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Introduction: Methods combining data from spatially limited, independently

conducted surveys indicate a preliminary recovery for coastal shark species

along the Atlantic. However, anthropogenic climate change is expected to shift

distributions and alter migration timing for these highly migratory species,

potentially affecting survey catchability and interpretation of abundance indices.

Methods: Vector autoregressive spatiotemporal (VAST) models were applied to

data from six fishery-independent surveys of six coastal shark stocks to generate

area-weighted indices of abundance. Area-weighted indices, trends in density

over space and time, and analysis of density anomalies were used to evaluate

changes in a stock’s spatial distribution across the U.S. southeast Atlantic. In

addition to VAST, generalized linear mixed models were used to generate indices

of abundance for each survey, which served as inputs to two previously

implemented reconciliation methods in coastal shark stock assessments:

dynamic factor analysis (DFA) and Bayesian hierarchical analysis (Conn).

Results: The index standardization methods, particularly VAST and Conn, largely

agreed with one another and appeared robust to spatial patterns. Only two of the six

shark stocks showed increasing trends by the end of the time series, with indices for

multiple species plateauing or declining. Positive trends in density and increased

variability in density anomalies in the VAST models across the northern extent of the

surveyed spatial domain suggests a potential northward expansion or a timing

discrepancy between migration onset and sampling efforts for multiple species.

Discussion: Overall, the VAST models provided evidence of spatial changes that

could impact each survey’s catchability, thus complicating the interpretation of

abundance trends. These findings underscore the importance of accounting for

spatiotemporal dynamics in future stock assessments and fisheries

management strategies.
KEYWORDS

spatiotemporal models, dynamic factor analysis, Bayesian hierarchical, index
standardization, stock assessment, data-limited
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1 Introduction

Abundance of coastal shark populations in the western North

Atlantic Ocean declined dramatically from the mid-1970s through the

1990s due to overexploitation (Baum et al., 2003; Burgess et al., 2005;

Baum and Blanchard, 2010; SEDAR, 2017, 2020). Despite evidence

documenting a preliminary recovery of several coastal shark species

inhabiting the southeast coast of the U.S. and Gulf of Mexico (GOM;

Carlson et al., 2012; Peterson et al., 2017a), low intrinsic population

growth rates and high susceptibility to overfishing underscore the need

for continued monitoring and assessment (Musick, 1999; Dulvy and

Forrest, 2010; Cortés et al., 2012). Uncertainty associated with the

degree of unregulated or unreported fishing activity further emphasizes

the importance of robust monitoring efforts (Peterson et al., 2022).

Coastal sharks fulfill an important role in ecosystem stability and

changes in their abundance or distribution, including climate change,

can have far-reaching impacts on economically high-value fisheries and

overall ecosystem health (Stevens et al., 2000; Ferretti et al., 2010;

Britten et al., 2014).

An index of relative abundance (hereafter index) is a primary

input for most stock assessment methods. Use of an index as a

population indicator requires assuming it is proportional to total

abundance, such that changes in the index can be used to infer

changes in stock size (Cortés et al., 2015; Hoyle et al., 2024). Ideally,

an index is developed from a fishery-independent survey that

consistently samples the entire spatial range of the target species

(Hilborn and Walters, 1992; Stevens et al., 2000). However,

monitoring species within the large coastal shark (LCS) and small

coastal shark (SCS) management complexes (NMFS, 1993) is

particularly challenging because these species have extensive

home ranges that extend across domestic and/or international

management boundaries (Cortés et al., 2015; Calich et al., 2018;

Kohler and Turner, 2019), complex spatiotemporal migration

patterns (Hammerschlag et al., 2012, 2022; Papastamatiou et al.,

2013), and overall low economic value. These factors collectively

lead to limited resources for survey programs and biological

sampling regimes (Stevens et al., 2000; Pilling et al., 2008; Ellis

et al., 2009), which creates data constraints and reliance on

information from several independent and spatially fragmented

surveys to estimate trends of abundance. Given underlying

complexities in coastal shark habitat utilization and movement,

these spatially restricted surveys may not individually provide an

index that accurately represents temporal trends in stock

abundance (Maunder et al., 2006; Conn, 2010; Francis, 2011;

SEDAR, 2017).

Changes in environmental conditions can disrupt coastal

ecosystems, potentially triggering cascading effects on shark

populations and their associated food webs (Ferretti et al., 2010).

Oceanic conditions, habitat availability, prey abundance, and prey

distribution will be affected by anthropogenic climate change, and

the resultant effects are anticipated to impact coastal sharks (Perry

et al., 2005). Sea level rise, ocean acidification, and deoxygenation

may directly impact the physiological processes of sharks, including

reproduction and metabolic rates (Rosa et al., 2017; Crear et al.,

2019; Diaz-Carballido et al., 2022). Additionally, changes in ocean
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currents, primary productivity, and abiotic conditions can affect the

availability of suitable habitats for coastal sharks during different life

stages, such as nurseries for juveniles or feeding grounds for adults

(Dulvy et al., 2014; Birkmanis et al., 2020; Niella et al., 2020; Osgood

et al., 2021). Distributions and migration patterns of coastal sharks

are also anticipated to be impacted by climate change (Chin et al.,

2010; Hare et al., 2016; Hammerschlag et al., 2022; Quinlan, 2023;

Manz et al., 2025) since changing sea temperatures and other abiotic

factors can alter the distribution and abundance of prey, and by

extension, the associated predatory fishes (Heithaus et al., 2008;

Goodman et al., 2022). Understanding and predicting the

cumulative effects of anthropogenic climate change on coastal

shark populations can aid the development of effective

management and conservation strategies amidst ongoing

environmental change.

Previous studies of coastal sharks in the northwest Atlantic have

utilized two different approaches to provide overall abundance trends

based on multiple standardized indices: dynamic factor analysis (DFA)

and a Bayesian hierarchical method (Conn). Both methods require

individual time series of indices as inputs, but each handles

reconciliation of the abundance indices differently. DFA is a

multivariate time series dimension reduction technique (Zuur et al.,

2003a, 2003b) that explains the common dynamics of a large number

of time series with a small number of latent factors (Peterson et al.,

2017a, 2021a, 2021b). However, application of DFA requires assigning

implicit weights to each of the time series which can be challenging

when the spatial extent of sampling by the constituent surveys differs

substantially (Peterson et al., 2021b; Grüss et al., 2023a). The Conn

method (Conn, 2010) is a hierarchical analysis that assumes each index

is subject to sampling and process error. Sampling error (e.g., coefficient

of variation; CV) is assumed to be estimated as part of the analysis that

generates the indices, but process error, which describes the degree to

which an index measures ‘artifacts’ above and below the relative

abundance of the population, is accounted for in the hierarchical

analysis. This method separates sampling and process errors for each

time series, models the overall trend for all indices, and is assumed to

remain robust to differences in gear selectivity across surveys and

trends in spatial mixing (Conn, 2010). Additionally, uncertainty is

generally large as the estimation procedure could overestimate process

error and be overly conservative when estimating changes in

abundance on the scale of the population.

Spatiotemporal models are an emerging class of statistical models

that can be used to analyze survey data from multiple sources and

provide estimates of population density over space and time, including

derived quantities such as area-weighted indices of abundance

(Thorson, 2019). Advantages of spatiotemporal models are refined

estimates of precision (Cao et al., 2017; Thorson and Barnett, 2017),

better characterization of how environmental variables shape spatial

distributions (Thorson et al., 2020; Hansell and McManus, 2025),

enhanced understanding of spatial and spatiotemporal distributions

and potential distribution shifts (Thorson et al., 2016; Perretti and

Thorson, 2019; O’Leary et al., 2020), and improved characterization of

uncertainty (Thorson et al., 2015; Grüss et al., 2023a, 2023b). However,

spatiotemporal models are computationally demanding and may
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require more data than are readily available for data-limited species

such as coastal sharks.

Growing concerns regarding expected changes in survey

catchability resulting from shifting distributions have generated

interest in applying spatiotemporal models to coastal shark survey

data. Thus, this study explored the potential use of spatiotemporal

index standardization methods for coastal sharks. The specific

objectives were to 1) develop spatiotemporal models for six western

North Atlantic shark stocks by integrating data from six fishery-

independent survey programs, 2) investigate potential shifts in species

distributions along the U.S. Atlantic coast, and 3) compare the area-

weighted indices of abundance from the spatiotemporal model to

indices estimated from other reconciliation approaches (DFA and

Conn). This study is intended to provide information for future stock

assessments and management regulations for these largely data-

limited species.
2 Materials and methods

2.1 Data sources

Catch and effort data were compiled from six fishery-

independent shark surveys, including four bottom longline
Frontiers in Marine Science 03
surveys (the Virginia Shark Monitoring and Assessment Program,

VASMAP; the Southeast Fisheries Science Center Bottom Longline

Survey, SEFSC; the South Carolina Coastal Longline Survey, SC;

and the Georgia Red Drum Longline Survey, GA), one bottom

gillnet survey (the Gulf of Mexico Shark Pupping and Nursery

Gillnet Survey, GULFSPAN), and one bottom trawl survey (the

SouthEast Area Monitoring and Assessment Program-South

Atlantic Coastal Trawl Survey, SEAMAP; Supplementary Table

S1, Figure 1; SEAMAP-SA Data Management Work Group,

2012). Data from six shark species were analyzed, including two

SCS (blacknose shark, Carcharhinus acronotus, Atlantic stock only

(A.); finetooth shark, C. isodon) and four LCS (bull shark, C. leucas;

sandbar shark, C. plumbeus; spinner shark, C. brevipinna; tiger

shark, Galeocerdo cuvier). Species were chosen based on differences

in data availability, representation across surveys, variation in life

history traits, and consultations with shark assessment scientists

and experts in the field to ensure a diverse dataset for analysis.

Further, the four LCS species were included as they were anticipated

to be assessed in the coming years, providing an opportunity to

compare results with future stock assessments (E. Cortés; NOAA

Fisheries, personal communication).

A rubric based on previous Highly Migratory Species (HMS)

stock assessments (ICCAT, 2012) was applied to evaluate the utility

of survey programs for each species; considerations included
FIGURE 1

Map of the six fishery-independent surveys used in this study with shaded areas indicating the spatial extent of each survey. Abbreviations include:
the Virginia Shark Monitoring and Assessment Program (VASMAP; dark blue), the South Carolina Coastal Longline Survey (SC; pink), the Georgia Red
Drum Longline Survey (GA; yellow), the SouthEast Area Monitoring and Assessment Program-South Atlantic Coastal Trawl Survey (SEAMAP; green),
the Gulf of Mexico Shark Pupping and Nursery Gillnet Survey (GULFSPAN; purple), the Southeast Fisheries Science Center Bottom Longline Survey
(SEFSC; light blue).
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geographic and temporal coverage, sampling design, and an overall

proportion positive (sampling events where at least one target

animal was captured) of at least 0.05 (Table 1). Neonates were

removed from the survey data based on length-based criteria from

the literature to maintain consistency with current stock

assessments, which—when data permit—typically model neonates

separately as indicators of recruitment (Supplementary Table S2).

While sex and size data were available across all surveys included in

this study, the analyses were not stratified by these variables due to

data limitations and convergence constraints associated with finer-

scale model resolution. Sample depth was treated as a continuous

variable while year, month/season, and station/area were treated as

categorical variables, and levels of those variables were excluded

from analyses if the species of interest was not present during at

least one sampling event.

Caution should be exercised when applying DFA to one or

more time series with missing years as performance of the methods

can decline (Peterson et al., 2021a, 2021b). For the six fishery-

independent shark surveys, only one program sampled coastal

sharks through the 1970s and early 1980s (VASMAP). Therefore,

data from 1989–2021 were analyzed in this study to limit the

number of missing years for constituent surveys and achieve a

more balanced contribution of all data sources to the resulting

indices. Coastal shark stocks were depleted by the early 1990s

(SEDAR, 2006; Carlson et al., 2012; Peterson et al., 2017a) and

federal management was in its infancy (NMFS, 1993). Therefore,

defining a starting year in 1989 still enabled analysis of potential

population recoveries following management.
2.2 Spatiotemporal analysis

2.2.1 Model structure
For the spatiotemporal modeling approach, the Vector

Autoregressive Spatiotemporal modeling platform (VAST,

Thorson and Barnett, 2017; Thorson, 2019) was utilized through

the R package VAST (Thorson, 2024). The model structure consists

of two processes to support delta or zero-inflated models that can

predict variation in density across multiple locations and time

intervals. Given the high frequency of zero observations in the

survey datasets and to remain consistent with previous

methodology, a zero-inflated negative binomial distribution

(ZINB) was chosen for the response variable, catch (C). Sampling

unoccupied habitat will always generate a catch of zero (i.e., true

zero) and sampling occupied habitat may also generate a catch of

zero if animals are not captured (i.e., false zero; Martin et al., 2005).

Therefore, the ZINB probability mass function for C is given by:

Pr½C = c� =
p + (1 − p)� NB(0 n, r)j   if  c = 0

(1 − p)� NB(cjn, r)   if  c > 0

(
(1)

where p is the probability of a false zero and NB(C n, r)j is the

negative binomial probability mass function with variance specified

as a quadratic function of the mean (Equation 1).

Both the zero-inflation (lp1, binomial) and count processes (lp2,

negative binomial) were modeled using VAST:
Frontiers in Marine Science 04
r1(i) = logit−1(lp1(i)) (2a)

lp1(i) = b1,t|{z}
Temporal variation

+ o
nk

k=1

l1,kQ1,k|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Catchability covariates

(2b)

r2(i) = ai ∗ log
−1 (lp2(i)) (3a)

lp2(i) = b2,t|{z}
Temporal variation

+ w2,s|{z}
Spatial variation

+ e2,s,t|{z}
Spatiotemporal variation

+ o
nk

k=1

l2,kQ2,k|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Catchability covariates

(3b)

where the respective linear predictors were comprised of year

intercepts (b1 and b2), spatial variation (w2,s), spatiotemporal

variation (e2,s,t), and catchability covariates (Qi), where  si is the

location of sample i, ti is the year of sample i, and l1,k and l2,k are
the effects of catchability covariate k. The r1(i) and r2(i) are the link-

transformed predictors for the zero-inflation (binomial) and count

component (negative binomial), where ai is the area sampled or

active area for sample i treated as an offset for positive catches.

Initial model runs included spatial and spatiotemporal variation in

the zero-inflation component, but they were unstable due to a lack

of sufficient information. Therefore, models were simplified to

estimate only a single year intercept in the zero-inflation part

which was a necessary departure from recommended model

building practices (Equations 2, 3; Thorson and Barnett, 2017;

Thorson, 2019).

The count component was structured to estimate temporal

variation for each year and spatial and spatiotemporal effects. Both

spatial and spatiotemporal effects were modeled as Gaussian Markov

random fields, which describe the random variation in population

density over latitude and longitude (or northings and eastings) with

spatial covariance defined as a Matérn process (Thorson et al., 2015).

Random fields were assumed to be stationary to enable analysis of

geometric anisotropy, with the number of random fields dependent

upon the user-specified spatial domain and the number of specified

knots. Knots were defined at equally spaced locations within the

spatial domain (i.e., 2D grid) due to the spatially unbalanced data from

the different surveys (Thorson, 2019). Given differences in the surveys

considered, encounter rates, and sample sizes per species, the number

of knots was evaluated for each species individually (Table 2).

2.2.2 Covariates and derived quantities
Catchability covariates, or variables that could plausibly affect

catch rates but not reflect variation in population density, were

considered in both linear predictors. To acknowledge catchability

differences among sampling programs, survey was included as a

catchability effect in both linear predictors of the model. If

convergence issues occurred, survey was retained in only one

linear predictor. The survey with the largest spatial scale was

selected as the reference data set for each target species prior to

model fitting such that a fishing power ratio relative to the reference
frontiersin.org
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data set was estimated for the other surveys. Other catchability

variables considered included the depth of sampling gear (treated as

either a linear or nonlinear effect depending upon the species) and

month of sampling.

Parameter estimation was performed in Template Model

Builder (Kristensen et al., 2023), with model convergence checked

by ensuring the absolute value of the log-likelihood final gradient at

the maximum likelihood estimate was less than 0.0001 for all

parameters, and that the Hessian of the likelihood function was

positive definite. Model diagnostics were evaluated using the R

package DHARMa (Hartig and Lohse, 2022), and model selection

was based on Akaike’s Information Criterion (AIC; Akaike, 1973).

A final model for each species was used to calculate area-weighted

indices:

I(t, l) =o
ns

s=1
(a(s, l)� d∗(s, t)) (4)

where a(s, l) is the area associated with knot s that is within stratum

l, ns is the number of knots, d∗(s, l) is the predicted density at knot s

at time t when l1 = l2 = 0, and I(t, l) is the abundance index at time

t for stratum l (Equation 4). Standard errors for the index were

calculated by TMB using the delta-method variance approximation.

To evaluate potential temporal patterns in species density along

the Atlantic coast, the study area was divided into three sections:

South (s< 30.5°N), Middle (30.5°N ≤ s< 33.5°N), and North (s ≥

33.5°N). Area-weighted density indices for each section were

plotted and compared to assess changes over time. Additionally,

location-specific density trends through time were analyzed using

quantile regression (R package quantreg; Koenker et al., 2024) and

spatial and regional density anomalies – defined as Dds,t = ds,t − ds,t1
where t1 indicates the starting year for a particular species – were

visualized graphically.
2.2.3 Area sampled estimation
Spatiotemporal models, like VAST, generally require an

estimation of area sampled for each observation to estimate an

area weighted index. For the SEAMAP bottom trawl survey, net
Frontiers in Marine Science 05
dimensions and tow location information was used to estimate area

swept. However, estimation of the area sampled by passive gears

such as gillnets and longlines is more challenging because

information on the physical properties of sampling sites is needed

(Løkkeborg et al., 2010) but often not readily available. Therefore,

area sampled for the passive gear surveys were approximated by

incorporating the target species average swimming speed:

a*i, j =
  Li ∗ Sj ∗Ti   Survey  ≠ VASMAP

Li ∗ Sj ∗Mi,j   Survey = VASMAP

(
(5)

where i indexes the sample, j denotes the target species, a∗i,  j is the

estimated area sampled, L is the length of gear (km), S is the average

swimming speed (km/hr) based on the scientific literature

(Supplementary Table S2), T is the amount of time (hrs) that the

gear deployed, and M is the average time of capture for species j

according to the hook timer data from the VASMAP survey

(Equation 5; see Peterson et al., 2017b for details).
2.3 Dynamic factor and Bayesian
hierarchical analysis

2.3.1 Indices of abundance
As mentioned previously, both DFA and Conn require

standardized indices of abundance for each survey as inputs. For

that reason, traditional generalized linear mixed models (GLMMs;

Bolker et al., 2009) were used to standardize the species-specific catch

data for each survey and provide estimated annual indices. There was

a high frequency of zero observations for all focal species, which was

expected given low overall abundance associated with predatory

species relative to organisms at lower trophic levels. The number of

sharks captured per sampling event was defined as the response

variable with effort modeled as an intercept offset defined at the

natural log of 100 hook-hours, net area-hours, and area swept for

longline, gillnet, and trawl gears, respectively. Various discrete count

distributions, including zero-inflated and zero-altered (also known as

hurdle) parameterizations, were considered for the target species.
TABLE 1 Surveys, years examined, total samples, and frequency of samples not capturing the species of interest (Zeros %) for species in the small
coastal (top) and large coastal shark (bottom) complexes.

Species Survey(s) Years Samples Zeros (%)

Small coastal sharks

Blacknose shark GA, SC, SEAMAP, SEFSCA, VASMAP 1989-2021 15667 86.93

Finetooth shark GA, GULFSPAN, SC 2001-2021 8444 90.6

Large coastal sharks

Bull shark SEFSCG 1995, 1997, 2000-2002, 2004, 2006-2019, 2021 2100 91.1

Sandbar shark GA, SC, SEFSC, VASMAP 1990-1993, 1995-2021 11087 81.5

Spinner shark GULFSPAN, SC, SEFSC, VASMAP 1991, 1995-2021 10730 93.2

Tiger shark SEFSC, VASMAP 1990-1991, 1995-1997, 1999-2021 4046 85.8
Surveys analyzed were the Georgia Red Drum Longline Survey (GA), the Gulf of Mexico Shark Pupping and Nursery Gillnet Survey (GULFSPAN), the South Carolina Coastal Longline Survey
(SC), the SouthEast Area Monitoring and Assessment Program-South Atlantic Coastal Trawl Survey (SEAMAP), the Southeast Fisheries Science Center Bottom Longline Survey (SEFSC), and
the Virginia Shark Monitoring and Assessment Program Longline Survey (VASMAP). Superscripts indicate whether the data pertain to the Atlantic (A) or Gulf of Mexico (G).
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The generalized additive models for location, scale, and shape

regression framework (R package gamlss; Stasinopoulos et al., 2023)

was used to fit the GLMMs. Correlation and collinearity of variables

were assessed using scatter plot matrices (SPLOMs) and variance

inflation factors (VIFs) with highly correlated variables (≳ 0.7) or

those with large VIFs (> 5) not mutually included in model

parameterization (Zuur et al., 2009). The covariates examined

varied by survey; year was included in all models, while station/

area, month/season, and depth were only included in a subset of

models. Model selection was based on AIC corrected for small

sample size (AICc) and 10-fold cross-validation considering mean

square error, root mean square error, and mean absolute error.

Model validation was achieved through visual examination of

diagnostic plots (QQ-plots and residuals), overdispersion was

assessed by checking that the estimated dispersion ratio was close

to 1.0, and selected distributions were verified through simulation

analysis to ensure they could support the observed frequency of

zeros. Final models were used to generate predicted indices of

relative abundance and uncertainty estimates were generated from

1000 nonparametric bootstrapped samples (Efron and

Tibshirani, 1993).

2.3.2 Dynamic factor analysis
DFAs were fitted using the state-space multivariate

autoregressive modeling R package MARSS (Holmes et al., 2023).

The general form of a DFA model is:

yt = Ga t + Dxt + e t ,  where e t eMVH(0,H) (6a)

a t = a t−1 + ht ,  where ht eMVN(0,Q) (6b)

where Equation 6a and Equation 6b represent the observation and

process components at time t, respectively. The vector yt (n� 1) is

comprised of the abundance time series, at is the vector (m� 1) of

common trends (m < n), G is the matrix (n�m) of factor loadings of

each time series on the common trend(s), the matrix D contains the

estimated coefficients (n� k) for the xt covariates (k� 1), andQ and

H are variance-covariance matrices associated with observation error

vector et (n� 1) and process error vector ht (m� 1), respectively.

The matrix Q was set equal to identity matrix I while four

parameterizations were investigated for matrix H: diagonal with

equal variance and zero covariance, diagonal with unequal variance

and zero covariance, non-diagonal with equal variance and equal

covariance, and unconstrained (Holmes et al., 2021). Statistical

significance of covariates was inferred when 0 was not included in

the 95% confidence intervals (CIs).

Application of DFAs in this study followed the approach of

Peterson et al. (2017a) where the four covariance structures were

first evaluated in the absence of covariates followed by the

introduction of covariates to the model with the selected

covariance structure. The analysis was restricted to estimate a

single latent trend (m = 1). The covariates considered were large

scale climate indices – the North Atlantic Oscillation (NAO) index,

the Atlantic Multidecadal Oscillation (AMO) index, and the Gulf

Stream (GSI) index – all of which are correlated with highly suitable

habitat for multiple coastal shark species (O’Brien et al., 2024; Beltz,
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2024; Supplementary Figure S1). Graphical analysis, AICc, and fit

ratio (Zuur et al., 2003b) were used to discern the most

parsimonious model at each step of the analysis.

Time series are typically standardized (z-scored) prior to

performing a DFA (Zuur et al., 2003a, 2003b) resulting in the

estimated common trend(s) being in log-space on a unitless scale

that spans positive and negative values. However, when the time

series are indices of relative abundance, back-transformation from

log space can distort the relative scale of the indices, thereby

compromising interpretation of abundance trends. To address

this issue, a rescaling technique was applied that preserves the

error structure and relative scale of the survey indices, remains

consistent with the requirements of a DFA (z-score), and allows for

successful back-transformation of the resulting DFA index (see

Peterson et al., 2021b for details).

2.3.3 Bayesian hierarchical analysis
The general form of the Conn model is:

log (Uit) eNormal( log (mt) + log(q
0
i),  (s

P
it )

2 + (s S
it)

2) (7)

where Uit is index i  in year t (scaled by its mean), mt reflects the

changes in abundance at population scale at time t, q
0
i is the scaling

coefficient for index i (related to m), and sP
it and s S

it are the process

and sampling standard deviations (Conn, 2010) (Equation 7).

Parameters were estimated within a Bayesian framework, following

prior distribution specifications and Markov Chain Monte Carlo

configurations outlined by Conn (2010). Models were fitted using the

R2jags package to interface the R programming environment with the

JAGS software.
3 Results

3.1 Data sources

The number of informative surveys varied by species, ranging

from one for bull sharks to five for blacknose (A.) sharks (Table 1).

Data from SEFSC and SC were used in the analysis of five of six

species; only the finetooth shark analysis excluded SEFSC data, while

the tiger shark analysis did not include SC data. The SEAMAP dataset

provided data solely for blacknose (A.) sharks. Data from VASMAP

were used in the analysis of all LCS species (except for bull sharks,

which were analyzed only in the GOM) and one SCS species—the

blacknose (A.) shark—while GA data were used only for blacknose

(A.) and sandbar sharks. Despite data filtering, a high frequency of

zero observations remained for all species, ranging from 81.5% for

sandbar sharks to 93.2% for spinner sharks (Table 1).
3.2 Spatiotemporal analysis

VAST models successfully converged for all species expect

finetooth sharks (Table 2). Inclusion of spatial and spatiotemporal

random effects for the count model led to convergence issues for

finetooth sharks, likely because the surveys with adequate catch
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information were spatially small and distinct. Similarly, models for

bull sharks that included spatiotemporal effects in the count

component also failed to converge; however, parameterizations

with a spatial random field held constant over time were

successful. Depth emerged as the most consistently supported

catchability effect in the zero-inflated component, often modeled

as a nonlinear effect (Table 2). For the most empirically supported

models, depth, survey, and month were frequently included as

catchability covariates in the count component, again with depth

often represented as a nonlinear effect. Additionally, further

evaluation of the estimated area sampled for passive gear was

shown to have a scaling effect. While this factor should be further

considered for stock assessment applications, the method

performed well for comparative purposes in this study.

Areas of highest predicted density varied across species. The

blacknose (A.) shark was the only SCS analyzed using VAST, and

predicted densities were highest in shallower waters close to shore,

particularly at the openings of estuaries and bays, and lowest farther

offshore in deeper waters (the blacknose (A.) shark was selected as a

representative species in Figure 2; see Supplementary Materials –

Supplementary Figures S2–S5 for all other species). These

predictions generally differed from those of the LCS, where higher

densities were often farther offshore. However, there was notable

variability within the LCS complex. In the GOM, predicted densities

for bull sharks (only GOM was considered due to extremely low

catches in the Atlantic) increased in the Northern Gulf of Mexico

Hypoxic Zone (NGMHZ) over time, and the highest predicted

density for spinner shark was almost exclusively inside the NGMHZ

(Supplementary Figures S2, S3). Conversely, densities were

consistently low for sandbar and tiger sharks inside the NGMHZ

(Supplementary Figures S4, S5). Offshore waters along the coasts of

Georgia, South Carolina, and southern North Carolina consistently
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showed high predicted densities for both sandbar and tiger sharks,

but density patterns for those species in waters off the coast of

Virginia were variable across years.

The area-weighted indices for all species were generally low in

the 1990s and early 2000s, but trends differed toward the end of the

time series showing three general patterns: a gradual increase,

relative consistency, and an increase followed by a decline

(Figure 3). Relative abundance trends for blacknose (A.) and

sandbar sharks consistently increased through the end of the time

series (Figures 3A, F). Area-weighted index values increased from

1991 to 2001 for bull and spinner sharks, but overall, the index

values remained close to the mean with minimal directional

changes thereafter (Figures 3E, H). Like other species, tiger shark

indices increased after a period of low abundance in the 1990s,

peaked around 2013, but then showed a subsequent decline

(Figure 3J). Overall, estimated uncertainty associated with the

indices was high, as evidenced by wide 95% confidence

intervals (CIs).

Spatial differences over time were evident for all species where

spatiotemporal randomeffects were successfully included in theVAST

models (Figures 4; Supplementary Figures S6–S10). The quantile

regressions revealed largely significant positive slopes for blacknose

(A.) sharks, with the largest estimated values off the coasts of northern

Florida, Georgia, South Carolina, and southern North Carolina

(Figure 4A). Additionally, density anomalies were consistently

positive across the Atlantic, indicating increased density compared

to the starting year, and more variable over time, particularly in the

Middle region (SupplementaryFigures S6A, S7).This area also showed

the most substantial increase in density (Figure 5A). For sandbar

sharks, areas along coastal Georgia and offshore Florida exhibited

consistently positive significant temporal trends (Figure 4B), while

areas along North Carolina and Virginia were largely stable with few
TABLE 2 The selected vector autoregressive spatiotemporal (VAST) models and dynamic factor analysis (DFA) model, fitted to survey-specific indices
of abundance derived from generalized linear mixed models (GLMMs), for small coastal (top) and large coastal (bottom) shark species.

Species VAST DFA

b1 l1 b2 w2 e2 l2 Knots DAIC H Drivers DAICc Fit Ratio

Small coastal sharks

Blacknose 1 FE Depthdegree = 3 33 FE IID IID Survey
Month

300 0 Diagonal and equal AMO 0 0.580

Finetooth Diagonal and unequal AMO 0 0.741

Large coastal sharks

Bull 1 FE Depth 21 FE IID n/a 200 0

Sandbar 1 FE Depth 31 FE IID IID Survey
Depthdegree = 3

Month

500 1.6 Diagonal and unequal None 0 0.658

Spinner 1 FE Depthdegree = 3 28 FE IID IID Survey 300 0 Diagonal and unequal GSI 3.25 0.812

Tiger 1 FE Depthdegree = 3 27 FE IID IID Survey
Depthdegree = 3

300 0 Diagonal and equal GSI 0.09 0.547
fr
Key information for VAST models included the temporal variation for the zero-inflation process (b1), catchability covariates (l1) for the zero-inflation process, temporal variation for the count
process (b2), catchability covariates for the count process (l2), spatial (w2) and spatiotemporal (e2) variation for the count process, the total number of knots, and DAIC. For spatiotemporal
variation, IID indicates the random fields were assumed to be independent across years. Information for selected DFA models included the observation error covariance matrix structure (H),
environmental drivers, DAICc, and mean fit ratio, which is a measure of model fit calculated by summing the squared residuals of the fitted DFA common trends, dividing by the sum of the
squared observations for each survey, and averaging each value across species. Large values (≳0.6) indicate poor overall fit (Zuur et al., 2003a, b).
ontiersin.org

https://doi.org/10.3389/fmars.2025.1621720
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


O’Brien et al. 10.3389/fmars.2025.1621720
FIGURE 2

Spatial plots of log (density) for the Atlantic stock of blacknose shark, 1989-2021, from the VAST model. Warm tones represent areas of high log
(density) while cool tones indicate areas of low log (density).
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FIGURE 3

Mean scaled indices of relative abundance estimated using dynamic factor analysis (DFA; purple) and Bayesian hierarchical analysis (Conn; green),
and mean scaled area-weighted indices of relative abundance from vector autoregressive spatiotemporal (VAST; orange) models for the Atlantic
stock of blacknose shark (A), finetooth shark (C), bull shark (E), sandbar shark (F), spinner shark (H), and tiger shark (J). Trends are represented by
dotted, dashed, and solid lines with uncertainty denoted by the shaded regions (95% confidence intervals for DFA and VAST and 95% credible
intervals for Conn). Factor loadings for selected DFA models for the Atlantic stock of blacknose shark (B), finetooth shark (D), sandbar shark (G),
spinner shark (I), and tiger shark (K) are displayed to the right with dashed lines indicating 0.2. Factor loadings greater than 0.2 correspond to indices
that had a relatively strong influence on the resulting common trend, and negative factor loadings denote indices that follow an opposite trend
relative to the DFA common trend. Abbreviations include: the Georgia Red Drum Longline Survey (GA), the Gulf of Mexico Shark Pupping and
Nursery Gillnet Survey (GULFSPAN), the South Carolina Coastal Longline Survey (SC), the SouthEast Area Monitoring and Assessment Program-South
Atlantic Coastal Trawl Survey (SEAMAP), the Southeast Fisheries Science Center Bottom Longline Survey (SEFSC), the Virginia Shark Monitoring and
Assessment Program (VASMAP).
Frontiers in Marine Science frontiersin.org09

https://doi.org/10.3389/fmars.2025.1621720
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


O’Brien et al. 10.3389/fmars.2025.1621720
anomalies (Supplementary Figures S6B, S8). Area-weighted

abundance increased more in the Middle and South compared to the

North (Figure 5B).Estimated density trends for spinner sharks showed

increasingly positive slopes at both the southern and northern extents

of the surveyed area (Figure 4C). Notably, largely positive density

anomalieswere estimated off the coasts ofVirginia andNorthCarolina

starting around 2001 (Supplementary Figure S9), while those in the

South showed increasing variability (Supplementary Figure S6C).

Area-weighted indices were quite variable across all three regions

(Figure 5C). For tiger sharks, density trendswere steeply positive in the

Middle region (Figure 4D), while density anomalies exhibited greater
Frontiers in Marine Science 10
variability in both the Middle and North regions (Supplementary

Figures S6D,S10).Area-weighted indiceswere also larger in theMiddle

and North compared to the South (Figure 5D).
3.3 Dynamic factor and Bayesian
hierarchical analyses

3.3.1 Indices of abundance
GLMMs parameterized with the negative binomial and zero-

inflated Sichel distributions received the most empirical support
FIGURE 4

Maps of significant slopes from quantile regression analyses for Atlantic stock of blacknose (A), sandbar (B), spinner (C), and tiger (D) sharks from
respective VAST models. Cooler (warmer) colors indicate a negative (positive) slope and the hue denotes the magnitude of the slope with larger
values denoted by darker hues. Latitude markers denote where the three sections (South, Middle, and North) of the Atlantic were separated for
spatiotemporal analysis.
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across species and surveys, followed by the Waring and beta

negative binomial distributions (Supplementary Table S3). All

models provided acceptable fits to the raw survey data as

determined by graphical residual analysis, cross validation,

variance inflation factors, and dispersion analysis. Station/area

and month were the covariates most frequently included in the

supported GLMMs for each species, followed by depth

(Supplementary Table S1). For all species, individual survey

indices displayed clear data conflict (Supplementary Figure S11),

making it difficult to visually interpret broad-scale patterns in

species relative abundance.
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3.3.2 Dynamic factor analysis
DFA models were successfully fitted to all species (except the

bull shark since only one survey was informative), and at least one

survey loaded significantly to the common trend (Table 2,

Supplementary Table S4; Figures 3B, D, G, I, K). A diagonal

covariance structure was empirically supported for all species,

which was consistent with previous work that reported no

covariance between survey indices (Peterson et al., 2017a).

Common trends estimated for the five species can be divided

into two groups. Blacknose (A.), finetooth, and sandbar sharks all

displayed low relative abundance in the 1990s and early 2000s and a
FIGURE 5

Mean scaled area-weighted indices with 95% confidence intervals for four coastal shark species over three different regions of the Atlantic: South
( ≤ 30:5 °N), Middle (30:5 °N < x ≤   33:5 °N), and North ( > 33:5 °N). Species examined include Atlantic stock of blacknose (A), sandbar (B), spinner
(C), and tiger (D) sharks.
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modest recovery through the terminal year of 2021, though rates of

recovery were species-specific (Figures 3A, C, F). In contrast, the

common trends for spinner and tiger sharks showed low relative

abundance from the beginning of the time series through the early

2000s followed by a modest recovery, but declined after

approximately 2009 and 2014, respectively (Figures 3H, J). Except

for spinner sharks, trends of indices from the DFA generally agreed

with those from VAST, although uncertainty associated with the

DFA indices was lower (Figure 3).

The inclusion of covariates was supported in DFAmodels for all

species except sandbar shark. Results indicated statistically

significant linkages, at 85% CI, between AMO and GSI for the

SCS and LCS species, respectively. Specific to the SCS, the AMO had

a significant positive effect on the VASMAP index for blacknose

sharks (A.), the GA index for finetooth sharks, and the GULFSPAN

index for finetooth sharks (Supplementary Table S4). The GSI had a

significant negative effect on the GULFSPAN index and a positive

effect on the VASMAP index for spinner sharks, and a positive

effect on the VASMAP index for tiger sharks (Supplementary

Table S4).

3.3.3 Bayesian hierarchical analysis
Estimated indices from the Conn method were most similar to

those predicted using VAST, though the associated uncertainties

were slightly larger (Figure 3). Estimated Conn and DFA indices

differed for spinner and finetooth sharks, with the DFA indices

decreasing or increasing for the two species while the Conn indices

showed consistency over time (Figures 3C, H).

Index values were low for all species in the 1990s through the

early 2000s but differed near the end of the time series. Both

blacknose and sandbar sharks displayed a largely positive trend

beginning around 2007 (Figures 3A, F). Conn indices for finetooth

and spinner sharks had no discernable trend and some of the largest

credible intervals (Figures 3C, H). Tiger shark relative abundance

increased until 2014, after which the index declined (Figure 3J).

There was little variation in the process error estimates across

surveys and species apart from the comparably large value

associated with GA index for finetooth shark (Supplementary

Figure S12).
4 Discussion

This study is the first to utilize spatiotemporal models to

standardize indices for assessed and unassessed coastal shark

populations and provide insights into spatial distribution patterns

in the U.S. southeast Atlantic and GOM. Analysis of the density

trends and anomalies suggested that species’ availability to the

surveys may be changing, potentially due to range expansions,

distribution shifts, or changes in migration timing. Environmental

factors, such as climate change (Chin et al., 2010; Hare et al., 2016)

and multidecadal variability (Peterson et al., 2017a; O’Brien et al.,

2024), may be impacting coastal shark distributions in similar ways

to those documented for teleost fishes (Nye et al., 2009, 2014;
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Kleisner et al., 2017; Bowers and Kajiura, 2023). Potential changes

in catchability within surveys could be changing and should be

further investigated and accounted for in future stock assessments

used to inform management. The estimated area-weighted indices

were comparable to those produced by previous standardization

methods (DFA and Conn) and, at minimum, offer an alternative

option for sensitivity analyses for future stock assessments.

Density maps for all species modeled using VAST generally

aligned with previously published geographic distributions, but the

model-based predictions highlighted several areas of interest.

Higher bull shark densities are expected in shallower coastal

waters near the mouths of estuaries (Drymon et al., 2014; Calich

et al., 2018; TinHan and Wells, 2021). However, the presence of

higher predicted densities offshore in the GOM may suggest sexual

segregation, similar to patterns observed off the coast of Australia

(Werry and Clua, 2013), especially given bull sharks’ tolerance to

hypoxic conditions (Heithaus et al., 2009). Unfortunately, this could

not be further explored due to data limitations.

For blacknose (A.) sharks, results corroborated previous

findings that the species inhabited nearshore shallow waters

(Ulrich et al., 2007; Castro, 2000), but also revealed areas of

higher density in deeper offshore waters off Georgia and South

Carolina, which visually align with offshore structures (Crimian and

Conley, 2019). In contrast, consistently low densities of sandbar

sharks were predicted in these same areas, underscoring the

complexity of marine ecosystems and the importance of

considering species-specific habitat requirements.

The expansion of hypoxic waters, along with the increasing

frequency and intensity of temporal hypoxia, could impact shark

abundance and diversity in coastal and shelf environments (Waller

et al., 2024). Dissolved oxygen concentrations have influenced

multiple SCS species, and changes in the shape and size of the

NGMHZ could also influence the distribution and survey

availability of LCS species. Despite the estimated overall increase

in abundance over time, predicted sandbar shark density remained

low in the NGMHZ, likely due to this species’ intolerance of

hypoxic conditions (Crear et al., 2019; Latour et al., 2022). In

contrast, areas of higher predicted spinner shark density were

almost exclusively located within the NGMHZ, potentially

attributable to the exploitation of prey aggregations at the edges

of hypoxic zones or near the water surface (Craig, 2012; Pickens

et al., 2022). More research is necessary to understand how hypoxia

may impact other coastal shark species, such as tiger shark,

although predicted densities within the NGMHZ were

consistently low over time.

Historically, the blacknose (A.) shark inhabited warm nearshore

waters, with a northern range limit extending to North Carolina

(Ulrich et al., 2007; Castro, 2000). However, results of this study

provide indications of a northward range expansion along the

Atlantic coast, as evidenced by significant positive trends in

spatial density in coastal North Carolina and Virginia waters,

increased variation in density anomalies in the Middle and North

regions, and a greater increase in abundance in the Middle region.

Increased density trends in Northern latitudes coincide with a
frontiersin.org

https://doi.org/10.3389/fmars.2025.1621720
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


O’Brien et al. 10.3389/fmars.2025.1621720
dramatic shift in catch recorded on the northernmost survey

(VASMAP), from just five animals between 1990–2014 to 124

sampled from 2015-2023. This poleward range expansion may be

driven by rising water temperatures linked to climate change

(O’Brien et al., 2024) or shifts in prey species distributions (Nye

et al., 2009; Morley et al., 2018). Although incorporating prey

species and habitat effects into a multivariate spatiotemporal

model could provide valuable insights into the specific factors

influencing this northward migration, such an analysis was

beyond the scope of this study. Documenting these range

expansions help facilitate modeling of climate change impacts and

marine food webs, which is important for resource managers as it

allows for the development of targeted conservation measures to

ensure sustainable management.

The estimated positive trends of spinner shark density in both

the North and South, along with increasing density anomalies over

the western North Atlantic Ocean suggests either a range expansion

or timing disconnect between the onset of summer migration and

sampling activities by the various survey programs. The VAST

and Conn models may have captured these dynamics more

effectively than the DFA, as indicated by the consistent trends in

relative abundance produced by these analyses. Although the Conn

model is not spatially explicit, it has been described as robust to

assumption violations such as trends in spatial mixing proportions

(Conn, 2010). The distribution of spinner sharks extends north of

the surveyed area, and the incomplete survey spatial coverage of

their full range likely influenced the interpretation of all indices.

Spinner shark abundance north of the VASMAP sampling domain

has been high during summer months over recent years (T. Curtis;

NOAA Fisheries, personal communication). Including data from

sampling earlier in the year or from areas near the northern extent

of the focal species’ ranges would help clarify whether the

discrepancies between indices are due to changes in survey

catchabilities or a genuine decline in abundance.

The tiger shark decline in abundance towards the end of the time

series was unexpected since it contradicts previous work indicating

early signs of population recovery (Peterson et al., 2017a). Recent

studies have suggested that climate change and multidecadal

variability may be shifting the timing of summer and overwintering

migrations for tiger sharks (Hammerschlag et al., 2022; O’Brien et al.,

2024). The positive trends in density estimated for the Middle and

North regions, along with increased variability in density anomalies

along the western North Atlantic could indicate an earlier onset of

migration. This potential timing discrepancy could significantly affect

the availability of tiger sharks to the SEFSC survey, which annually

samples in the Atlantic from July-August. Such misalignment could

lead to potential misinterpretations of population trends that are

ultimately used to support management decisions. Lastly, tiger shark

populations may be declining given increased mortality on neonate

and juveniles due to increased predation rates from recovering LCS

species (e.g., sandbar sharks; W. Driggers; NOAA Fisheries, personal

communication). Expanding monitoring efforts to earlier times in the

year or incorporating additional data sources (e.g., fisheries-

dependent surveys) could aid in interpreting abundance trends for

tiger shark.
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Increased indices through the end of the time series across all

standardization methods support previous findings that the sandbar

shark population is still recovering (Carlson et al., 2012; Peterson

et al., 2017a, 2022). However, while density trends were consistent

in the North, they showed an increase in the Middle and South

regions. Additionally, area-weighted indices were lower in the

North compared to the Middle and South, suggesting a potential

southward shift in the population. Although there is less highly

suitable habitat for large sandbar sharks in the northern extent of

their range during positive NAO phases (Peterson et al., 2017a;

O’Brien et al., 2024), other potential explanations for the southward

shift could be changes in the size and age composition and/or

migration timing. The size and age composition has likely shifted to

smaller and younger individuals following the period of

overexploitation, and these sizes and ages, particularly males, tend

to inhabit in the warmer waters off the east coast of Florida, Georgia,

and South Carolina during the summer and fall months, rather than

migrating north like gravid mature females (Grubbs, 2010; Collatos

et al., 2020; Baremore and Hale, 2012). Sandbar sharks also migrate

farther north than the VASMAP survey, where abundance has been

high during summer months over recent years (B. Frazier; SCDNR,

personal communication). Additionally, migration timing for

sandbar sharks may also be changing, which could affect the

catches of gravid females during their northward migration to

pupping grounds, though this hypothesis has not been

comprehensively investigated. Future application of multivariate

spatiotemporal modeling techniques to distinct age and size classes

would aid exploration of distributional patterns through ontogeny.

Multidecadal climate variability may intensify or counteract

shifts in the distribution of coastal shark populations (Peterson

et al., 2017a; O’Brien et al., 2024). The AMO was a significant

covariate in the DFA analyses of both blacknose (A.) and finetooth

sharks. A warm AMO phase, which is associated with increased

rainfall in Florida and heightened hurricane activity in the Atlantic,

was correlated with above average blacknose (A.) shark abundance

off the Virginia coast, likely due to increased water temperatures

along the southeastern U.S. coast. Increased abundance of finetooth

sharks in the nursery and nearshore areas sampled by the GA and

GULFSPAN surveys was also associated with a warm AMO phase

and could indicate higher habitat utilization (Carlson et al., 2003;

Carpenter, 2017). Gene flow in finetooth sharks, as well as other

SCS, is limited around the southern tip of Florida due to relatively

localized movement patterns, and the GOM and southeast Atlantic

represent two separate stocks (Portnoy et al., 2016; Kohler and

Turner, 2019; Vinyard et al., 2019). Positive GSI values, which

indicate a northern shift in the Gulf Stream, were associated with

increased abundance of spinner and tiger sharks off the Virginia

coast, potentially due to increased water temperature or abundance

of tropical and sub-tropical prey species. Conversely, recruitment

and habitat utilization may decline for spinner sharks in the

northeastern GOM during positive GSI as indicated by the

decreased indices for GULFSPAN. NAO was previously

associated with a decreased abundance of sandbar sharks off the

coast of Virginia (Peterson et al., 2017a) but was not found to be

significant in this study. This discrepancy could be attributed to the
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different starting years and increased sample size, environmental

changes, shifts in population demographics, or variations in

migration timing.

It is important to note that the SEFSC survey data had the most

influence on the estimated abundance indices because of its

comparably large spatial footprint. Therefore, VAST model

results should be interpreted relative to the SEFSC survey

characteristics. For instance, the survey does not sample in waters

shallower than 9 m where important juvenile bull shark and adult

finetooth shark habitat is located (Carlson et al., 2003; TinHan and

Wells, 2021). The notably low tiger shark index value for 2020 is

likely due to COVID-19 and the resulting significantly reduced

sampling caused by the pandemic. Peak abundance estimates for

spinner (2001 and 2003) and blacknose (A.) sharks (2007)

correspond with years when the SEFSC did not sample the

Atlantic, while abnormal indices for 2005 are likely due to

Hurricane Katrina disrupting sampling schedules. Previous

studies have highlighted the value of incorporating multiple data

sources and different data types (e.g., encounter/non-encounter,

fishery-dependent, etc.), to better capture true trends when

unforeseen circumstances impact fishery-independent sampling

(Thorson and Barnett, 2017; Grüss and Thorson, 2019; Grüss

et al., 2023a). Despite these challenges, the analyses presented

here are based on the best available fisheries-independent data.

While species-specific trends in abundance were generally

consistent across methodologies (except for spinner and finetooth

sharks), each index standardization method used in this study offers

distinct advantages and disadvantages for stock assessment

applications. A key advantage of the VAST model is that it

simultaneously standardizes data and integrates information

across multiple surveys within a unified spatiotemporal

framework, eliminating the need to pre-standardize indices for

distinct sampling programs prior to model fitting. The VAST

model also incorporates spatial and spatiotemporal correlations,

allowing for improved estimation of abundance and density

surfaces that account for shifting distributions and variable survey

effort (Grüss and Thorson, 2019; Grüss et al., 2023a). Additionally,

the spatial output provided by VAST can aid in the interpretation of

indices with respect to changes in survey catchability, which can

bias stock assessments and negatively affect management advice

(Peltonen et al., 1999). This is particularly valuable for mobile or

wide-ranging species whose availability to surveys varies over time

(Morgan et al., 2020; O’Brien et al., 2024). However, VAST and

other spatiotemporal modeling frameworks (e.g., sdmTMB) require

relatively rich datasets, are computationally intensive, and may not

converge reliably for sparse or spatially fragmented datasets (i.e.,

finetooth shark), limiting their utility in some cases (Thorson, 2019;

Anderson et al., 2024). Uncertainty associated with VAST was also

greater, as indicated by larger 95% CIs. While this may reflect true

ecological and sampling variability, greater uncertainty can

ultimately influence stock assessment model output and total

allowable catch (TAC) levels that incorporate buffers for scientific

uncertainty (Maunder and Piner, 2015; Bi et al., 2022).

Although the Conn model is not spatially explicit, it is generally

more robust to violations of assumptions such as constant spatial
Frontiers in Marine Science 14
structure or stable catchability. Notably, Conn performed well in

cases involving multiple spatially fragmented surveys (e.g., finetooth

shark), where the VAST model failed to converge. However, 95%

CIs for the Conn model were comparable to those estimated by

VAST and notably greater than those estimated by DFA. The DFA

method produced smoother relative abundance trajectories, yielded

lower uncertainty bounds compared to the other approaches, and

also successfully incorporated multiple spatially fragmented

surveys, but may underestimate uncertainty when spatial or

temporal variation in catchability are not explicitly modeled

(Zuur et al., 2003a, 2003b, Peterson et al., 2021b). A key

advantage of DFA is its ability to interpolate across occasional

missing data, although this should be done sparingly and the results

for years with minimal to no sampling – such as 2020 – should be

interpreted with caution (Peterson et al., 2021a, 2021b).

Scientific uncertainty—whether arising from natural variability,

observation error, or model structure—is an inherent aspect of

stock assessment and should be explicitly considered in

management advice. Identifying changes in catchability and

survey efficiency is important for developing robust science-based

fisheries management policies, and long-term fishery-independent

survey programs remain the best available data source for most

species, particularly given the known limitations of commercial

catch data (Burgess et al., 2005). Although the Conn and VAST

models yielded higher estimated uncertainties, they may be more

robust than DFA to shifts in species distribution or migration

timing that alter survey catchability (Peterson et al., 2021b).

Ultimately, the choice of standardization method should reflect

the species’ spatial ecology, the survey design and coverage, and the

trade-offs between model complexity, robustness, and decision-

making risk.

Climate change may impact catchability of fishery-independent

surveys targeting coastal sharks by altering migration timing and

shifts or expansions in distribution thus posing a significant

challenge for their management. VAST spatiotemporal models

have emerged as a promising tool for index standardization in

fisheries management, demonstrating their potential for analyzing

complex spatiotemporal patterns in coastal shark population

abundance. However, VAST may not be suitable for all species or

scenarios due to data constraints and model convergence issues. In

such cases, index derived standardization methods, such as DFA

and Conn, provide similar results and may be better suited for

analyzing basin-wide abundance patterns.

Overall, the recovery of coastal shark populations may not be as

optimistic as previously indicated, as only two of the six stocks

examined showed increasing trends across all three index methods

at the end of the time series. Spatial outputs from VAST provided

evidence of distribution shifts among these stocks, but further

investigation is needed to determine whether trends in indices

reflect true changes in abundance or shifts in survey catchability

due to spatial movements or migration timing. Despite these

uncertainties, VAST models offer valuable insights that can

support adaptive management strategies, such as spatial

management measures, to effectively respond to the dynamic

nature of coastal shark populations in a changing environment.
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