
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Joan-Albert Sanchez-Cabeza,
National Autonomous University of Mexico,
Mexico

REVIEWED BY

Xinyu Li,
University of Washington, United States
David Moriña,
Autonomous University of Barcelona, Spain
Zhentao Sun,
University of Delaware, United States

*CORRESPONDENCE

EvaLynn Jundt

evalynnjundt@gmail.com

Xinping Hu

xinping.hu@austin.utexas.edu

RECEIVED 30 April 2025
ACCEPTED 29 July 2025

PUBLISHED 03 September 2025

CITATION

Jundt E and Hu X (2025) Statistical models for
the estimation of pH and aragonite saturation
state in the Northwestern Gulf of Mexico.
Front. Mar. Sci. 12:1621280.
doi: 10.3389/fmars.2025.1621280

COPYRIGHT

© 2025 Jundt and Hu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 September 2025

DOI 10.3389/fmars.2025.1621280
Statistical models for the
estimation of pH and aragonite
saturation state in the
Northwestern Gulf of Mexico
EvaLynn Jundt1* and Xinping Hu1,2*

1Harte Research Institute, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States,
2Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, United States
Historical water column carbonate measurements have been scarce in the Gulf

of Mexico (GOM); thus, the progression of ocean acidification (OA) is still poorly

understood, especially in the subsurface waters. In the literature, statistical

models, such as multiple linear regression (MLR), have been created to fill OA

data gaps in different ocean regions. Additionally, machine learning techniques

such as random forest (RF) have been used in model creations for both the open

ocean and marginal seas. However, there is no statistical model for subsurface

carbonate chemistry parameters (i.e., pH and WArag) in the GOM. By creating

models with various architectures built upon the relationships between

commonly measured hydrographic properties (e.g., salinity, temperature,

pressure, and dissolved oxygen or DO) and carbonate chemistry parameters

(e.g., pH and aragonite saturation state, or WArag), data gaps can be potentially

filled in areas with insufficient sampling coverage. In this study, two statistical

models were created for pH andWArag in the northwestern GOM (nwGOM) within

the range of 27.1–29.0˚N and 89–95.1˚W using both MLR and RF methods. The

calibration data used in the models include salinity, temperature, pressure, and

DO collected from seven cruises that took place between July 2007 and

February 2023. The models predict WArag with R2
≥ 0.94, mean square error

(MSE) ≤ 0.04, and pH with R2
≥ 0.93, MSE ≤ 0.0005. Both the MLR and RF models

perform similarly. These models are valuable tools for reconstructing pH and

WArag data where direct chemical observations are absent but hydrographic

information is available in the nwGOM. Nevertheless, potential shifts in

circulation, water mass changes, and accumulation of anthropogenic CO2

need to be accounted for to improve and revise these models in the future.
KEYWORDS

ocean acidification, Gulf of Mexico, statistical models, carbonate chemistry,
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Introduction

The capability of oceans to store absorbed CO2 from the

atmosphere is attributed to seawater’s buffering capability. Through

a chain of processes, from CO2 dissolution to carbonic acid

dissociation, only a small amount of absorbed CO2 remains

undissociated (i.e., aqueous CO2, or CO2*) (Zeebe et al., 2011).

Due to this reaction, CO2 invasion into seawater results in changes

to the speciation of the carbonate system. Thus, while the increase in

CO2* is proportional to the CO2 increase in the atmosphere, the

extent of the total dissolved inorganic carbon (DIC) concentration

increase is lower than that in the atmosphere. As a result, carbonate

ion (CO3
2−) concentration decreases along with the release of H+, and

carbonate saturation state (W) decreases following Equation 1.

Wsp   = ½Ca2+�½CO2−
3 �=  Ksp0 (1)

Here, [Ca2+] is the concentration of calcium ions, and Ksp’ is the

stoichiometric solubility product (Zeebe and Wolf-Gladrow, 2001).

Ksp
’ is a function of the mineral phase (calcite or aragonite),

pressure, salinity, and temperature. Based on thermodynamics,

calcification is favored when W > 1 (supersaturation), while

dissolution is favored when W < 1 (undersaturation). Ocean

acidification (OA) can lead to unfavorable conditions for

calcareous organisms such as corals, shellfish, calcareous algae,

and other important calcifying species on the ocean food web

(such as pteropods) by affecting their calcification (Bednars ̌ek
et al., 2012; Erez et al., 2011; Eyre et al., 2014; Hoegh-Guldberg

et al., 2007).

Although there has been increasing effort in collecting

carbonate chemistry data, creating novel applications of models

to supplement existing datasets in many areas, especially the coastal

ocean, including the GOM, is still needed. Currently, the data

coverage in the nwGOM is limited to infrequent water chemistry

data collections from several NOAA-led cruises (Barbero et al.,

2024, 2017; Peng and Langdon, 2007; Wanninkhof et al., 2012) and

those from our study. New methods are being put into practice to

remedy the missing data, including autonomous measurements,

although many of these platforms are limited with measuring pH

and CO2 partial pressure (pCO2), hence, available datasets often

lack the necessary information for characterizing OA conditions in

the coastal region.

In recent years, statistical modeling based on hydrographic data

has been used to fill in data gaps in water column carbonate

chemistry datasets (Juranek et al., 2009), as such data (including

salinity, temperature, dissolved oxygen or DO, and sometimes

nutrients) are much more widely available. By creating models

using commonly measured hydrographic data, information such as

WArag (i.e., aragonite saturation state), pH, total dissolved inorganic

carbon (DIC), and total alkalinity (TA) can be calculated (e.g.,

Carter et al., 2018). An early example of these studies was done for

WArag on the continental shelf of central Oregon (Juranek et al.,

2009), where a multilinear regression (MLR) model using

temperature and oxygen was developed for WArag (coefficient of

determination or R2 = 0.987, with mean standard error or MSE of

0.003). This MLR model was used for constructing comprehensive
Frontiers in Marine Science 02
water-column WArag values to evaluate the seasonal evolution of

WArag. The application of MLR models with adjustments for

anthropogenic CO2 to determine WArag using historical datasets

was done in a study in the Sea of Japan (East Sea), where a similar

model was applied to a historical dataset lacking WArag, resulting in

an WArag dataset from 1960 to 2000 (Kim et al., 2010). Similar

models have also been proven effective for the prediction ofWArag in

other locations, with some model applications including TA and

DIC (Alin et al., 2012; Bostock et al., 2013; Hare et al., 2025;

McGarry et al., 2021; Carter at al., 2021).

Our study developed statistical models using both and random

forest (RF) architectures for the purpose of predicting pH andWArag in

the northwestern Gulf of Mexico (nwGOM). Equation 2 was used to

represent the MLR model, where Y is the target variable, b0 is the y-
intercept, bx represents the slope intercept, Xx is the predictor variables

and e is the error term. MLR is a popular and effective linear modeling

technique that has been applied in a vast number of research areas,

including the aforementioned successful applications to marine

carbonate chemistry, and thus was a clear choice.

Y =   b0 +   b1X1   +   b2X2   +… +   e (2)

Machine learning has emerged as an alternative to linear models

in numerous fields (Thessen, 2016). The proliferation of machine

learning techniques has led to the development of methods for a

wide variety of datasets and goals. The simplest machine learning

models, such as decision trees and RF models, which are

constructed from a group of decision trees, each trained on a

distinct subset of data. These three based models are frequently

preferred when applicable due to their explanatory capability

through feature importance, low computing power requirements,

and ability to operate on relatively small datasets (Cutler et al.,

2007). RF is a versatile and powerful ensemble learning method

capable of producing high-quality predictions while effectively

handling noisy data and mitigating common challenges such as

overfitting (Breiman, 2001). By aggregating the predictions of

multiple decision trees, each trained on distinct subsets of data,

the randomness introduced by this approach enhances prediction

accuracy and diminishes the risk of overfitting (Thessen, 2016).

Moreover, RF offers interpretability that many other machine

learning models lack, through assessment of feature importance,

which measures how much each feature contributes to reducing

impurity (like variance) across all the trees in the forest, indicating

its overall influence on the model’s predictions. This combination of

robustness, accuracy, and interpretability makes RF well suited for

both classification and regression tasks (Thessen, 2016). For this

study, statistical and machine learning methods were used to create

MLR and RF models using measured hydrographic data (salinity,

temperature, pressure, DO) to estimate pH and WArag. These

models will have the capacity not only to estimate pH and WArag

using existing datasets but also could pair with current and

potentially future autonomous observation platforms to create

near real-time estimated pH and WArag coverage within the

recommended timeframe (i.e., the next 10 years). This study will

also serve as a valuable baseline of data for future OA research in

the nwGOM.
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Methods

Dataset description

Water column studies focusing on the carbonate system in the

GOM shelf and upper slope (up to 1000 m) region include

GOMECC cruises 1–4 in 2007, 2012, 2017, and 2021 (Barbero

et al., 2024, 2017; Peng and Langdon, 2007; Wanninkhof et al.,

2012) (Table 1). In addition to these large-scale expeditions,

regional datasets also exist from individual studies focusing

largely on the northern GOM shelf (Cai et al., 2020, 2011; Hu

et al., 2017; Huang et al., 2015).

From April 2021 to February 2023, five cruises were conducted

in the nwGOM shelf and upper slope to collect both surface and

water column data across different seasons as a part of the project

“Ocean Acidification at a Crossroad” (XR) (Figure 1). Among the

stations sampled were those along the Galveston transect, which is a

transect along the 95° W longitude first taken during GOMECC-1

cruise. This transect was sampled on GOMECCs 3 and 4 and again

by the XR project in April and August of 2021, December of 2022,

and February of 2023 (Table 1; Figure 1). The combined dataset

before circulations QC and preparation included 960 data points

from 36 stations, out of which 94 of these data points from the

GOMECC-4 cruise were to be used for testing the models while the

remaining 866 data points were to be split (90:10) and used for

model training and calibration.
Sampling and analytical methods

Seawater sampling for the XR cruises was done following the best

practices for carbonate chemistry analysis (Dickson et al., 2007).

Briefly, samples were taken from the Niskin bottles into 250-ml

ground-neck borosilicate glass bottles. Preservation of samples for

carbonate chemistry analyses was done by adding 100 ml of saturated
HgCl2 solution. Glass stoppers with the aid of Apiezon® L grease and

rubber bands were used to seal the samples. The GOMECC samples

were analyzed on board the ship, including DO, DIC, and TA; nutrient

samples were analyzed at the Atlantic Oceanographic and
Frontiers in Marine Science 03
Meteorological Laboratory (AOML) (Barbero et al., 2017, 2024; Peng

and Langdon, 2007; Wanninkhof et al., 2012). All XR carbonate

chemistry (DIC, pH, and TA) samples were analyzed in our lab at

Texas A&M University-Corpus Christi (Hu et al., 2018), and DO was

analyzed on board the ship. Nutrient samples were analyzed at the

Geochemical and Environmental Research Group at Texas

A&M University.

For the GOMECC samples, DO was determined using an

automated oxygen titrator with amperometric end-point detection

(Culberson and Huang, 1987). DIC was determined using gas

calibrations and Certified Reference Material (CRM) stability

checks to ensure proper performance (with precisions of ± 1.37

μmol/kg) (Johnson et al., 1985). For the XR samples, DO was

determined on a selected subset of the samples using Winkler

titration (Culberson, 1991; Winkler, 1888), as these water samples

were used to verify the DO sensor on the onboard the CTD

(DiMarco et al., 2012). DIC was determined using infrared

methodology on a DIC analyzer (Apollo SciTech Inc.) with CRM

to ensure optimal instrument performance (with precisions of

±0.1%) (Chen et al., 2015). For all cruises, TA was analyzed using

open-cell Gran titration (Gran, 1952), and pH was analyzed using a

spectrophotometric method with purified m-cresol purple (Liu

et al., 2011). Due to the COVID-19-caused interruption to CRM

supply in early 2021, XR1 samples were analyzed using CRM Batch

#181 and a homemade secondary reference (based on CRM Batch

#181) taken from filtered (0.2 μm) and HgCl2-dosed Aransas Ship

Channel water. XR2 samples used CRM Batch #194, 197, and 198;

XR3 samples used CRM Batch #202 and 204; and XR4 samples used

Batch #204 only, while XR5 samples used Batch #204 and 205.
Calculations, QC, and data preparation

Speciation calculations for the GOMECC-1 data used TA, DIC,

and nutrients as input variables as direct pHmeasurement using the

spectrophotometric method was not available. Estimated

uncertainties using the average surface water conditions for pH

andΩArag were ±0.01 and ±0.17, respectively (Orr et al., 2018); then

DIC and pH were used for speciation calculations in all other

GOMECC datasets as well as the XR ones without nutrient data,

resulting in an uncertainty in ΩArag of ±0.18. Though some

calculations were done without nutrients, uncertainty contributed

to the combined standard uncertainty are negligible even in high-

nutrient regions, except in high-nutrient waters with TA as a

member of the input pair (Orr et al., 2018). Carbonate speciation

calculation was done using the MatLab version program CO2SYS

(Sharp et al., 2023; van Heuven et al., 2011). Carbonate dissociation

constants from Mehrbach et al. (1973) refit by Dickson and Millero

(1987), the dissociation constant of bisulfate reported in Dickson

et al. (1990), the total boron concentration provided in Uppström

(1974), and the aragonite solubility constant from Mucci (1983)

were used in these calculations. As nutrient data were not available

for the XR cruises due to technical issues encountered during the

pandemic, we were not able to do a strict internal consistency

analysis because using TA as one of the input variables would
TABLE 1 Summary of datasets included in this research study.

Name Date # Observations

GOMECC

1 July 2007 90

3 July 2017 131

4 October 2021 59

XR

1 April 2021 104

2 August 2021 107

3 December 2022 57

4 February 2023 121
Number of observations column indicates the total number of observations from each cruise
included in modeling after modification for target depth and calculation of
necessary parameters.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1621280
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jundt and Hu 10.3389/fmars.2025.1621280
require nutrient information. However, the offset between

calculated (using DIC/pH without nutrients, except for

GOMECC-1) and measured TA values, was compared across all

cruises to ensure that data quality was consistent among these trips

(Figure 2) (Patsavas et al., 2015).

When modeling carbonate chemistry, it is crucial to focus on a

geographic area where local processes and water masses exert similar

control. This ensures that the relationships between parameters

remain consistent throughout the area and are accurately captured

in the models. Hence, data used for our model development were

limited spatially within the range of 27.1–29.0˚N and 89–95.1˚W.

Removal of the upper water column of various depths is regularly

done in some capacity in carbonate modeling studies in an attempt to

remove large, short-term, unconstrained variabilities, such as surface

water gas exchange, physical, biological, and seasonal changes

(Juranek et al., 2009; Kim et al., 2010; Lima et al., 2023; McGarry

et al., 2021). Depth ranges of the mixed layer to be removed vary by

location and season. Some models do not require exclusion of air-

surface water interactions due to predictor variables being unaffected

by this exchange, and others have used removal of additional surface

water as a means of removing the effect of seasonality (Juranek et al.,

2009; Kim et al., 2010; Lima et al., 2023; McGarry et al., 2021; Montes

et al., 2016). Since the models produced in this study could contain

DO, removing air-sea interaction was necessary. However, the

removal of the mixed layer to eliminate seasonality as done by Kim
Frontiers in Marine Science 04
et al. (2010) would equate to a removal of more than 100 m to

account for the seasonal changes in mixed layer depth, as winter

mixed layer depth in nwGOM can be more than 100 m (Muller-

Karger et al., 2015). To retain as much data as possible while

removing seasonality, removal of the upper 30 m of data was

arbitrarily chosen. Note this removal should more than cover the

depth of the mixed layer in summer but is shallower than those

depths in winter and spring. The predictor parameters (salinity,

temperature, pressure, and DO) were normalized to avoid

collinearity, which causes computational problems that make

parameter estimates unstable (Quinn and Keough, 2002). This was

done through computing Z-scores using Equation 3, where Xi is the

predictor variable data point, Xm is the mean of the calibration set,

and XSD is the standard deviation of the calibration set. This can be

described as centering by subtracting the mean and dividing by the

standard deviation, resulting in predictor variables having a mean of 0

and a standard deviation of 1.

Xn =  
Xi − Xm

XSD
(3)

This approach uses normalized predictor variables to estimate

nonnormalized target variables, so the relative importance of

multiple parameters can be compared within one model through

the magnitude of the coefficients. The normalized predictor

variables were tested for collinearity by calculating the variance
FIGURE 1

A map of the study area and stations where data was collected.
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inflation factor (VIF) for each predictor. Combinations of terms

resulting in a VIF greater than 10, indicating excessive collinearity,

were not used in any model (Kutner et al., 2005). Outliers were

identified using studentized residuals, which are more effective for

detecting outlying Y observations than standardized residuals.

Studentized residuals larger than 3 (which are classified as

outliers) were further examined. Each data point was individually

evaluated, considering corresponding measurements from the same

sample for consistency. Data flagged as questionable across multiple

parameters were carefully considered, and if multiple indicators

suggested potential error, the observation was excluded from the

dataset. Any data points with studentized residuals >5 were

removed due to the likelihood of being erroneous or anomalous.
Model creation

The modeling exercise was conducted in Python using the

Scikit-learn packages (Pederegosa et al., 2011). Using a

combination of the measured data (salinity or S; temperature or

T; DO; and pressure, or P), these techniques produced RF and MLR

models for pH and WArag. The predictor variables were selected by

dredge for MLR models or variable importance for RF models (see

below for details). The process was repeated until either R2 values

were <0.90 or only one predictor variable remained. Final predictor

variable selections were used to create final models that

were evaluated.

MLR - Empirical models were developed for each target variable

(i.e., pH andWArag) using least squares multiple linear regression on

each combination of hydrographic variables, following the methods

of Juranek et al. (2009) and Alin et al. (2012). All parameters (DO, S,

T, P) in the training data were given as predictors to a full MLR

model. Dredge methodology was used to evaluate every possible

combination of the four parameters. From among the

combinations, all models were ranked based on minimizing the

Akaike information criterion (AIC), a metric for model selection
Frontiers in Marine Science 05
that incorporates both the goodness of fit and a penalty for

complexity (Burnham and Anderson, 2004). The best performing

models with R2 > 0.90 and correlation coefficients with correct signs

(±) were selected for further evaluation.

RF - An initial RF model was created including all four

variables. Hyperparameter tuning is the process of optimizing a

model’s configuration settings to improve performance by

specifying tuned values for the number of trees, max tree depth,

and minimum samples split. Hyperparameters for tuning were

decided using scickit-learn GridSearchCV (Supplementary Table

S2). Selected hyperparameters were applied using an RF regressor

function (Probst et al., 2019). After this step, the variable

importance was analyzed, and a stepwise procedure was followed

to create a new model without the variable of least importance. The

new model was then tuned and evaluated, if the model's R2 > 0.90 it

would be considered in the final model valuation. In addition, the

process starting by analyzing feature importance to create a simpler

model was continued until the resulting model did not meet

previously stated criteria.
Model evaluation

The models were used to predict their target variable while

using predictor variable data from the completely “unseen data,” or

data uninvolved in the training process, in this instance, the

GOMECC-4 data. By using data from a cruise, which also took

place within the time period that the modeled data were collected,

separate from the training data, this ensures that the model

performance results will accurately represent the models’ efficacy

on new data. To ensure that the test dataset is representative of the

training dataset and that the distributions of the variables are not

problematically different, a two-step evaluation process was

conducted. First, the distribution of each variable in both the

training and test datasets was visually examined using graphical

representations, such as histograms, density plots, or boxplots, to
FIGURE 2

Visuals for quality control comparisons of analysis between XR and GOMECC datasets. Boxplot (a) showing distribution of DTA by calculation inputs
separated by depth. Scatterplot (b) visualizing the spread of DTA by calculation inputs by measured TA values.
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identify any noticeable differences. Second, the Kolmogorov–

Smirnov (KS) test, a non-parametric statistical test, was applied to

each variable to evaluate whether two samples are drawn from the

same underlying distribution by comparing their cumulative

distribution functions (Massey, 1951). These analyses collectively

concluded that the training and test datasets are statistically

comparable, minimizing the risk of bias in model evaluation due

to distributional differences.

After confirmation of the representative quality of the test data,

model evaluations were based on the performance across multiple

metrics, including mean absolute error (MAE), mean square error

(MSE), mean absolute percent error (MAPE), correlation coefficient

R2, and spatial bias (Vujovic, 2021). MAE and MSE represent the

absolute-difference and the squared-difference metrics, respectively.

MLR model variable coefficients were used for interpretation of

relative variable effect. The RF model variable importance best

describes model fit, not direct variable relationships, and therefore

was not interpreted this way, that is, variable effect. Additional

analysis of the residual data to identify normality and potential

signals was done using QQ-plots and Shapiro–Wilks tests (Chen

et al., 2019) (Supplementary Figures S1-S8).
Results

The models chosen to predict both ΩArag and pH included

different combinations of the following parameters: salinity,

temperature, pressure, and DO (Table 2). All linear combinations

of hydrographic parameters in the models presented here resulted

in VIFs less than 10, suggesting that there is no statistical evidence

of coupling between any of the predictor variables. The MLR and
Frontiers in Marine Science 06
RF models for ΩArag had adjusted R2 values between 0.94 and 0.99

and MAE values between 0.06 and 0.14. The MLR and RF models

for pH had adjusted R2 values between 0.93 and 0.96 and MAE

values between 0.01 and 0.02. As shown in Figures 3 and 4, the

residuals for all model versions displayed some visually identifiable

tendency for greater error in shallower depths. This, in combination

with poorer performance of models including all depths, supports

the choice made to mitigate uncertainty caused by air-sea

interaction by the exclusion of the mixed layer in some capacity

(Supplementary Table S2). MAPE statistics indicate the models for

pH displayed less deviation between predicted and actual values and

may perform better when used with new data (Table 2). These

model evaluative criteria indicate that both models produced

reliable results across the range of observed values in the

calibration dataset (Figures 3, 4).

Eest =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
Response + E2

Input + E2
MLR

q
(4)

Eest =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(UiBi)
2

q
(5)

Uncertainty propagations were calculated using Equation 4

(Carter et al., 2018; Li et al., 2022). EMLR refers to the model

RMSE. EResponse represents measurement uncertainties; for pH, this

is the spectrophotometric measurement uncertainty, which was set

conservatively to be a constant 0.005 (Carter et al., 2024). For ΩArag

this is the uncertainty from input pairs propagated through

calculations of ΩArag which was set as 0.085 (Orr et al., 2018).

Einput is the uncertainty of the input parameters propagated in the

regression, which can be calculated using Equation 5, where Ui is

the i-th input uncertainties of the predictor properties. We set theUi

values at 0.005, 0.005°C, and 2.2 μmol kg−1 for S, T, and DO,
TABLE 2 Summary of all models for the prediction of pH including their performance metrics and variable importance for RF models and coefficients
for MLR models.

MSE MAE MAPE R2 MSE MAE R2 Temperature
Dissolved
Oxygen

Pressure Salinity Intercept

WArag

RF 3
0.010 0.071 0.029 0.987 0.011 0.068 0.985 0.56 0.09 0.35

WArag

RF 2
0.021 0.095 0.039 0.971 0.025 0.095 0.966 0.61 0.39

WArag

RF 1
0.037 0.130 0.051 0.949 0.044 0.135 0.94 1

WArag

MLR 4
0.009 0.072 0.032 0.987 0.01 0.056 0.986 0.3982 0.3722 -0.0544 0.0989 2.5369

WArag

MLR 3
0.010 0.071 0.032 0.987 0.011 0.063 0.984 0.4367 0.3687 -0.1127 2.537

pH RF 3 0.0003 0.013 0.002 0.959 0.0002 0.013 0.961 0.15 0.75 0.1

pH
MLR 3

0.001 0.018 0.002 0.929 0.0005 0.017 0.929 -0.0078 0.0647 -0.0432 7.9512

pH
MLR 4

0.000 0.016 0.002 0.946 0.0003 0.011 0.955 -0.0232 0.0661 -0.0198 0.0396 7.9511
Unshaded area includes results from performance of validation dataset; shaded area indicates performance of unseen test data. Number in the model ID reflects the number of variables used in
the model. MSE is mean square error, MAE is mean absolute error, MAPE is mean absolute percent error, R2 is the correlation coefficient. The rows with the bold fonts indicate the best models.
Note the first column includes modeled parameter (WArag and pH), and the numbers after the statistical models (RF or MLR) indicate the number of predicting variables used.
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respectively (Carter et al., 2018). Total uncertainty calculated is 0.12

forΩArag and 0.0173 for pH. Other information that can be inferred

from these calculations is the relative sources of uncertainty by the

comparison of EResponse, EInput, and EMLR. In both cases the EMLR

value was the largest contributor of uncertainty, followed

by EResponse.

In addition to the total uncertainty calculations, a better

understanding of the source of the uncertainty described by the

EMLR can be achieved by examining the calculations of error used to

describe model performance, such as MAPE and MAE. ΩArag

models produced MAPE scores of 2.9%–5.1% and MAE of 0.05–

0.13 in comparison to estimates of error propagation for calculation

of ΩArag being ±0.16 depending on input pairs (Orr et al., 2018).

Most of the uncertainty from calculation comes from the pair-

constants curve, meaning methodological uncertainties for the

input pairs result in little effect on the overall propagated

uncertainties. Therefore, the relative uncertainty due to error of

model ΩArag values has similar reliability to calculations of ΩArag

from measured DIC, TA, or pH values. This was not true for pH

models, as MAPE scores ranged from 0.16% to 0.22%, with an MAE
Frontiers in Marine Science 07
of 0.011–0.018 in comparison to a relative uncertainty of

measurement methods of 0.008–0.0012, meaning that there is a

higher confidence of measured values as opposed to predicted

(Takeshita et al., 2021).

The best model for ΩArag was the MLR model, which included

all variables with an R2 = 0.99. (WArag MLR 4; Table 2). MLR

equation coefficients indicate that for the ΩArag model, variable

importance, or contribution to explainability, is as follows, from

most to least important: temperature, DO, pressure, and salinity,

with temperature and DO being >77% larger than pressure and

salinity. The second-best performing model with R2 = 0.98 is the

MLR model with three variables, which, in order of importance, are

temperature, DO, and pressure (WArag MLR 3; Table 2). The RF

models did not outperform MLR models but came close behind,

with the best RF model (WArag RF 3; Table 2) having an R2 = 0.99

while using the same three variables as the second-best MLR model.

For the RF models, poorer performance on test data than validation

data would indicate overfitting and that the model has poor ability

to generalize. However, minimal difference (DR2 < 0.01) was

observed in performance on testing versus validation data. This
FIGURE 3

pH models predicted values plotted by measured values from models’ application to test dataset (GOMECC4) (a), residuals plotted by measured Ω

Arag (b), and depth (c). Points color coded for each model (Table 2).
FIGURE 4

ΩArag models predicted values plotted by measured values from models’ application to test dataset (GOMECC4) (a), residuals plotted by measured Ω

Arag (b) and depth (c). Points color coded for each model (Table 2).
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indicates that the model is not overfitted, generalized well, and can

be expected to perform similarly (as it did on the test data) on new

data (Domingos, 2012).

For pH, the best-performing model was the RF model that

included three variables with an R2 = 0.96. (pH RF 3; Table 2). The

second-best performing model with R2 = 0.975 was the MLR model

with all variables, which, in order of importance, are DO,

temperature, pressure, and salinity (pH MLR 4). The RF models

outperformed the MLR models for pH prediction, but again by a

narrow gap. Differences were observed in performance on

validation and test datasets of R2 > 0.6, indicating which models

may be slightly overfitted. The RF model containing all four

variables performed poorly, possibly due to overfitting or

collinearity and thus is not included.

All residuals indicated nonnormality as seen in QQ-plots,

histograms, and through Shapiro-Wilks p-values < 0.05

(Supplementary Figures S1–S8). To further investigate the non-

normality of residuals and determine if it could be an indicator of

other problems, the Durbin-Watson and Breusch-Pagan tests were

used to test the assumptions for independent and homoscedastic

residuals. A Durbin-Watson test for independence resulting in a

value close to 2 suggests that the residuals an autocorrelated.

Breusch–Pagan test for homoscedasticity, where a p > 0.05

suggests homoscedasticity. Therefore, despite the nonnormality of

the residuals, it is unlikely to be problematic due to their

independence, homoscedasticity, the size of the dataset, and the

robust nature of the models (Breiman, 2001).
Discussion

Data selection considerations

The nwGOM area (latitudes 27.1–29.0˚N and longitudes 89–

95.1˚W) was selected to isolate a relatively small geographic area

where controlling factors on the carbonate system are expected to

remain similar in the examined window of time and included the

same stations surveyed repeatedly along the same transect (i.e., the

90° line). This study area lies almost entirely on the Texas shelf and

far enough to the west so that the effects of the freshwater discharge

transported westward are less pronounced than on the bulk of the

Louisiana Shelf (Androulidakis et al., 2015; Morey et al., 2003).

Under heavy influence from the large river’s watershed, salinity

would be a key variable for models, although it is not detected as

such in our models. Therefore, salinity was only included as a

predictor variable in one of the ΩArag models and only half of the

pH models.

Removal of the surface layer of the water column was done

strategically to remove large, short-term temporally unconstrained

variabilities, such as surface water gas exchange, physical, biological,

and seasonal changes (Juranek et al., 2009; Kim et al., 2010;

McGarry et al., 2021). In the nwGOM, removal of shallow water

can potentially mitigate the minimal effects of freshwater outflow as

the low-salinity river discharge is buoyant. Removal of surface water

can be less important when air-surface water interactions do not
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affect predictor variables. Even still, removal can serve as a means of

removing the effect of seasonality, though depth ranges of the mixed

layer to be removed vary by location and season (Juranek et al.,

2009; Kim et al., 2010; McGarry et al., 2021; Montes et al., 2016).

Since most of the models produced in this study contain DO,

removing air-sea interaction was necessary. Based on the final

models chosen for ΩArag and pH, the relationships showed that

the exclusion of the upper 30 m of the water column did improve

the performance of all ΩArag models. When models are compared

with the model containing the same spatial data but all depths,

models with the upper 30 m removed, except for pH MLR models,

had either greater R2, lower MSE or MAPE, or a combination of the

three (Supplementary Table S2). The improvements in all models

indicate that the removal of surface water increases the performance

of the models, though it should be noted that there may be bias

across seasons due to unaccounted-for surface water and mixed-

layer inclusion in the datasets used for training. Seasonal bias could

also occur due to a greater quantity of summer observations in the

training dataset. Further data beyond the 2007–2023 time series, as

well as the inclusion of more seasonal data, are needed to properly

assess the potential existence of these biases.
Aragonite models

There are many known relationships between ΩArag and

physical and chemical parameters, which is why the variables

salinity, temperature, pressure, and DO were chosen in

developing WArag models. However, the degree to which each of

these variables is intertwined with ΩArag is not so easy to identify

but can be inferred by their selection and importance in the models

with the highest performance.

Temperature was the most prominent predictor for ΩArag in all

models (Table 2). The strength of the relationship can be explained

by ΩArag as a function of Ksp and [CO3
2−], and Ksp as a function of

temperature, salinity, and pressure. Temperature as a dominant

predictor variable aligns well with models built for ΩArag prediction

in other areas, which also found temperature to be a primary

predictor for ΩArag (Alin et al., 2012; Juranek et al., 2009; Kim

et al., 2010; McGarry et al., 2021). Pressure was included in all MLR

models and two out of three RF models (Table 2). The pressure term

in the models can be in part explained by ΩArag as a function of Ksp

and [CO3
2−], and Ksp is also a function of pressure, that is,

increasing solubility with depth. DO was included in both MLR

models and one RF model (Table 2). The inclusion of DO is likely

due to the close coupling of DO and DIC in subsurface waters,

which includes CO2 uptake (photosynthesis) and release

(respiration) and lacks exchange with the atmosphere in the

subsurface (>30 m). Although salinity was also tested, it was only

included in one MLR model based on selection criteria and was the

least important predictor variable by coefficient (Table 2). The lack

of salinity could be in part because salinity in the modeled dataset

has small variability from 33.2 to 36.7 without outliers and an

interquartile range (IQR) of from 35.2 to 36.4. This means salinity

has a relatively small contribution to variability, either due to the
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hydrography of the area or possibly in part to the limitation of the

dataset’s spatial and depth coverage. By focusing on the nwGOM

and removing the upper 30 m it is possible that freshwater outflow

transported from the Mississippi-Atchafalaya watershed westward

over the Louisiana-Texas shelf in the surface water has been

partially or wholly avoided (Morey et al., 2003).
pH models

Although anthropogenic CO2 is the dominant driver for long‐

term, that is, multidecadal, change in pH in the upper ocean water

column, the variations observed in coastal waters on decadal time

scales are largely attributed to driving forces including production

shift due to changes in nutrient input (Wang et al., 2013) and ocean

circulation changes (e.g., upwelling) (Feely et al., 2008) and

terrestrial influences (Cai, 2003; Duarte et al., 2013; Gomez et al.,

2021). The fact that DO was included as an important predictor

variable suggests that biological activities are a major driving force

for the carbonate system. Similarly, DO was also found to be the

strongest predictor of pH in the Northeast US (McGarry et al.,

2021). Pressure was also important in all the models, as carbonate

system equilibria are affected by pressure (Table 2). There is a

visually notable trend of overprediction of pH from 400 to 800 m;

this is an area with lower pH and W than the rest of the water

column. We attribute this bias to the non-linearity of the carbonate

system. This type of bias has also been seen in other similar models

in different geographic locations as well (Juranek et al., 2011, 2009).
Comparison with previous models

One of the primary motivations behind the use of the MLR

modeling with standardized variables is the ability to use empirical

relationships among predictor variables to accurately describe the

controlling processes in the study area, whereas RF modeling can

only provide relative feature importance, which is not a

quantification of the correlation between variables but of the

relative impact on the performance of the model, or reduced

impurity, that can be attributed to that predictor variable

(Breiman, 2001). Due to standardization, the strength of the

predictor variable correlation with the target variable can be

inferred by the absolute value of the coefficients of predictor

variables included in the models. However, it is important to note

that statistical models reflect correlations between predictor

variables and target variables but do not necessarily reveal

mechanistic relationships (Quinn and Keough, 2002) (Table 2).

Because of differences in hydrography, river influences, and

location of the drivers of the carbonate system, statistical models for

carbonate system parameters are often specific to the geographic

areas where they were created for. Although many of the primary

drivers of the carbonate system remain the same, the secondary

variables shift, as does the degree to which they influence.

In the literature, ΩArag models have been created for the

northwestern Atlantic (McGarry et al., 2021), northern Gulf of
Frontiers in Marine Science 09
Alaska (Evans et al., 2013), Central Oregon Coast (Juranek et al.,

2011, 2009), southern California Current system (Alin et al., 2012),

Queen Charlotte Sound (Hare et al., 2025), U.S. east coast (Li et al.,

2022), and the Sea of Japan (East Sea) (Kim et al., 2010). These

models all have between two and three variables and an adjusted R2

≥ 0.91 compared to between one and four variables with an adjusted

R2 ≥ 0.94 in this study. The primary predictor variable in all

previous models except two (Evans et al., 2013; Juranek et al.,

2011) is temperature, as is the case in this study. Most models also

include some combination of temperature with salinity, oxygen,

and interaction terms; one model also used pressure (Kim et al.,

2010), and one used NO3
- (Evans et al., 2013). The models created

here and those created previously for ΩArag agreed on the use of

temperature as a primary predictor variable in combination with

other predictor variables.

pHmodels have been created for the eastern US coast (McGarry

et al., 2021; Li et al., 2022), the northeast Pacific (Juranek et al.,

2011), the southern California Current System (Alin et al., 2012),

Queen Charlotte Sound (Hare et al., 2025), and the global ocean

(Carter et al., 2021). All those models also used temperature and

DO (Alin et al., 2012; Juranek et al., 2011; McGarry et al., 2021; Li

et al., 2022), with one model also using an interaction term between

DO and temperature (Alin et al., 2012), one using nutrients, salinity,

and multiple interaction terms (McGarry et al., 2021) and, lastly,

one using AOU and salinity (Hare et al., 2025). They included

between two and seven variables and resulted in adjusted R2 ≥ 0.89

in comparison to our models, which have between three and four

variables and adjusted R2 ≥ 0.93. Our MLR models are consistent

with previous models that DO was an important predictor variable

for pH.
Model applicability

The GOMECC-1 survey in 2007 was among the first to collect

comprehensive, high-quality, measurements of the inorganic

carbonate system parameters in the GOM. However, the

capacity for autonomous observation of ocean carbonate

chemistry is growing rapidly. By combining real-time, high-

resolution data with modeling methods, it is possible to create

comprehensive data coverage while simultaneously providing data

validation via comparison between different data sources. With

the use of MLR in combination with a single Argo profile float

containing DO and temperature sensors, Juranek et al. (2011)

were able to create a 14-month comprehensive time series

containing ΩArag and pH, which were verified by comparisons

to independently measured values. Evans et al. (2013) applied

models to field data from glider flight and a GLOBEC mesoscale

SeaSoar survey (Cowles, 2002) to create complete datasets,

allowing for identification of variability of ΩArag. Hare et al.

(2025) also had success with this in Queen Charlotte Sound,

British Columbia, where regression models were applied to

regional autonomous glider data. Although autonomous

measurements for biogeochemical parameters in the GOM have

just begun (Osborne et al., 2024), successful combination of
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models and autonomous data collection should greatly

improve geochemical data coverage and advance carbonate

chemistry studies.

In addition to long-term changes, there is strong motivation to

apply empirical models to year-round hydrographic data to

reconstruct the seasonal cycle of carbonate chemistry. For

example, Juranek et al. (2009) created a model using data

collected in spring and successfully used it to predict the seasonal

changes in ΩArag under the assumption that the seasonal variability

of the primary independent variables (temperature and DO) would

be comparable to the variations encountered spatially during the

initial data collection. One method to mitigate effects of the lack of

seasonal variation data on the relationships between physical and

chemical data is by excluding depths influenced by local

meteorological conditions from the analysis (Kim et al., 2010).

Most models were calibrated using mostly summer data and none

with subsurface seasonal data for the GOM. Our models contain

data from all seasons with slightly more data points from summer

months. Seasonal application is expected to be viable in the

produced models for pH as it was explained primarily by

biologically driven changes, that is, the coupling between DIC

and DO. Seasonal application is also expected to be viable for

WArag at depths of 30–300 m, as biological changes are primarily

driven by DIC rather than TA (Anglès et al., 2019; Hu et al., 2018).

It is expected that changes in DIC should be captured in these

models due to their relationship with DO in the subsurface

(Anderson and Sarmiento, 1994; Hales et al., 2005).

Furthermore, there is also motivation to apply statistical models

to forecast the carbonate system conditions as OA progresses.

Previously created MLRs have been applied to generate hindcasts

(up to 40 years) on carbonate chemistry (Evans et al., 2013; Kim et al.,

2010). However, the temporal applicability of a model is expected to

be limited. To use the model for predictions beyond the timeframe of

training data, even with relatively unchanged circulation and

watershed conditions, it is necessary to make corrections for shifts

caused by changes in the anthropogenic CO2 inventory in the water

column, increasing error beyond model uncertainty. This is because

empirical models do not account for anthropogenic addition of CO2,

which changes the ratio of DIC/DO. Due to atmospheric CO2 input,

previous modeling studies have calculated that the statistical

relationships will need to be updated every 5–10 years to account

for changes in target variables (Alin et al., 2012; Juranek et al., 2011,

2009). The models can be used for estimation of data within the

timeframe of the training data (2007–2023), with the requirement

that seasonality or waterbody changes are captured, hindcasting up to

10 years (1997–2007), and predicting up to 10 years (2023–2033)

(Juranek et al., 2011). For example, Juranek et al. (2009) created a

model using data collected in spring, and they successfully used it to

predict the seasonal changes in ΩArag. The assumption of this study

was that the seasonal variability of the primary independent variables

(temperature and DO) would be comparable to the variation

encountered spatially during the initial data collection just a year

prior. However, to extend the reconstruction further than 10 years, it

would be necessary to account for the progressive addition of

anthropogenic CO2 to the water column over time. For example,
Frontiers in Marine Science 10
Kim et al. (2010) used estimates of anthropogenic CO2 invasion to

subtract anthropogenic CO2 and apply modeling estimates of DIC in

the Sea of Japan (East Sea) to create a 40-year reconstruction. In our

study, the total uncertainty values are 0.12 for ΩArag and 0.0173 for

pH. The rate of pH decline at the surface during the 2013–2022

period is 0.0025 ± 0.0005 year1−, while there is no discernable trend in

ΩArag (Hu, unpublished data). Based on this, it would take 14 years

for the accumulation of anthropogenic carbon to surpass two times

the uncertainty for pH (i.e., the time of emergence, Turk et al., 2019).

Due to the lack of trend inWArag, these models could be applicable for

a longer period in this region. However, we recommend

conservatively applying caution when using beyond the 10-year

window. For all models but particularly WArag, it seems likely that

other factors such as changing climatology may be the first to

influence model applicability rather than anthropogenic

CO2 intrusion.
Data scarcity

Technological advancements (e.g., satellites, floats, and gliders)

have made autonomous measurements for selected variables

possible. Even though satellites provide large volumes of

invaluable data, their scope is limited not only to the surface layer

but also to measurements of temperature and ocean color, which

can be used for estimations of productivity, dissolved organic

matter, and sea surface CO2 partial pressure (e.g., Chen et al.,

2019). Some remedies for the lack of data beyond the surface have

come in the form of novel technologies, including Argo floats and

gliders (Osborne et al., 2024). The Argo array supports more than

3,000 floats across the global ocean, supplying profiles of T and S, of

which about 200 are also equipped with a DO sensor.

Biogeochemical-Argo (BGC-Argo) floats can take measurements

from the surface to 2,000 dbar and provide high-resolution

autonomous measurements for some combinations of

chlorophyll, particle backscatter, DO, nitrate, pH, or irradiance

(Roemmich et al., 2019). Nevertheless, this equipment is limited in

coverage ability; BGC-Argos have yet to reach the comprehensive

coverage of traditional Argos, and they usually do not operate on

continental shelves. Gliders share the similar biogeochemical

sensors used by the BGC-Argo floats with a similar mode of

operation but perform sawtooth trajectories from the surface to

the bottom, or to 200–1,000 m depth, and their deployments are

limited largely by biofouling, battery life, and payload space,

hindering their ability to carry many sensors (Saba et al., 2019;

Testor et al., 2019). Additionally, all data from floats and gliders

must undergo rigorous quality control and correction of potential

errors in sensors, such as drift and be compared to lab-measured

samples when possible (Roemmich et al., 2019).

Given the performance of the models created here, it would be

reasonable to expect that in combination with datasets from data

collection via these platforms, one or both of pH andΩArag could be

estimated. Traditional Argos, as well as most gliders, have

temperature and pressure (or depth) measurements, meaning

WArag could be estimated using either of the two RF models with
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R2 values of 0.94 and 0.97. With the addition of DO, which is

included in a subset of the Argos and in the BGC-Argos, the ΩArag

model with an R2 of 0.98 could be applied. Additionally, the pH

model with R2 of 0.94 could be used; even though pH sensors are

included in many BGC-Argos, the modeled results could provide

robust data quality check capability.
Recommendations

The models developed in this study serve as valuable tools for

reconstructing pH and WArag data in the absence of direct chemical

observations, leveraging available hydrographic information. The

models can also be used for hindcasting over a 10-year period

(1997–2007) and for forecasting over the next ~10 years (2023–

2033) in the nwGOM, if seasonality and watermass changes are

adequately captured. Through modeling, our results showed that RF

models do not have any distinct advantage over the MLR models

which are commonly used. It is crucial to examine potential shifts in

circulation, water mass composition, and anthropogenic CO2

accumulation to refine and update the models over time. Despite

their robustness, several potential issues remain across all models,

suggesting room for improvement, such as difficulties estimating

target variables due to significant variation in the shallow and mixed

layers, a need for additional data points, or the application of more

complex models. Future work to enhance these models could involve

incorporating additional data, as well as exploring the application of

neural network AI models and locally interpolated regressions, such

as those employed by Carter et al. (2021).
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