2025; Guo et al., 2022). These models

simulate light propagation processes in both atmospheric and

aquatic environments using radiative transfer equations, enabling

quantitative inversion of water quality parameter from remote

sensing data. In recent years, the rapid advancement of artificial

intelligence (AI) has facilitated the successful application of

machine learning algorithms, particularly Artificial Neural

Networks (ANNs), Support Vector Machines (SVMs), and

Random Forest (RF), in remote sensing-based monitoring of

organic pollutants in aquatic environments (Vinothkumar and

Karunamurthy, 2023; Zhang et al., 2022; Ruescas et al., 2018;

Deng et al., 2019). Furthermore, emerging deep learning

architectures have demonstrated enhanced capabilities in water

color remote sensing for retrieving concentrations of critical

water quality parameters (Arshad et al., 2024, 2023; Khan et al.,

2023; Ullah et al., 2024). The integrated application of multi-model

approaches enables complementary advantages among different

methodologies, significantly enhancing the accuracy and stability

of water environment remote sensing monitoring.

This study proposes an integrated approach combining satellite

remote sensing with in situ measurements to establish a multi-

technique collaborative monitoring framework for algal blooms in

sea-reaching rivers. The framework addresses the challenges of

cross-system ecological transitions and salinity gradients in river-

to-sea transitional zones. A seasonal algal bloom event in the

Qiantang River Basin from July to September 2016 was

documented, with its complete phenological cycle (initiation,

evolution, and senescence) through multi-temporal remote

sensing data at a 30m resolution. The results demonstrate that the
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Chl-a remote sensing physical mechanism model offers advantages

of robust adaptability and algorithm stability, enabling large-scale

synchronous monitoring of river algal blooms. Furthermore, the

integration of extensive synchronous remote sensing observations

with conventional in situ point monitoring significantly enhances

the spatiotemporal resolution and efficiency of river

bloom surveillance.
2 Study area

The Qiantang River Basin is situated between latitude 28°N and

30.5°N and longitude 117.5°E and 120.5°E. Its main stream spans

668 kilometers, encompassing tributaries such as the Xin’an River

and Fuchun River, with an average annual runoff of 43.458 m3 and a

drainage area of approximately 60,000 km2 (Sun et al., 2016). The

construction of multistage hydrojunction projects along the

mainstem and tributaries of the Qiantang River has induced flow

attenuation in certain reaches. Compounded by rapid regional

socioeconomic development in recent decades, this anthropogenic

modification of hydrological regimes has facilitated the persistent

accumulation of nutrients (e.g., nitrogen and phosphorus) within

aquatic systems. Such conditions create a critical threshold whereby

algal blooms can be rapidly triggered when meteorological and

hydrological parameters reach conducive levels. Seasonal algal

blooms in the Qiantang River Basin were initially documented as

early as the late 20th century, with particularly extensive outbreaks

occurring in 2004 and 2010 that triggered severe deterioration of

water quality across the watershed (Gao et al., 2025; Reinl et al.,

2020; Zhou et al., 2022).
3 Data and methods

3.1 Satellite data sources and ground-
based observational data

The HJ-1A/B satellites, China’s first domestically developed

civilian satellites dedicated to environmental monitoring and

disaster mitigation/emergency response, were launched on

September 6, 2008. The HJ-1A/B satellites were each equipped

with two wide-coverage multispectral CCD cameras, covering four

broad spectral bands in the visible and infrared ranges. When

operated jointly, these dual-camera systems achieve a 4-day

revisit cycle, enabling push-broom imaging with a swath width of

720 km, a spatial resolution of 30 m, and four spectral bands. The

HJ-1A/B satellites adopt a band configuration modeled after the

U.S. Landsat series, featuring medium spatial resolution and broad

spectral coverage, while achieving a wider swath width and shorter

revisit cycle compared to their counterparts. One single image of the

HJ-1A/B satellites can achieve complete coverage of the Qiantang

River Basin, fulfilling the temporal resolution requirements of the

study. The key parameters of the HJ-1A/B satellites’ CCD sensors

are presented in Table 1.
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Satellite imagery acquired over the Qiantang River system from

July to September 2016 was screened according to the cloud cover

threshold of<20%, with the final selected images presented

in Table 2.

In addition, synchronized field investigations of algal blooms

and emergency water quality monitoring were conducted from July

to August 2016. Ground-based investigations employed a dual-

mode approach: (1) Fixed-point instrumentation for regular

monitoring of water quality parameters and algal bloom

occurrence; (2) Event-driven manual sampling with laboratory

quantification during bloom episodes in affected areas. Field

sampling and analysis were conducted in strict compliance with

applicable water quality monitoring standards. The spatial

distribution of in situ fixed sampling locations is illustrated in

Figure 1. The monitored parameters included conventional

physicochemical indicators as well as biological indicators such as

Chl-a, algal density, and algal species composition and so on.
3.2 Development of remote sensing
retrieval model for algal blooms

The water-leaving radiance captured by satellite remote sensing

sensors results from the combined effects of: (1) air-water interface

reflectance and refraction, (2) water column absorption and

scattering processes, and (3) benthic substrate absorption and

reflectance. The spectral characteristics of water bodies are

predominantly characterized by volume scattering, resulting from

the combined effects of water molecules and suspended impurities

within the water. The primary pollutants in the water body are

suspended sediments, oxygen-consuming organic matter, and Chl-

a. The inherent optical parameters (IOPs), such as absorption and
Frontiers in Marine Science 03
scattering coefficients, exhibit wavelength-independent

characteristics across the light spectrum.

The radiative transfer process in water bodies can be expressed

as follows (Li et al., 2022; Lu et al., 2020): The water-leaving

radiance (Lw) is composed of upwelling scattered radiance from

the entire water column (Ls) and the bottom substrate-reflected

radiance (Lb), as mathematically represented by Equation 1:

Lw = Ls + Lb (1)

Based on the radiative scattering characteristics and radiative

transfer processes in aquatic environments, the determination of

the total radiative transfer model for water bodies requires two

essential components: 1) solution of upwelling scattering

throughout the entire water column, and 2) calculation of

substrate reflectance at the water bottom.

For upwelling scattering, the incident light intensity differs

across varying water depths. When considering the scattering

contribution from a thin water layer of thickness dh at depth h

(Equation 2).

dLs =
1
4p

Ebp(Q)dh (2)

E is the downwelling irradiance at water depth h, which can be

expressed as by Equation 3

E = E0cosq
0 e−

(a+b)h
cosq 0 (3)

In the equation, a denotes the total absorption coefficient of the

water body, while bx4E3A;. represents the total scattering

coefficient (Equations 4, 5).

a = aw + Dsas + Duau + Dvav (4)

b = bw + Dsbs + Dubu + Dvbv (5)

The symbols w, s, u and v represent pure water, suspended

sediment, oxygen-consuming organic matter, and Chl-a,

respectively, while d denotes the unknown concentrations of each

constituent to be solved.

The incident light is first attenuated by the thin water layer. The

upward scattered light then undergoes secondary attenuation

through the upper water layer before emerging from the water

surface. The expression is given as follows by Equation 6:

dLs =
1
4p

Ebp(Q)e−
(a+b)h
cosj0 dh  (6)

The upwelling scattered radiance Ls of the entire water column

can be derived by integrating Equation 6, as represented by

Equation 7.

Ls =
E0cosq 0bp(Q)

4pmk
(1 − e−mkh) (7)

Then m = 1
cos q 0 + 1

cosj 0 , the extinction coefficient k = (a + b).
Assuming the water bottom substrate is a Lambertian surface,

the radiance exiting the water body is represented by Equation 8.
TABLE 2 Satellite data employed in this study.

Satellite data
Acquisition time (2016)

July Aug Sep Nov

HJ-1A/B

22 15 9 3

25 20 26 6

26 24 11
TABLE 1 The CCD data parameters of HJ-1A/B satellites.

ID Band (mm)
Spatial

Resolution
(m)

Swath
Width
(km)

Revisit
Period
(day)

1 0.43–0.52 30

360 (single
imager)
700

(two imagers)

4
2 0.52–0.60 30

3 0.63–0.69 30

4 0.76–0.90 30
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Lb =
E0cosq 0 Rb

p
e−mkh (8)

The conversion from radiance to surface reflectance (Rw) is

expressed as Equation 9:

R =
pL
E

(9)

Substituting (7) and (8) into (1) and transforming to reflectance

via (9) yields the general radiative transfer equation for water bodies

represented by Equation 10.

R =
bp(Q)
4mk

(1 − e−mkh) + Rbe
−mkh (10)

The scattering and absorption coefficients of suspended

sediment, colored dissolved organic matter (CDOM), and Chl-a

can be experimentally determined. The unknowns to be resolved by

the model include Ds, Dv, Du and water depth H and benthic

substrate reflectance Rb (Equations 4, 5).

For the underdetermined system of equations where the

number of unknowns exceeds the number of spectral bands, the

Chl-a concentration in water bodies can be solved by analyzing

the optical properties of the study area and selecting sensitive bands

to construct the equations (Li et al., 2025; Yang et al., 2025; Liang

et al., 2024). In this study, since HJ-1A/B employed consist of four

spectral bands, the Chl-a concentration in water bodies was derived

by solving a system of four simultaneous equations.

After a series of data processing steps, including geometric

correction, radiometric calibration, radiometric correction,

atmospheric correction, land-water separation, and remote

sensing inversion of water quality parameters—followed by
Frontiers in Marine Science 04
calibration using sampled laboratory measurements—the remote

sensing monitoring results of Chl-a concentration and algal bloom

status in the Qiantang river were finally obtained.
3.3 Geometric correction and radiometric
calibration

Radiometric calibration is the process of converting the digital

number (DN) values in raw imagery into radiance using calibration

parameters provided in satellite data files. Radiometric correction is

performed to derive planetary reflectance for all bands at each pixel

from radiance using solar spectral irradiance per band, with

corrections applied for solar incidence angle and viewing

geometry effects.
3.4 Atmospheric correction and land-water
separation

Atmospheric correction aims to remove/minimize the influence

of atmospheric scattering and absorption in remote sensing data.

Atmospheric correction analyzes atmospheric factors, constructs

and solves models to maximally mitigate atmospheric interference.

The dark target method was employed to derive the relevant

atmospheric parameters in this study. To mitigate water vapor

effects, clear/deep water pixels were employed as dark targets. After

measuring the reflectance of clear water, the atmospheric optical

thickness and transmittance were calculated to achieve

atmospheric correction.
FIGURE 1

Schematic diagram of river reach distribution in the Qiantang River.
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Following atmospheric correction, water-land separation was

performed using a simple threshold approach with the modified

Normalized Difference Water Index (NDWI) (Liang et al., 2023;

Rad et al., 2021; Mcfeeters, 1996).
3.5 Retrieval of chlorophyll-a
concentration in surface water

Given that phytoplankton predominantly accumulate at the air-

water interface during extensive bloom events, the sensor-reaching

radiance in red and near-infrared bands is mainly representative of

surface water characteristics. The reflectance and absorption

characteristics of Chl-a lead to a significant enhancement of

spectral features in both the red and near-infrared bands, thereby

providing more favorable conditions for the retrieval of Chl-a

concentration. The study adopts the Chl-a water quality remote

sensing physical model described in Section 2 to retrieve water Chl-

a concentration through simultaneous inversion using both red and

shortwave near-infrared band data (Equations 4, 5). Since the

penetration depth of shortwave near-infrared radiation is

approximately 25 cm, the retrieved Chl-a concentration primarily

represents the surface water Chl-a level, with minimal influence

from bottom reflectance.
3.6 Remote sensing index-based
classification of algal blooms

Chl-a concentration thresholds serve as critical indicators for

classifying algal bloom severity in aquatic ecosystem monitoring

standards. Adhering to established in situmonitoring protocols and
Frontiers in Marine Science 05
accounting for regional hydrological characteristics, this study

implemented the following threshold-based classification: a mild

algal bloom corresponds to Chl-a concentrations of 15–25 mg/L, a
moderate algal bloom to 25–50 mg/L, and a severe algal bloom to

concentrations exceeding 50 mg/L.
4 Results and discussion

4.1 Validation of accuracy

To validate the accuracy of remote sensing inversion for Chl-a

concentration in water bodies, ground-based synchronous

observations were collected, yielding a total of 49 paired

synchronous ground observation points during satellite

overpasses. Figure 2 shows a comparison between the remote

sensing inversion results of the algal bloom index and the in situ

measured Chl-a concentrations on August 15 and August 20, 2016,

during the algal bloom event in the Qiantang River. Figure 3 shows

the accuracy comparison between the remote sensing inversion

results of Chl-a and the measured values.

As shown in Figure 3, the remotely sensed Chl-a concentration

exhibits good linear agreement with in situ measurements

(r=0.7984), demonstrating the capability of remote sensing to

capture relative Chl-a concentration trends. The field-measured

data exhibit significant fluctuations, whereas the remote sensing

results demonstrate more gradual variations. The possible reason is

that the water sampling collects data from a single point, while the

remote sensing result represents the average concentration over a

30×30 meter pixel area of the water surface. This leads to a relatively

smoother variation in the remote sensing data, analogous to a low-

pass filtering effect.
FIGURE 2

Validation of Qiantang river algal bloom remote sensing inversion against in situ measurements with (a) (August 15, 2016) and (b) (August 20, 2016).
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4.2 Spatial distribution characteristics of
algal blooms

Through the aforementioned remote sensing methodology, the

spatial distribution of algal blooms in the Qiantang River during

satellite overpass can be accurately obtained. Unlike ground-based

monitoring which can only obtain data at discrete sampling points,

satellite-derived results provide the spatial distribution of Chl-a in

water bodies during satellite overpasses, enabling rapid

identification of the most severe algal bloom areas. Through

statistical analysis methods, the occurrence area and proportion

of algal blooms in each river section can be obtained. Taking the

remote sensing inversion results on August 20, 2016, as an example,

the algal bloom area in the main reaches of the Qiantang River

within the study region was 138.93 km². Among this, the areas of

mild, moderate, and severe algal blooms were 41.72 km², 51.79 km²,

and 45.42 km², respectively, with moderate algal bloom exhibiting

the highest proportion. The results are presented in Figure 4.
Frontiers in Marine Science 06
Calculate the proportional area coverage of algal blooms at

different severity levels for each river segment separately. On

August 20, 2016, the Qiantang River mainstream section had the

lowest proportion of algal bloom coverage. The Wuyi River and

Xin’an River segments accounted for the largest proportion of

severe algal bloom coverage, with approximately half of their

water areas affected by intense blooms, as shown in Figure 5.
4.3 Remote sensing monitoring of algal
bloom evolution processes

Statistics and comparative analysis of multi-temporal remote

sensing inversion results can elucidate the temporal evolution of

algal blooms. Remote sensing analysis reveals that the algal bloom

dynamics in the Qiantang River system, occurring from July to

September 2016, exhibited four characteristic phases: incipient

stage, proliferation stage, climax stage, and regression stage, as

shown in Figure 6.
A. In the initial stage of algal bloom occurrence, as shown in

the satellite remote sensing results of the Qiantang River

water system on July 22, 2016, the bloom intensity was

predominantly mild. A large area of moderate to severe

algal blooms occurred in the river section between Lan

river and Xin’an river and the confluence of the Fuchun

river and Fenshui river. Meanwhile, the algal bloom area in

major tributaries such as the Xin’an river further

expanded, with increased bloom intensity.

B. During the algal bloom development phase, as shown by the

satellite remote sensing results of the Qiantang River system

on July 25, the spatial distribution of blooms in the main

channel had expanded from the lower reaches of the Lan river

to the Fuyang city section in the upper reaches of the Fuchun

River, though the bloom intensity remained predominantly

mild. A large area of moderate to severe algal blooms

occurred in the river section between at the confluence of
FIGURE 3

Accuracy validation of remote sensing retrieval for chlorophyll-a
(Chl-a) in the Qiantang River.
FIGURE 4

Areal percentage of algal blooms in key reaches of the Qiantang River.
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Fron
the Lan river and Xin’an river and the confluence of the

Fuchun river and Fenshui river. Meanwhile, the algal bloom

area in major tributaries such as the Xin’an River further

expanded, with increased bloom intensity.

C. The peak bloom period, as demonstrated by the satellite

remote sensing results of the Qiantang river water system on

July 29, 2016. The distribution range of algal blooms in the

main channel had covered the river section from the lower

reaches of Lan river to the upper reaches of Fuchun river

(Fuyang City segment). Meanwhile, large-scale severe algal

blooms in other river sections further intensified with

continued expansion in coverage area. After August 15th,

the intensity of algal blooms in the Qiantang river water

system began to intensify again. The satellite remote sensing

results of algal blooms in the Qiantang river system on

August 20 show that the distribution of algal blooms has

spread throughout the main river channel upstream of the

Qiantang river, as well as major tributaries such as the

Xin’an river and Jinhua river. Moreover, severe algal blooms

in the main channel have covered the Fuchun river and Lan

river. The algal blooms in major tributaries such as the

Xin’an river were also predominantly severe, reaching the

peak of both distribution area and intensity during this

bloom event. The algal bloom in the Qiantang river on

August 24 maintained the outbreak status observed on

August 20, with similar distribution patterns and coverage

extent. The bloom had spread across the main channel

upstream of Qiantang river, as well as major tributaries

including the Xin’an river and Jinhua river.
tiers in Marine Science 07
D. The algal bloom decline phase, as demonstrated by the

satellite remote sensing results of the Qiantang River water

system on September 26, both the intensity and spatial

distribution of the bloom gradually diminished after early

September. By mid-to-late September, specifically around

September 25, the river conditions had essentially returned

to their original state.
5 Conclusion and prospects

Grounding in radiative transfer mechanisms, this research

established a physics-driven model for Chl-a concentration

retrieval from pixel reflectance of remote sensing. The model

explicitly accounts for Chl-a, delivering transparent inversion

mechanisms and physically interpretable parameters. By

exclusively retrieving the surface Chl-a concentration, this

approach can effectively reflect the actual conditions of algal

blooms. Validation shows a good linear relationship (R=0.7984)

between the remote sensing retrieval results and in situ

measurements, confirming the reliability of satellite data in

monitoring algal bloom dynamics in the Qiantang River.

Given the vast area of the Qiantang River Basin

(approximately 50,000 km²), high-resolution satellites with

limited swath width were inadequate for complete coverage. The

study employed HJ-1A/B satellite data (Environment Satellite)

which provides single-scene coverage of the entire study area.

However, data availability was constrained by adverse weather
FIGURE 5

Distribution of algal bloom area in the main reaches of the Qiantang River water system.
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conditions and satellite imaging schedules, with particularly

scarce acquisitions during early-mid September and October

when no usable data were available. Therefore, for emergency

water quality monitoring of inland rivers and lakes, multi-source

satellites such as Gaofen-1 (GF-1) or Sentinel can be employed to

compensate for the temporal coverage limitations of single
Frontiers in Marine Science 08
satellite. With the advancement of deep learning theory,

integrating deep learning into quantitative remote sensing

physical models is expected to improve the accuracy of remote

sensing inversion as well as enhance the model’s dynamic

predictive capabilities. This will achieve a transition from status

monitoring to early warning of algal blooms for river systems.
FIGURE 6

Satellite remote sensing of algal blooms of 2016 in the Qiantang river: (a) July 22, (b) July 25, (c) July 29, (d) August 15, (e) August 20, (f) September 26.
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