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The issue of antimicrobial resistance in farm-raised fish presents a significant

challenge for aquaculture operations. Long-term antibiotic treatment of fish for

bacterial infections has led to bacteria thriving in the aquatic ecosystem and

developing resistance to antibiotics. On the other hand, increasing research

suggests that probiotics and prebiotics may be viable alternatives to antibiotics in

regulating the immune system. Probiotics and prebiotics interact with fish

metabolism in complex ways. These interactions offer promising alternatives to

reduce antibiotic use in aquaculture. Introducing live microorganisms, known as

probiotics, into an organism’s system can help improve overall health by altering

the microflora and boosting immunity. Acting as immunostimulants, prebiotics

directly impact the fish’s innate immune system. When used together, probiotics

and prebiotics enhance immunomodulatory activity, providing numerous health

benefits to aquatic animals. However, successfully replacing antibiotics with

probiotics and prebiotics requires a deep understanding of metabolic

pathways, optimization strategies, and innovative approaches. There has been

a lack of extensive research on how probiotics and prebiotics impact lipid

metabolism in various types of fish. This review aims to explore the intricate

relationship between probiotics, prebiotics, and fish metabolism, with a specific

focus on how these beneficial microorganisms and dietary fibers interact with

fish antioxidant systems. We have also discussed the challenges faced by

farmers when using probiotics and prebiotics. This review analyzes metabolic

and antioxidant interactions mediated by probiotics and prebiotics in cultured
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fish species. It synthesizes findings on histological effects, enzymatic

activity, and microbial interactions, with emphasis on lipid metabolism and

immune modulation, and also discusses the practical implications for

sustainable aquaculture.
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1 Introduction

The aquaculture industry is experiencing exponential growth and

is known to support the livelihoods of around 1 billion individuals

globally (Huynh et al., 2018). Aquaculture is reported to account for

46% of the world’s fish supply (Wee et al., 2024). Asia is the primary

producer of aquatic animals, and China is the highest producer

among countries (Chen and Gao, 2023). Nevertheless, serious health

issues, such as diseases, have been created due to the intensive

culturing and increased production of aquatic products over the

years. In tackling such problems, aquaculture scientists have sought

to use chemicals, antibiotics, and other chemotherapeutics that have

been criticized due to their adverse effects on the environment. The

widespread use of antibiotics and chemotherapeutics in aquaculture

health management has led to an increase in antibiotic resistance

among pathogenic bacteria at aquaculture sites, which can

subsequently contaminate the food chain (Pepi and Focardi, 2021).

Therefore, it is imperative to implement alternative methods for

managing the health of aquaculture species. Modern aquaculture

practices prioritize sustainability, environmental responsibility, and

producing safe consumer products (Gall et al., 1995). In aquaculture,

beneficial feed additives such as probiotics and prebiotics are utilized

to stimulate growth, enhance immunity to combat diseases, and

provide alternative antimicrobial solutions (Badguzar et al., 2024).

According to Wee et al. (2024), a prebiotic serves as

nourishment for the beneficial bacteria in the host’s digestive

tract, whether in the form of a substance, substrate, long-chain

sugar, vitamin, or fiber. Furthermore, as stated by Davani-Davari

et al. (2019) and Dhanasiri et al. (2023), a prebiotic is a substance

that can withstand the harsh acidity of the stomach, is digested

by intestinal microorganisms, and aids in enhancing host health

by supporting the proliferation of beneficial gut bacteria.

Xylooligosaccharides (XOS) have been shown to enhance mineral

absorption, reduce glucose and lipid levels, improve antioxidant

status, and specifically stimulate the growth of beneficial intestinal

microflora. These microflora play various important roles, such as

regulating metabolism and preventing illness (Chen et al., 2022).

On the other hand, probiotics, which are live microorganisms that

provide enormous host benefits when given in the right amount

(Fachri et al., 2024), are known to work through multiple pathways

to strengthen the intestinal mucosa and enhance gut barrier

integrity (Rohani et al., 2022). Moreover, probiotics are essential
02
for sustaining a harmonious microbial environment by favoring

helpful bacteria and preventing harmful ones through competitive

exclusion (Mishra et al., 2015). Furthermore, they defend against

infections by generating antimicrobial metabolites, modifying

toxins or pathogen receptors, and activating distinct immune

responses to pathogens (Pardo-Esté et al., 2024). For example, the

use of isolated probiotics Bacillus amyloliquefaciens AV5 was noted

to enhance the growth conditions, antioxidant capacities, microbial

composition, and intestinal structure of Nile tilapia (Oreochromis

niloticus) (Shija et al., 2025). Researchers discovered that feeding

probiotic live yeast to sea bass led to changes in the activities of

antioxidant enzymes and gene expression (De et al., 2014).

Probiotics have the potential to alter the metabolism of hindgut

bacterial ecosystems, leading to an increase in short-chain fatty

acids and other organic acids while decreasing the production of

ammonia and isovaleric acid. This is likely achieved by improving

the breakdown of complex carbohydrates, ultimately enhancing

protein breakdown.

Despite the pressing need for research on the significance of

prebiotics and probiotics in various fish species, a noticeable gap

exists in comprehensive studies within aquaculture. Therefore,

further research is needed to investigate the role of prebiotics and

probiotics in various fish species, considering their significance in

aquaculture. This review aims to systematically analyze the

mechanisms of action of probiotics and prebiotics in fish, with a

focus on their roles in antioxidant defense and metabolic regulation.

To better understand their potential applications, following the

discussion on antimicrobial resistance and the need for alternative

strategies, the subsequent section examines the role of probiotics

in aquaculture.
2 Probiotics in aquaculture

2.1 Background and histological
development of probiotics

As elaborated earlier, probiotics are described as live

microorganisms that help the host’s health when given in

sufficient quantities. Recent studies have extended their uses to

aquaculture, specifically fish farming, despite their lengthy history

in human and animal health. The use of probiotics in fish
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aquaculture began much later, in the late 20th century, driven by the

growing demand for sustainable fish farming practices. Élie

Metchnikoff first proposed the concept of probiotics in the early

20th century, arguing that bacteria such as lactic acid bacteria might

be beneficial for the human digestive system (Martıńez Cruz et al.,

2012). It is noteworthy that Metchnikoff was ahead of his time

regarding the microbiome when he added, “Systematic

investigations should be performed on the relation of intestinal

bacteria to premature aging,” as well as the impact of diets that

avoid intestinal putrefaction in extending life and preserving bodily

functions (Metchnikoff, 1907).

Initially, the development of probiotics for aquaculture focused

on enhancing feed efficiency and disease resistance; however, as time

passed, their beneficial effects expanded to include immunological

regulation, stress reduction, and overall health management (Behera

et al., 2022). Histological investigations offer crucial information on

the structural alterations that probiotic exposure causes in fish’s

digestive tracts. A vital component of digestion, nutritional

absorption, and immunological responses, the fish gut is a dynamic

and extremely adaptive organ (Ntakirutimana et al., 2023).

Probiotics interact closely with the host’s immune system, gut

microbiota, and gut epithelium. These interactions alter the gut’s

histological structure and may explain some of the beneficial effects

of probiotics observed in aquaculture (Auclert et al., 2024).

According to studies, taking probiotics can increase the size and

number of intestinal villi, which are finger-like projections in the

gut that enhance the surface area available for nutrient absorption.

By strengthening the gut’s absorptive capacity, this morphological

alteration facilitates improved nutrient absorption (De Marco et al.,

2023). Probiotics can also increase mucus production from goblet

cells in the intestinal lining, creating a protective layer that protects

the epithelial cells from pathogens and irritants.

Histological analysis of the intestines of fish supplemented with

probiotics often reveals a thicker mucosal layer and a higher number

of goblet cells, indicating enhanced gut health and protection in fish

(Feng et al., 2025). Probiotics can affect the histological development

of the gut-associated lymphoid tissue (GALT) by modifying the

quantity and distribution of immune cells, including lymphocytes,

macrophages, and dendritic cells. The GALT is a vital component of

the immune system in fish and plays a crucial role in defending the

fish against enteric pathogens (Picchietti et al., 2007). Probiotics have

been shown in histological investigations to enhance the organization

of GALT in fish and increase the number of lymphoid follicles.

This improvement in GALT structures is associated with a stronger

immune response, which increases resistance to infections.

Additionally, it has been demonstrated that probiotics stimulate

the release of antimicrobial peptides (like piscidins) and

immunoglobulins (such as IgM and IgT), all of which are essential

for the body’s defense against infections in fish (Nayak, 2010).
2.2 Sources of probiotics

Numerous probiotic strains used in aquaculture originate from

diverse ecological niches. Commonly utilized genera such as Bacillus,

Lactobacillus, Bifidobacterium, and Pediococcus are frequently isolated
Frontiers in Marine Science 03
from the gastrointestinal tracts offish due to their natural adaptation to

the host environment. Other strains, including Clostridium,

Enterococcus, and Debaryomyces, have also shown probiotic potential

and are sourced from aquatic sediments, rearing water, or fermented

products (Table 1). For example, Bacillus species are often preferred for

their spore-forming ability and resilience in harsh aquaculture

conditions. At the same time, lactic acid bacteria such as

Lactobacillus and Weissella contribute to gut microbiota balance and

immune enhancement. Then, some studies have explored the

application of cyanobacteria and Shewanella due to their unique

metabolic capacities and symbiotic interactions within aquatic

environments (Fachri et al., 2024; Merrifield and Carnevali, 2014).
TABLE 1 Probiotic source and key properties.

Probiotic
Isolation
source

Key properties Reference

Clostridium
butyricum

Soil,
Vegetables,
Soured milk,
and Cheeses

Immunity
enhancement

(Davoodbasha
et al., 2025)

Lactobacillus
plantarum

Rotten fruits
and vegetables

Antioxidant
enhancement

(Boricha
et al., 2019)

Lactobacillus
paracasei

Inulin is
extracted from
Jerusalem
artichoke

Antioxidant activity
and
immunity
enhancement

(Iraporda
et al., 2019)

Bacillus subtilis
The Hulong
Grouper
GI tract

Growth stimulation,
immunity
enhancement

(Zhou
et al., 2019)

Yeast strains
Traditional
kefir grains

Antibacterial
Properties against
pathogenic bacteria

(Gut
et al., 2019)

Lactic bacteria
Whey protein
isolate, inulin,
and chitosan

Antioxidant
capacity enhancement

(Peruzzolo
et al., 2025)

Bacillus velensis
GPSAK2, Bacillus
subtilis GPSAK9,
and Bacillus
tequilensis
GPSAK2

The gut of
hybrid
grouper
(♀Epinephelus
fuscoguttatus
×
♂Epinephelus
lanceolatus)

Enhance growth
performance, feed
utilization,
antioxidant enzyme
activities, immune
responses, gut
microbiota, and
disease resistance
against Vibrio harveyi

(Amoah et al.,
2021, 2023)

Bifidobacterium
animalis
subsp. Lactis

Gelatin and
Arabic gum

Antioxidant,
antihypertensive, and
anti-inflammatory

(Silva
et al., 2022)

Limosilactobacillus
reuteri

Lactose with
ascorbic acid

Antioxidant boosting
(Rodklongtan
et al., 2022)

Candida adriatica
Italian virgin
olive oil

Immunity
enhancement

(Zullo and
Ciafardini,
2019)

Lactococcus,
Leuconostoc and
Enterococcus
genera

Fermented
beverages,
especially
beers, and
Artisanal
soft cheese

Antimicrobial
activities

(Ruiz-Moyano
et al., 2019)
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These diverse origins underscore the importance of selecting strains

that are both host-adapted and environmentally compatible for

optimal probiotic function (Table 1).
2.3 Screening criteria and security

For bacteria to be regarded as a probiotic, there should be no

known side effects or health risks associated with using it; thus, its

safety, which is a critical factor, must be guaranteed. As a result,

when sourcing probiotic bacteria, one of the requirements must

include identifying strains resistant to commonly used antibiotics,

such as tetracyclines, quinolones, and macrolides, and ensuring the

absence of drug-resistance genes or virulence plasmids (Amoah

et al., 2021; Vulla, 2024). The composition of the final product is

also important to consider, as any errors could have negative health

consequences or negate the benefits of probiotics.
2.4 Application methods and actual results

The positive impact of probiotics on bacteria is evident in their

ability to suppress Vibrio spp. Populations (Moghadam et al., 2018).
Frontiers in Marine Science 04
In the work of Hamdan et al. (2016), dietary supplementation with

0.5% marine probiotic bacterium Lactobacillus plantarum AH 78

was noted to improve growth performance in Nile tilapia

significantly. Furthermore, after challenging fish with the

pathogenic bacterium Aeromonas hydrophila, the survival rate of

Nile tilapia fish, as well as their immunological responses and

expression of cytokine genes, including IL-4, IL-12, and IFN-g,
were enhanced when fish were supplemented with 1.0% of L.

plantarum strain AH78 (Hamdan et al., 2016). The importance of

prebiotics and probiotics in fish farming is highlighted in Figure 1

below. These beneficial supplements play a crucial role in

promoting the health and growth of fish, ultimately leading to

improved productivity and sustainability in aquaculture operations.
2.5 The mechanisms of probiotics

The role of probiotics extends far beyond merely modulating

the immune system; they operate through various mechanisms

within living organisms. In animals, probiotics play a crucial role in

eliminating potential pathogens by producing inhibitory substances

or competing directly for space, resources, and oxygen in the gut

(Raheem et al., 2021; Guerreiro et al., 2024). By blocking pathogens’
FIGURE 1

The potential benefits of incorporating probiotics and prebiotics in fish farming.
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access to vital nutrients and binding sites on the gut’s surface,

probiotics significantly reduce the incidence of bacterial infections

(El-Saadony et al., 2021). Beyond their role in infection prevention,

probiotics also produce antimicrobial compounds, such as

bacteriocins and organic acids, which further suppress the

proliferation of harmful bacteria. Figure 2 below summarizes the

mechanisms of probiotics.
3 Prebiotics in fish aquaculture

3.1 Background and histological
development of prebiotics

In aquaculture, prebiotics are increasingly applied to enhance

gut health, nutrient absorption, and disease resistance in farmed fish

species. The concept was first introduced by Gibson and Roberfroid

(1995), who defined prebiotics as fermented ingredients that cause

specific and beneficial changes in the activity and/or composition of

the intestinal microbiota, which subsequently enhances host health.

This definition has been refined over the years, limiting prebiotic

classification to a few carbohydrates such as lactulose, GOS, and

short and long-chain b-fructans (FOS and inulin). According to the
2008 6th Meeting of the International Scientific Association of

Probiotics and Prebiotics (ISAPP), led by Gibson et al. (2010),

dietary prebiotics are ingredients that are selectively fermented,

resulting in specific changes in the composition and activity of the

gastrointestinal microbiota. This, in turn, benefits the host’s health.

A compound is classified as a prebiotic if it meets certain criteria: it
Frontiers in Marine Science 05
must be resistant to the acidic pH of the stomach, not be broken

down by mammalian enzymes, not be absorbed in the

gastrointestinal tract, ferment in the intestinal microbiota, and

selectively stimulate the growth and activity of intestinal bacteria.

These factors contribute to improving the host’s health, as outlined

by Davani-Davari et al. (2019).
3.2 Sources of prebiotics

Prebiotics play a crucial role in maintaining animal health, with

a wide range of foods naturally containing them. Some examples

include asparagus, sugar beet, garlic, chicory, onion, Jerusalem

artichoke, wheat, honey, banana, barley, tomato, rye, soybean,

peas, and beans. More recently, seaweeds and microalgae have

emerged as promising sources of prebiotics (Moreno-Garcia et al.,

2017; Varzakas et al., 2018). Due to their low concentration in food

sources, prebiotics are now being produced on a large industrial

scale. Raw materials such as lactose, sucrose, and starch are

commonly used in the production of prebiotics (Hijova and

Chmelarova, 2007).
3.3 Mechanism of prebiotics and their
effects on fish health and growth

3.3.1 Enzyme activity and digestion
The by-products produced through the fermentation of

prebiotics by beneficial commensal bacteria have been shown to
FIGURE 2

Summary of the mechanisms of probiotics in fish.
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improve health significantly. Prebiotics, also known as functional

saccharides, support the growth of beneficial gut microbiota that

produce digestive enzymes such as protease, amylase, and lipase

(Song et al., 2014). These enzymes enhance nutrient breakdown and

absorption, thereby improving gut health and feed efficiency in fish

(Ta’ati et al., 2011; Xu et al., 2022b). By encouraging the growth of

beneficial gut bacteria and enhancing gut health, prebiotics facilitate

improved nutrient absorption and digestion in fish. By fermenting

prebiotics, beneficial bacteria can produce enzymes that aid in

breaking down complex carbohydrates, proteins, and other food

ingredients into forms that are easier to absorb. This enhanced

nutrient uptake results in improved fish growth performance and

feed efficiency (Rohani et al., 2022). However, it is important to note

that increased digestive enzyme activity is not the sole factor

contributing to improved growth performance. Other factors,

such as alterations in gut morphology and the fermentation of

prebiotic compounds by beneficial bacteria, including Bacillus and

Lactobacillus, also play a significant role (Tran et al., 2023).

3.3.2 Nutrient bioavailability
Plants, algae, and yeasts are the sources of natural ingredients,

including alginate, inulin, and various oligosaccharides (Su et al.,

2020; Whisner and Castillo, 2018). Typically, these compounds

consist of carbohydrate structures or soluble dietary fibers

specifically broken down by microbes in and on the body.

Prebiotics are crucial for promoting the growth and proliferation

of beneficial bacteria within the gut, ultimately benefiting host

health. In animal nutrition, prebiotics such as inulin, FOS, MOS,

and IMO have been widely utilized, showing significant benefits in

various farmed aquatic species (Bamigbade et al., 2022; Davani-

Davari et al., 2019; Huynh et al., 2018). Prebiotics have gained

widespread acceptance in aquaculture in recent years due to their

capacity to enhance growth performance, balance gut microbial

composition, improve enzymatic functions, improve water quality,

and provide essential nutrients. They also help strengthen the

immune system, allowing host organisms to fight off disease

infections (Dobrogosz et al., 2010).

3.3.3 Microbiome modulation
Prebiotics lower the risk of inflammatory illnesses in fish and

help prevent systemic infections by promoting the growth of

beneficial bacteria that compete with harmful germs for resources

and adhesion sites in the gut (Arif et al., 2024). They also help to

maintain gut health by strengthening the intestinal epithelial

barrier, which can reduce the amount of pathogens and

inflammatory stimuli that enter the bloodstream. Prebiotics play a

major role in regulating the composition of the fish gut microbiota.

By serving as substrates for beneficial bacteria, prebiotics selectively

promote the development and activity of specific microbial

populations while inhibiting the growth of harmful ones. This

regulation leads to a more diverse and balanced gut microbiota,

which, in turn, enhances gut health, improves nutritional

absorption, and promotes overall host well-being (Anguiano

et al., 2013). Furthermore, by using competitive exclusion,

prebiotics can eliminate viruses from fish guts. Prebiotics function
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by promoting the growth of beneficial bacteria, which reduces the

conditions that allow pathogenic microorganisms to colonize and

proliferate. This competitive exclusion mechanism boosts fish

disease resistance overall and reduces the risk of infections by

preventing pathogens from attaching to the gut epithelium

(Nakhei Rad et al., 2023).
3.3.4 SCFA synthesis and immune modulation
When broken down by beneficial bacteria such as Lactobacillus

and Bifidobacterium, prebiotics produce short-chain fatty acids

(SCFAs), lactate, and other beneficial compounds and nutrients

(Chen et al., 2017). These bioactive compounds, specifically

carboxylic acids with fewer than six carbon atoms, can induce

bacterial fermentation and have a positive impact on the digestive

system and metabolism, including anti-inflammatory and

immunostimulatory actions (Nawaz et al., 2018). Moreover,

prebiotics provide energy to enterocytes for the repair and

maintenance of gastrointestinal homeostasis, as demonstrated in a

study by Liu et al. (2020) on the effects of prebiotic treatment in

shrimps. Although several studies have been conducted to assess the

prebiotic impact on fish, crustaceans have been at the forefront of

numerous studies on this topic. For example, a study by Chen et al.

(2017) found that the giant freshwater prawn (Macrobrachium

rosenbergii) experienced significantly higher growth rates and

increased acetate concentration in the gut after being fed 0.4%

FOS. In another study, Tran et al. (2020) discovered that GOS and

resistant starch (RS) led to an increase in the synthesis of short-

chain fatty acids (SCFAs) in the gut microbiota of the mud crab (S.

paramamosain) during an in vitro investigation. Similarly, research

has identified the numerous commercial and economic benefits of

using prebiotics in fish culture, including tilapia, salmonids, carp,

and catfish, which collectively account for the largest proportion of

global production in inland waters.

Over the last twenty years, aquaculture has experienced

significant growth, with both marine and coastal environments

making a substantial contribution to this increase (Amillano-

Cisneros et al., 2023). The expansion has brought about challenges,

including disease outbreaks and environmental stressors, which

prebiotics can help alleviate. The economic and commercial

implications of prebiotics in aquaculture are substantial, as they

provide a sustainable alternative to antibiotics, enhancing fish

health and lowering production costs. Moreover, the effect of

prebiotics on stress resistance has been demonstrated in juvenile

groupers. For example, a four-week study on the supplementation of

MOS and XOS was noted to enhance growth performance,

antioxidant capacity, nonspecific immunity, ammonia nitrogen

stress resistance, and crowding stress resistance of juvenile hybrid

grouper. However, while MOS and XOS showed similar anti-stress

effects, the antioxidant and nonspecific immunity parameters they

regulated differed, suggesting that the precise mechanisms of MOS

and XOS’s anti-stress effects were likely distinct. Then, the four weeks

of MOS supplementation significantly improved the disease

resistance of hybrid grouper against V. harveyi (Zhu et al., 2023).

The roles and functions of various prebiotics commonly used in

aquaculture are summarized in Table 2, providing insights into
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their sources and specific benefits for fish health and immunity. The

key functions of prebiotics in enhancing fish health and aquaculture

performance are summarized in Figure 3. A detailed summary of

the efficacy of various prebiotics on a wide range of fish species,

including growth, immunity, and antioxidant capacity parameters,

is presented in Table 3.
4 Probiotics and prebiotics
metabolism in fish

4.1 Probiotics and fish metabolism

Probiotics have surged in popularity over the years due to

mounting evidence suggesting their ability to impact host nutrient

metabolism, energy balance, and gastrointestinal health by

modifying the microbiota (Falcinelli et al., 2017; Liu et al., 2021a;

Ringø et al., 2022). Various mechanisms make probiotics vital in

managing lipid metabolism. Their production of digestive enzymes

facilitates the absorption and utilization of nutrients, reduces

cholesterol levels, and exhibits anti-inflammatory and

immunological benefits (Liu et al., 2021b; Semova et al., 2012).

Lye et al. (2010) identified five ways in which probiotics can

influence lipid metabolism, including cholesterol absorption,

binding, micelle destabilization, bile salt deconjugation, and bile

salt hydrolysis. When examining probiotic products containing live

LAB, Cho and Kim (2015) noted a decline in total cholesterol and

LDL cholesterol, with no substantial differences in HDL cholesterol

or triglycerides. Studies conducted on zebrafish larvae revealed that

providing Lactobacillus rhamnosus IMC 501 resulted in reduced

gene transcription related to cholesterol and triglyceride

metabolism (Falcinelli et al., 2015). Furthermore, adult zebrafish
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exposed to varying lipid levels showed that high dietary lipids

reduced gut microbiota diversity, impacting genes related to

hunger regulation, while adding L. Rhamnosus reduced total body

cholesterol (Falcinelli et al., 2017). Table 4 provides information on

how probiotics impact lipid metabolism in fish.
4.2 Prebiotics and fish metabolism

Species, feeding patterns, gut microbiome composition, type of

basal food consumed, and the specific prebiotic used all play a role

in determining the effectiveness of aquatic animals (Lokesh et al.,

2022). To date, current research on the modulation of carbohydrate

metabolism by prebiotics remains limited to a few model species.

Although there are advantages to consider, research has only

focused on a restricted range of fish species to investigate the

effects of prebiotics on the metabolism and utilization of

carbohydrates. Investigations indicate that polysaccharides like

inulin and mannan-oligosaccharides (MOS) might affect the gene

expression linked to diverse metabolic pathways in rainbow trout’s

liver and muscle tissues (Sharma and Puri, 2015; Lokesh et al.,

2022). With abundant raw materials, cost-effectiveness, and

sustainability, the nutraceutical industry can successfully produce

xylooligosaccharides (XOS) from agricultural by-products.

Research has demonstrated that XOS can elevate antioxidant

status, enhance mineral absorption, decrease glucose and lipid

levels, and stimulate the growth of beneficial gut flora, resulting

in a range of health benefits, including improved metabolism and

disease prevention (Chen et al., 2022). The supplementation of 10 g/

kg and 20 g/kg XOS to the high-fat diets offish resulted in decreased

HIS, ADF, liver lipid, plasma TC, TG, and LDL levels while

increasing plasma HDL concentrations (Abasubong et al., 2018).
TABLE 2 The use of different prebiotics in aquaculture highlights their functions within the industry.

Prebiotics Sources Functions References

b-glucan

Found predominantly in the cell walls of select plants,
fungi, bacteria, mushrooms, yeast, and seaweeds, where
it holds a significant role as a major constituent. The cell
wall of baker’s yeast Saccharomyces cerevisiae provides
the main source.

Significantly boost fish health and prevent diseases
in aquaculture.

(Meena et al., 2013)

Inulin

Organically, it can be found in the foundation of
numerous edibles, like whole wheat, onions, garlic, and
Jerusalem artichokes. Extracting it is a common practice
with chicory roots.

Vital for preserving gut health, facilitating digestion,
and strengthening the immune system. Recognized to
bring about a transformation in the array of
microbes, such as lactic-acid bacteria (Lactobacillus,
Weissella) and Bacillus.

(Defaix et al., 2024)

Mannan
oligosaccharide

Outer cell wall of yeast
Stimulation of the immune system to block
pathogen colonization.

(Torrecillas et al., 2014)

Arabinoxylan
oligosaccharide

Naturally occurring arabinoxylan, found in the cell walls
of different cereal grains, is a product.

Modulate the innate immune responses of fish. (Torrecillas et al., 2015)

Xylooligosaccharide
Presented in grain by-products like bran/rice bran, and
corn stalk

Enhancing mineral absorption, regulating lipid
metabolism, improving antioxidant capacity, anti-
inflammatory and antimicrobial functions.

(Chen et al., 2024)

Isomaltooligosaccharide Derived from cornstarch

Have the ability to decrease the release of glucose and
enhance the quantity of undigested a-glucans carried
to the large intestine by slowing down the action of
amylolytic enzymes.

(Wee et al., 2024)
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Moreover, research conducted by Torrecillas et al. (2015)

demonstrated a reduction in levels of long-chain monoenoic fatty

acids, including 20:1 and 22:1, in European sea bass that were fed

MOS, as these acids are predominantly metabolized via b-
oxidation. Contrarily, GOS could alter lipid transport and

metabolism by directly influencing the gut microbiota (Dhanasiri

et al., 2023). Elevated oxidative stress markers in giant freshwater

prawns have been associated with high-concentration FOS

treatment (Genc et al., 2007). The importance of carefully

examining how different dietary supplements affect lipid

metabolism in aquatic species should not be overlooked.
5 Mechanism of probiotics and
prebiotics in lipid metabolism

5.1 Short-chain fatty acids & AMPK

Lipid metabolism involves a series of complex reactions,

including digestion, absorption, synthesis, and breakdown of lipids,

all of which are controlled by different enzymes. Genetic factors,
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environmental conditions, and other external factors influence these

processes. The impact of probiotics on lipid metabolism is

substantial, primarily due to the generation of two important

metabolites: short-chain fatty acids (SCFAs) and bile acids (BAs).

Moreover, regulating enzyme production and inhibitors can

effectively reduce cholesterol synthesis (Song et al., 2023). The

digestion of fats is greatly influenced by bile acids, which serve as

essential signaling molecules (Wang et al., 2023). Derived from

cholesterol produced in the liver, BA acts as messengers that trigger

nuclear receptors involved in controlling metabolism and general

well-being. Moreover, they serve as biological cleansers that aid in the

uptake and delivery of fats, vitamins, and essential elements. SCFAs

are the primary metabolites produced by beneficial gut bacteria,

facilitating the energy metabolism of cells in the colon and liver.

SCFAs offer numerous benefits to target tissues. For example,

butyrate may enhance mucus layer thickness and strengthen the

integrity of the gastrointestinal barrier by activating intestinal AMPK

(Zhuge et al., 2024). AMPK, as described, acts as a cellular fuel gauge

that regulates metabolic pathways involved in protein synthesis,

glucose metabolism, and fatty acid metabolism. The activation of

AMPK can be triggered by acetate through an increase in the liver
FIGURE 3

The functions of prebiotics in fish.
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TABLE 3 The efficacy of prebiotics used on different fish species.

Fish species Prebiotics used Efficacy of prebiotics References

O. niloticus

b-glucan
(+) *Serum: HDL cholesterol; Intestine: SOD, PO, T-AOC; Plasma: LYZ,
Ig, Complement components; survival rate.
(–) *Serum: TG, TCHO, LDLC, ALP; and Intestine: MDA, ROS.

(Dou
et al., 2023)

Xylooligoccharides
(corncob-derived)

(+) *Growth performance (GP), weight gain (WG), growth rate (GR), feed
conversion ratio (FCR), and innate immune parameters (IPP).
(–) *Levels of stress-induced markers (SIM), oxidative damage (OD), and
disease outbreaks or mortality (DOM).

(Van Doan
et al., 2018)

Pistacia vera hull-derived polysaccharide

(+) *Serum Protase (SP), immunoglobulin (Ig), activity of protease (PA),
serum alkaline phosphatase (ALP), serum alternative complement (AC),
superoxide dismutase (SOD), and catalase (CAT).
(–) *Oxidative stress markers (OSM), inflammatory responses (IR), tissue
damage (TD), and pathological changes.

(Mohammadi
et al., 2022)

O. mykiss

Inulin

(+) *Protein content, lysozyme (LYZ), complement activities (CA), RBC
count (RBC) and hemoglobin (Hb), mucosal parameters (MP), alkaline
phosphatase (ALP), protease (PA) activities, total immunoglobulin (Ig),
and survival rate (SR) was observed against A. hydrophila.
(–) * Lipid levels, oxidative stress markers, inflammatory cytokine levels
(ICL), lipid peroxidation (LP), and tissue damage (TD).

(Ghafarifarsani
et al., 2021)

Xylooligosaccharides

(+) * Weight gain (WG), intestinal lipase (IL) and amylase (AMY), villi
height (VH), IL-10, claudin-1 (CLDN-1), and ZO-1, growth, and intestinal
health.
(–) * Gut: Intestinal inflammation, oxidative stress (OS), pathogen
abundance; TNF-alpha (TNF-a) and IL-6; intestinal damage; and
abundance of Proteobacteria.

(Wang
et al., 2022a)

Pompano
(Trachinotus ovatus)

b-glucan and mannan oligosaccharide

(+) *Growth rates (GR), feed conversion ratio (FCR), Villus length (VL),
villus width (VW), villous surface area (VSA), absorption rate (AR), RBC
count (RBC), WBC count (WBC), and protein content.
(–) *Gut inflammation (GI), oxidative stress (OS), fat deposition (FD) in
the muscle tissue, and lipid content.

(Hoang
et al., 2024)

Red sea bream
(Pagrus major)

b-glucan

(+) *Body lipid content (LC), hematocrit (HC), serum lysozyme activity
(SLA), mucus lysozyme activity (MLA), superoxide dismutase (SOD),
alternative complement pathway activity (ACPA), and mucus secretion
(MS), levels of mucus bactericidal activity (MBA) and serum peroxidase
activity (SPA).
(–) *Body moisture content (BMC), plasma glucose (PG), triglyceride (TG),
malondialdehyde (MDA), oxidative stress markers (OSM), and
inflammation levels (IL), lipid peroxidation (LP), and tissue damage (TD).

(Dawood
et al., 2017)

Mannan oligosaccharide

(+) *Serum: growth performance and immune response, hematocrit level,
protein level, LYZ, glutamic pyruvic transaminase, bactericidal, and
peroxidase activities.
(–) *Serum: ROS and salinity stress.

(Dawood
et al., 2020b)

Juvenile African
catfish
(Clarias gariepinus)

b-glucan, along with sodium salt of butyric acid
and vitamins

(+) *Growth parameters, number of Lactococcus and Bacillus genera.
(–) *Number of potentially pathogenic bacteria from the Candidatus genus.

(Arciuch-
Rutkowska
et al., 2024)

Shabout
(Tor grypus)

Mannan oligosaccharide + b-
glucan (Immunogen)

(+) *Carcass protein content (CPC), intestinal population (Lactobacillus),
serum total globulin (TG), and serum bactericidal activities (SBA); Head
kidney: IL-1b, IL-8, and TNF-a.
(–) *Inflammatory cytokines (IC), oxidative stress markers (OSM), tissue
damage, and pathogen load.

(Mohammadian
et al., 2021)

Juvenile hybrid
sturgeon (Acipenser
baerii ×
A. schrenckii)

Galactooligosaccharide

(+) *Innate immunity and stress resistance, body weight, specific growth
rate, feed conversion ratio, Lysozyme, acid phosphatase, alkaline
phosphatase, myeloperoxidase activities, SOD, catalase, glutathione
peroxidase, and TNF-a; mid-intestine: muscular thickness, villus and
microvilli height, and goblet cells.
(–) *IL-1b and IL-8 mRNA levels and mortality rate.

(Xu
et al., 2022a)

Marine fish, juvenile
chu’s croaker
(Nibea coibor)

Insulin and Galactooligosaccharides
(+) *Growth performance and immune responses, SCFAs, cytokine levels
(CL), LYZ, and antioxidant activities.

(Li et al., 2019)

(Continued)
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AMP/ATP ratio, which consequently reduces the transcription of

lipogenic genes (Liu et al., 2021a). Propionate is linked to

gluconeogenesis, while the liver utilizes acetate for the synthesis of

fatty acids and cholesterol. Acetate, the primary SCFA in mammals, is

essential for controlling lipid metabolism and is present in various

tissues and excreta as a free acid (Feng et al., 2021).
5.2 Bile acid

Bile acid is one of the key signaling molecules that play a

significant role in the digestion of fat (Lin et al., 2020). These BAs

can break down TAGs into fatty acids, most of which can be

reabsorbed by the intestines and sent back to the liver. They can also

emulsify fat into smaller fat particles when lipoprotein lipase is

active. The term “bile acid hepatic and enteric circulation” refers to

this type of circulation of BA between the colon and liver. Probiotics

can accelerate this cycle to achieve the goal of reducing cholesterol.

In other words, primary BAs, which are produced in the liver from

cholesterol, can be transformed into secondary bile acids under the

combined influence of probiotics (Song et al., 2023). They are

typically eliminated with meal residue because they are less likely

to be absorbed, which leads to the liver producing bile acids

from scratch.
5.3 Lipid oxidation and synthesis regulation

However, many prebiotics share similar physiological

characteristics with dietary fibers, leading researchers to focus on

exploring their potential impact on lipid metabolism. This research

initially began with animal studies and has since progressed to

human studies. Certain prebiotics have been shown to influence

triglyceride metabolism, resulting in varying effects on serum or

hepatic triglyceride levels, depending on the specific experimental

conditions (Cho and Kim, 2015). In animal studies, a decrease in

triglyceride levels is often associated with a reduction in hepatic de

novo lipogenesis rather than in adipose tissue cells (Delzenne and

Kok, 2001). A decrease in hepatic lipogenic enzymes may be linked

to lower expression of key genes, typically caused by the

consumption of fructan or resistant starch. As prebiotics are

broken down in the intestines, the digestive system generates a

considerable amount of SCFAs like acetate, propionate, and

butyrate. The liver receives acetate and propionate through the

portal vein, while enterocytes primarily break down butyrate
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(Hijova and Chmelarova, 2007). Through the cholesterogenesis

and lipogenesis pathways, acetate enters hepatocytes after being

activated by cytosolic acetyl-CoA synthetase 2. This process has

been implicated in the hypercholesterolemic effects of indigestible

carbohydrates, such as lactulose, which increases acetate production

during fermentation in the colon but not propionate. Interestingly,

propionate competitively inhibits the protein responsible for acetate

entry into liver cells (Cho and Kim, 2015). By investigating the

effects of prebiotics and probiotics on lipid metabolism, scientists

can gain valuable insights that could lead to the development of new

treatments for metabolic disorders. The function of probiotics and

prebiotics in fish lipid metabolism is depicted in Figure 4.
6 Mechanism of probiotics and
prebiotics in carbohydrate metabolism

Carbohydrates play a crucial role as a non-protein energy

source for aquatic species, helping to spare proteins and reduce

nitrogen emissions into the water (Abasubong et al., 2019).

However, unlike mammals, aquatic animals struggle to utilize

dietary carbohydrates efficiently. Excessive carbohydrate intake

can lead to metabolic stress, disrupt metabolic balance, and pose

various health risks for fish, including hyperglycemia, liver damage,

and histopathological issues (Siri and Krauss, 2005; Wang

et al., 2021).

An excess of glucose is typically converted into glycogen and

lipogenesis, which can be targeted to alleviate symptoms of

hyperglycemia and hyperlipidemia resulting from a high-

carbohydrate diet. Research has shown (Castro et al., 2016) that

prolonged consumption of high-carbohydrate meals can increase

the enzymatic activities of GS, G6PDH, and FAS in Sparus aurata,

leading to increased fat and glycogen production. High-

carbohydrate diets can also trigger fish lipid metabolism

disorders, characterized by excessive fat accumulation in the liver

and abdomen (Luo et al., 2020). This fat buildup can disrupt

endocrine system activities, leading to elevated levels of pro-

inflammatory cytokines and insulin resistance (Zhang et al., 2024).

Probiotics can potentially influence immunity, physiology,

metabolism, and nutrition by modifying the gut microbiota.

Research has shown that probiotics can have beneficial effects on

metabolic inflammation and obesity resulting from a high-fat/carb

diet by altering the gut microbiota and producing SCFAs (Xu et al.,

2022c). Studies have indicated that SCFA butyrate can enhance the

production of the peptide GLP-1, which plays a crucial role in
TABLE 3 Continued

Fish species Prebiotics used Efficacy of prebiotics References

(–) * Intestinal inflammation, oxidative damage (OD), pathogen
abundance; gut: harmful microbial species (HMS).

Hybrid sturgeon
(Acipenser baerii ×
A. schrenckii)

Chitosan
(+) *Growth performance of hybrid sturgeon, Antioxidant capability, and
immunity levels.
(–) *Resistance capacity.

(Li et al., 2023)
Where: “(+)” is increase or enhancement, “(–)” is decrease.
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regulating appetite, food intake, and glucose metabolism by

increasing the expression of the insulin gene in intestinal L-cells

(Kim et al., 2018; Yadav et al., 2013). Additionally, research has

demonstrated that probiotic-treated larvae exhibit increased glp-1

gene expression, potentially due to the metabolic activity of lactic acid

bacteria producing SCFAs (Falcinelli et al., 2016). Moreover, as

highlighted by Delzenne et al. (2007), propionate has been found to

stimulate the production of glucagon-like peptide-1 (GLP-1) in the

intestine, leading to enhanced insulin secretion and increased

glycogen synthesis in the liver. Furthermore, SCFAs can activate

the AMPK/peroxisome proliferator-activated receptor-g co-activator-
1a/peroxisome proliferator-activated receptor a pathway, facilitating

the transport of SCFAs to various tissues and promoting lipid

oxidation. This process facilitates the proper metabolism and

utilization of fat in various organs.

Research has demonstrated that XOS can improve the function of

the intestinal barrier by selectively increasing the presence of beneficial
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microbes like Lactobacillus and Bifidobacterium, boosting the

production of SCFAs, and enhancing the levels of tight junction

proteins in the gut (Chen et al., 2024). In addition, compared to a

high-carbohydrate diet, supplementing with 1.0% XOS resulted in a

decrease in lipid accumulation in muscles and the liver, and an increase

in glycogen deposition in the liver (Chen et al., 2022). European sea

bass given 1% XOS also exhibited heightened glycolytic activity

(Guerreiro et al., 2015). Moreover, the administration of MOS was

found to reduce insulin resistance and glucose intolerance in mice fed a

high-carb diet, potentially through the modulation of gut microbial

composition (Wang et al., 2022c). It has been suggested that combining

L. plantarum with a high-carb diet can elevate intestinal acetate levels,

trigger uranosol synthesis in hepatocytes, and regulate nucleotide

metabolism to enhance oxidative stress and reduce liver lipid

deposition (Deng et al., 2024). The manipulation of gut microbiota

by probiotics and the subsequent production of SCFAs have shown

promising effects on various aspects of health and metabolism.
TABLE 4 Impact of Probiotics and Prebiotics on Lipid Metabolism in fish.

Common
name

Scientific
name

Probiotic species or
Prebiotic type

Dosage Effects on lipid metabolism References

Probiotics

Rainbow trout
Oncorhynchus
mykiss

Lactobacillus rhamnosus 109 CFU/g TG ↓
(Panigrahi
et al., 2010)

Rainbow trout
Oncorhynchus
mykiss

B. subtilis IS02 107–108 CFU/g There were no notable alterations in lipid levels
(Sahraei

et al., 2019)

Zebrafish Danio rerio Lactobacillus rhamnosus 106 CFU TC and TG ↓
(Falcinelli
et al., 2015)

Chinese Perch
Siniperca
chuatsi

Bacillus subtilis BS1 and
Lactobacillus plantarum LP1

108 CFU/g Reduction in the livers crude lipid composition
(Feng

et al., 2021)

Thinlip mullet Mugil capito Lactobacillus bulgaricus
2 g/kg diet (21.5
× 109 CFU/g)

Increased the crude lipid
(Shehata

et al., 2024)

Persian
sturgeon

Acipenser
persicus

Bacillus licheniformis,
Bacillus subtilis

1.6 × 1012

CFU/kg
Modulated Fat content and the activity of lipase

(Darafsh
et al., 2020)

Nile tilapia
Oreochromis
niloticus

Bacillus subtilis 109 CFU /g Reduced the lipid content
(Opiyo

et al., 2019)

Prebiotics

European
sea bass

Dicentrarchus
labrax

Xylooligosaccharides 1% TC and TG ↓
(Guerreiro
et al., 2015)

Atlantic
salmon

Salmo salar L
Fructooligosaccharides
and Galactooligosaccharides

FOS (0.1%)
and 1.0%

Augmented the presence of metabolites related to
phospholipid, fatty acid, carnitine, and
sphingolipid metabolism

(Dhanasiri
et al., 2023)

Blunt
snout bream

Megalobrama
amblycephala

Xylooligosaccharides 1.0% Prevented the accumulation of fat
(Chen

et al., 2022)

Common carp
Cyprinus
carpio

Xylooligosaccharides 10 g/kg
TC, TG, and LDL ↓
while HDL ↑

(Abasubong
et al., 2018)

Largemouth
bass

Micropterus
salmoides

Mannan oligosaccharides 5 g/kg MOS TG ↓
(Wang

et al., 2022b)

Largemouth
bass

Micropterus
salmoides

Grobiotic®-A (GA) 1%
Enhancing the expression of genes involved in
lipid metabolism

(Yu et al., 2019)

Largemouth
bass

Micropterus
salmoides

Resistant starch (RS) 1.5–3.0%
Control the buildup of fats in the liver and oversee
lipid metabolism

(Zhang
et al., 2025)
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7 Mechanism of probiotics and
prebiotics in protein metabolism

Probiotic and prebiotic supplementation has been shown to

enhance fish weight gain by improving appetite, increasing digestive

enzyme activity, enhancing intestinal morphology, and boosting

metabolism (Midhun et al., 2019). These factors are crucial in

improving nutrient absorption and digestion, leading to increased

metabolism and accelerated growth (Zhang et al., 2022). Probiotics

have the notable capacity to modify the structure and function of plant

proteins through fermentation, producing bioactive compounds such

as vitamins, antioxidants, and antimicrobial peptides. Additionally,

probiotics aid in addressing protein energy deficiency by facilitating the

absorption and utilization of proteins. They also influence the

metabolic activity of gut microbiota, maintaining a balance between

protein synthesis and breakdown (Rasika et al., 2021). Research by Wu

et al. (2024) emphasizes the significance of probiotics in regulating the

gut microbiota, which, in turn, influences gut bacteria involved in

proteolysis. By breaking down complex plant proteins into simpler

forms, probiotics promote the digestion and absorption of nutrients in

the host body. This metabolic process also yields beneficial compounds,

including SCFAs, exopolysaccharides, and vitamins. Furthermore,

probiotics can break down plant-based proteins with anti-nutritional
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factors in feed into smaller peptides and amino acids, thereby

enhancing the nutritional value and digestibility of these proteins.

For instance, the addition of 1.5% XOS to rice protein meal has been

shown to enhance the hepatic activity of Glutamate dehydrogenase,

aspartate aminotransferase, and alanine transaminase inMegalobrama

amblycephala (Abasubong et al., 2019).

In conclusion, incorporating probiotics and prebiotics into fish

nutrition has significantly enhanced nutrient absorption and overall

growth. Figure 5 illustrates the mechanism of probiotics and

prebiotics in a plant-based protein diet.
8 The influence of probiotics and
prebiotics on fish antioxidant capacity

The relationship between an organism’s antioxidant defense

and physiological state is crucial, as higher levels and efficiency of

antioxidant defense offer numerous advantages to the host. Fish

have evolved sophisticated antioxidant defense mechanisms

involving primary enzymes such as superoxide dismutase (SOD),

catalase (CAT), and glutathione peroxidase (GSH-Px), alongside

non-enzymatic antioxidants like glutathione, thioredoxin (Trx),

and vitamins C and E (Shija et al., 2025; Słowińska et al., 2013;
FIGURE 4

The function of probiotics and prebiotics in fish lipid metabolism. This diagram provides a visual representation of how these dietary supplements
influence the way fish process lipids.
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Hoseinifar et al., 2020). Thioredoxin (Trx) is one of the primary

intracellular redox systems, and as such, it plays a crucial role in

regulating reactive oxygen species (ROS) accumulation (Pacitti

et al., 2014). Several studies have demonstrated that probiotics,

such as S. cerevisiae and L. bulgaricus, significantly elevate SOD,

CAT, and GSH-Px activities in Mugil capito (Shehata et al., 2024).

Conversely, supplementation with Aspergillus oryzae enhances

antioxidant enzymes and reduces stress markers in Nile tilapia

during hypoxic conditions (Dawood et al., 2020a).

The research conducted by Yi et al. (2018) demonstrated a

noticeable increase in GSH-Px activity in Carassius auratus when

they were fed diets containing Bacillus velezensis JW. Ringø et al.

(2022) found that dietary MOS and XOS had a notable impact on

antioxidant levels, resulting in a significant decrease in MDA and a

significant increase in CAT, GSH-PX, and SOD. The ability of

chitosan to eliminate free radicals from the body’s cells gives it its

strong antioxidant potential, helping to prevent oxidative damage.
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This is achieved through the chelation of metal ions and the provision

of hydrogen or electron pairs (Yen et al., 2008). Jia et al. (2017)

observed a notable increase in SOD and CAT activities in crabs

treated with FOS, accompanied by decreased MDA activity. The

utilization of XOS and GOS has been shown to enhance the

enzymatic activity of GSH-Px and promote the synthesis of

glutathione-related enzymes in fish (Xu et al., 2022c). The research

suggests that prebiotics play a crucial role in enhancing the immune

system through antioxidant pathways. An overview of the effects of

various probiotics and prebiotics on antioxidant enzyme activities in

different fish species is provided in Table 5.
9 The use of antibiotics in aquaculture

The increasing global demand for aquatic food has led to a

significant rise in the use of antibiotics within the aquaculture
FIGURE 5

The mechanism of probiotics and prebiotics in a plant-based protein diet.
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industry. To enhance productivity, these antibiotics are utilized to

promote the growth and health of fish stocks. Over the past few

decades, the global use of antibiotics in aquaculture has increased

significantly. In 2017, worldwide antibiotic consumption reached 93

million tons (Tiseo et al., 2020), and projections indicate that this

figure could exceed 236 million tons by 2030, with aquaculture

contributing approximately 5.7% of that total (Schar et al., 2020). A

concerning aspect of this trend is that many antibiotics are applied

directly to coastal habitats, often without effective measures to

control their spread. In 2017 alone, over 10 million tons of

antibiotic compounds were consumed in aquaculture, with an

anticipated increase of 33% by 2030. The distribution of antibiotic

use in aquaculture was notably concentrated, with China

accounting for 58%, India for 11%, Indonesia for 9%, and

Vietnam for 5% of global consumption (Schar et al., 2020). As

the aquaculture sector continues to expand over the next decade,

the risk of antibiotic resistance is expected to rise, posing a

significant threat to ecological biodiversity and the proper

functioning of ecosystems. Antibiotics are among the most

prevalent chemical pollutants that enter the environment and

subsequently infiltrate the food chain (Albarano et al., 2024).

Antibiotics can lead to an imbalance in intestinal flora, which

may adversely affect fish health, particularly in intensive rearing

conditions characterized by high stocking densities that facilitate

the spread of infectious diseases (Cox, 2016; Carlson et al., 2017).

Studies have shown that the preventive use of antibiotics can reduce

the symbiotic bacteria in aquatic animals, ultimately affecting host

immunity (Schmidt et al., 2017; Milijas ̌ević at al., 2024). For

instance, research on the fry of Oncorhynchus mykiss and

Cyprinus carpio demonstrated that florfenicol suppressed their

immunological responses (Mallik, 2023). Additionally, studies

using zebrafish models have shown that antibiotics such as
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oxytetracycline and sulfamethoxazole can negatively affect

gastrointestinal health when administered over extended periods,

even at legally permissible dosages. These antibiotics may induce

inflammation or disrupt gut flora (Jia, 2023). According to Manage

(2018), the use of antibiotics for growth promotion can contribute

to the development of antimicrobial-resistant bacteria in aquatic

ecosystems. Furthermore, the accumulation of residues in fish

tissues may stem from the subtherapeutic use of antibiotics. This

practice can lead to the proliferation of antibiotic-resistant bacteria,

which may subsequently be transferred to humans through

environmental pathways or by consuming contaminated fish.

Such transmission poses a significant risk, potentially resulting in

diseases that are challenging to treat (Yuan et al., 2023). Moreover,

antibiotic residues can persist in the environment and fish, raising

critical concerns about their long-term toxicity, potential allergic

reactions, and broader implications for human health (Albarano

et al., 2024). Figure 6 below summarizes the benefits and drawbacks

of antibiotic use, particularly when overprescribed.
10 Replacing antibiotics with
probiotics and prebiotics in
aquaculture

The mismanagement of antibiotics in aquaculture poses a grave

concern with widespread impacts (Hemamalini et al., 2022). This

practice has led to producers routinely administering antibiotics within

aquaculture systems, creating a cycle of dependency. Unfortunately, the

excessive use of antibiotics has triggered antimicrobial resistance in

bacteria from aquaculture settings (Monteiro et al., 2016). As

microorganisms evolve, they become immune to the effects of
TABLE 5 Impact of Probiotics and Prebiotics on antioxidant capacity in fish.

Species Prebiotics/Probiotics Antioxidant effects References

Rainbow trout Galactooligosaccharide and Pediococcus acidilactici
CAT, GST, and GR activities were
significantly higher and

(Hoseinifar et al., 2017)

Nile tilapia Fermos® SOD, CAT, and Gpx were increased (Abdel Gayed et al., 2021)

Juvenile Hybrid Grouper
(Epinephelus fuscoguttatus ♀ ×
Epinephelus lanceolatus ♂)

Mannan oligosaccharides and xylooligosaccharides
AKP and LZM were significantly increased,
and GPx and CAT activities were
significantly enhanced

(Zhu et al., 2023)

Common Carp PrimaLac, Inulin, and Biomin Imbo o
CAT, SOD, and GPx were increased, and
MDA activity was significantly lowered.

(Ajdari et al., 2022)

Rainbow trout
Galactooligosaccharide and Pediococcus
acidilactici on

Higher CAT and GST activities were
observed, and MDA levels were low

(Hoseinifar et al., 2021)

European Eel
(AgriMOS, mannan-oligosaccharides, and b-(1,3
and 1,6)-poly-D-glucose) and (Bactocell,
Pediococcus acidilactici)

CAT and SOD increased (Politis et al., 2023)

Nile Tilapia Aspergillus oryzae and b-Glucan
SOD, CAT, while GPX was enhanced, and
MDA decreased

(Dawood et al., 2020c)

Nile Tilapia Betaplus® and Technomos Enhanced CAT, SOD, (Sır̂bu et al., 2022)

Nile Tilapia Fermos®
SOD and CAT were increased, and
MDA decreased

(Abdel Gayed et al., 2021)
Where: CAT, catalase; AKP, alkaline phosphatase; SOD, superoxide dismutase; MDA, malondialdehyde; GPX, glutathione peroxidase; LZM, lysozyme; GST, glutathione s-transferase.
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antibiotics that were originally effective against them, leading to

antimicrobial resistance (Dcosta et al., 2011; Foster, 2017). The

introduction of streptomycin, chloramphenicol, and tetracycline in

the late 1940s also led to documented cases of bacterial resistance

(Thuy et al., 2011). The continued and widespread use of

antimicrobials in aquaculture systems creates a breeding ground for

antimicrobial-resistant bacteria, as they face constant selective pressure

(Gao et al., 2012). TheWorldHealth Organization (WHO) has pointed

out the alarming threat of antibiotic resistance to global public health

and the safety of aquatic food sources (Hong et al., 2018).

Administering antimicrobials via water or medicated feed exacerbates

the issue (Zainab et al., 2020). Most antibiotics are poorly absorbed by

fish, leading to their release into the environment through waste. This

issue is exacerbated because fish farm wastewater, containing runoff

water, feces, and uneaten feed, is often discharged directly into natural

aquatic environments (Henriksson et al., 2018). Therefore, a large

number of bacteria are exposed to antibiotics within aquaculture

production systems, such as tanks and ponds, creating ideal

conditions for the evolution of antimicrobial resistance (Xu et al.,

2017). The exchange of plasmids containing resistance traits and the

merging of resistant bacterial populations with various bacterial

communities are also part of antimicrobial resistance (Mathers et al.,

2015). Resistance genes can spread between bacterial populations

through the exchange of plasmids, enabling the formation of
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multidrug-resistant communities. Despite the increasing popularity

of probiotics and prebiotics in aquaculture, a significant lack of

understanding persists regarding their overall effectiveness and

environmental benefits. Most of the current literature focuses on the

effects of probiotics on specific species or environments, resulting in a

limited understanding of their overall applicability in diverse

aquaculture systems.

In addition to conducting comprehensive scientific research,

selecting the appropriate probiotics relies on various technological

considerations. Some of these considerations pertain to logistical

challenges. Producing and distributing probiotics in tightly controlled

laboratory environments poses unique challenges, as does ensuring

their effectiveness on a large industrial scale (Todorov et al., 2024).

Before incorporating these beneficial microbes into aquaculture

practices, it is crucial to consider the key characteristics of probiotics,

including their hydrophobicity, acid tolerance, and sensitivity to

antibiotics. Probiotics are most effective when used as a preventative

measure rather than a cure for illnesses. They are easily incorporated

into low-water-level or stationary systems such as tanks and circulatory

systems. However, in larger bodies of water, such as lakes used for cage

cultures, probiotics may not be as effective. To prevent contamination,

it is important to add probiotics immediately after sterilizing the water

in the culture system, regardless of its size (Vulla, 2024). Probiotics have

gained popularity as an eco-friendly alternative to antibiotics due to
FIGURE 6

The benefits and drawbacks of antibiotic use, particularly when overprescribed.
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their ability to enhance host growth and immunity. The purpose of this

study was to identify and isolate novel Bacillus species from the gut of

hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus

lanceolatus♂) that may be used as probiotics, as reports indicate that

commercially available probiotics are ineffective because the majority

come from non-fish sources (Amoah et al., 2024). Refusing other

medications or chemicals for illness prevention or treatment is essential

once probiotics are introduced into the system. This is because these

substances may not be selective and could potentially destroy the

beneficial bacteria (Lieke et al., 2020).

Current research findings show mixed results on the influence

of prebiotics in fish farming. The effectiveness of prebiotics is

influenced by various factors, including fish species, age, diet,

environment, type of prebiotic used, dosage, and duration. Before

introducing prebiotics, it’s essential to understand the specific

nutritional needs of each type of fish, as improper dosages may

cause harm or prove ineffective. Additionally, considering species

with similar physiological traits to those that have responded

positively to prebiotics in the past may be beneficial. There are

scarce regulations governing the use of prebiotics in aquaculture

feed, as the current regulations only apply to human consumption

and vary between countries (Amillano-Cisneros et al., 2023). Like

other costs incurred in aquaculture, probiotics and prebiotics come

with associated expenses. Farmers can evaluate the financial

viability of incorporating probiotic and prebiotic supplementation

into their operations through cost-benefit analyses (CBAs).

As the popularity of probiotic and prebiotic products continues to

rise due to their numerous health benefits, conducting a CBA becomes
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essential for understanding the financial implications of their

introduction. However, performing a cost-benefit analysis for

probiotics and prebiotics can be complex and requires meticulous

attention to detail to yield reliable and accurate results. One of the

primary challenges lies in assessing the efficacy of probiotics and

prebiotics. While research suggests that these supplements can

enhance immunity and promote gut health, their effects can vary

significantly depending on the specific strain, dosage, and the medical

conditions they aim to address. For a CBA to be effective, it is crucial to

establish a clear cause-and-effect relationship between the consumption

of probiotics and prebiotics and specific health outcomes. This can be

particularly challenging due to individual variability and the presence

of confounding factors. Additionally, the diverse range of health issues

that probiotics target must be considered when evaluating their

economic impact. The prevalence, severity, and financial burden of

various conditions ranging from immune-related disorders to digestive

problems can differ widely, necessitating comprehensive data and

reliable algorithms to accurately estimate potential cost savings and

benefits across this broad spectrum. Another significant challenge in

estimating the financial advantages of probiotics is recognizing their

benefits beyond immediate health effects. Furthermore, the cost

component of a CBA encompasses not only the price of probiotic

and prebiotic products but also expenses related to marketing,

distribution, research, and development. Accurately estimating these

costs can be particularly difficult, especially as the probiotic market

continues to evolve and expand. The obstacles associated with using

probiotics and prebiotics in fish are highlighted in the diagram shown

in Figure 7.
FIGURE 7

The challenges associated with the application of probiotics and prebiotics in fish.
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11 Conclusion

Using probiotics and prebiotics in aquaculture can mitigate the

harmful effects of pathogen outbreaks, decreasing economic losses

from fish deaths, and reducing the need for antibiotics in controlling

bacterial pathogens. This advancement is crucial for promoting the

environmental sustainability of the fish farming industry. The health

benefits of probiotics, prebiotics, or their combination are widely

acknowledged, with strong evidence supporting their effectiveness

against pathogenic or drug-resistant organisms. These probiotics and

prebiotics offer a potential alternative approach to addressing the

growing issue of antimicrobial resistance due to their unique

antagonistic mechanisms against target microorganisms. Changing

the makeup of gut microbes, boosting the host’s immune system, and

improving the efficacy of the epithelial barrier are all essential steps in

warding off pathogens by blocking their colonization and survival

through exclusion and antimicrobial actions. The effectiveness of

biologics as treatments is largely influenced by a combination of

factors, including the disease stage, delivery method, and the host’s

physiological condition. While probiotics and prebiotics hold great

potential in aquaculture, current understanding of their mechanisms,

strain-specific effects, and interactions with host metabolism remains

limited. Thus, ongoing research and cautious application

are essential.
12 Recommendations

Using probiotics and prebiotics demonstrates potential in

minimizing antibiotic dependency. However, to establish them as a

reliable treatment option, further well-planned studies are necessary

to evaluate their efficacy against multidrug-resistant organisms in

real-world disease scenarios. Estimating the true impact of probiotics

can be a challenging task. The impact of different strains, dosages, and

specific conditions on the efficacy of probiotics for gut health and

immunity varies greatly. To conduct an accurate CBA, it is crucial to

establish a direct connection between the use of probiotics and the

resulting health benefits. Individual characteristics and other

variables can influence the outcome and complicate this process.

For a more comprehensive understanding of the relationship between

lipid metabolism and antioxidants in aquatic species, future studies

should focus on key aspects of this relationship. Understanding how

hosts maintain a balance of beneficial microbial strains and lipid

metabolism is crucial, despite obstacles such as pollution and climate

change. Moreover, scientists should investigate the molecular

mechanisms underlying the selection and preservation of bacterial

types that facilitate specific lipid processing and overall well-being.

Applying metabolomics methods to aquatic organisms will play a

crucial role in connecting lipid metabolism pathways, microbial

composition, and overall well-being. Future studies should

investigate molecular mechanisms underlying gut microbiota

modulation and lipid metabolism in fish.
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F., et al. (2024). Secondary metabolites with antimicrobial activity produced by
thermophilic bacteria from a high-altitude hydrothermal system. Front. Microbiol.
15. doi: 10.3389/fmicb.2024.1477458

Pepi, M., and Focardi, S. (2021). Antibiotic-resistant bacteria in aquaculture and
climate change: A challenge for health in the mediterranean area. Int. J. Environ. Res.
Public Health 18 (11), 1–31. doi: 10.3390/ijerph18115723

Peruzzolo, M., Ceni, G. C., Junges, A., Zeni, J., Cansian, R. L., and Backes, G. T.
(2025). Probiotics: Health benefits, microencapsulation, and viability, combination
with natural compounds, and applications in foods. Food Biosci. 66, 106253.
doi: 10.1016/j.fbio.2025.106253

Picchietti, S., Mazzini, M., Taddei, A. R., Renna, R., Fausto, A. M., Mulero, V., et al.
(2007). Effects of administration of probiotic strains on GALT of larval gilthead
seabream: Immunohistochemical and ultrastructural studies. Fish Shellfish Immunol.
22, 57–67. doi: 10.1016/j.fsi.2006.03.009

Politis, S. N., Benini, E., Miest, J. J., Engrola, S., Sørensen, S. R., Syropoulou, E., et al.
(2023). First assessment of prebiotics, probiotics, and synbiotics affecting survival,
growth, and gene expression of european eel (Anguilla Anguilla) larvae. Aquac. Res.
2023, 1–13. doi: 10.1155/2023/1260967

Raheem, A., Liang, L., Zhang, G., and Cui, S (2021). Modulatory Effects of Probiotics
During Pathogenic Infections With Emphasis on Immune Regulation. Front. Immunol.
12, 1–32. doi: 10.3389/fimmu.2021.616713

Rasika, D. M., Vidanarachchi, J. K., Rocha, R. S., Balthazar, C. F., Cruz, A. G.,
Sant’Ana, A. S., et al. (2021). Plant-based milk substitutes as emerging probiotic
carriers. Curr. Opin. Food Sci. 38, 8–20. doi: 10.1016/j.cofs.2020.10.025

Ringø, E., Harikrishnan, R., Soltani, M., and Ghosh, K. (2022). The effect of gut
microbiota and probiotics on metabolism in fish and shrimp. Animals 12, 1–13.
doi: 10.3390/ani12213016

Rodklongtan, A., Nitisinprasert, S., and Chitprasert, P. (2022). Antioxidant activity
and the survival-enhancing effect of ascorbic acid on Limosilactobacillus reuteri KUB-
AC5 microencapsulated with lactose by spray drying. Lwt 164, 113645. doi: 10.1016/
j.lwt.2022.113645

Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman,
M., et al. (2022). Probiotics, prebiotics and synbiotics improved the functionality of
aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish.
Fish Shellfish Immunol. 120, 569–589. doi: 10.1016/j.fsi.2021.12.037
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