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OptWake-YOLO: a lightweight
and efficient ship wake detection
model based on optical remote
sensing images
Runxi Qiu, Nan Bi* and Chaoyue Yin

School of Electrical Engineering, Northeast Electric Power University, Jilin, China
Introduction: Ship wakes exhibit more distinctive characteristics than vessels

themselves, making wake detection more feasible than direct ship detection.

However, challenges persist due to sea surface interference, meteorological

conditions, and coastal structures, while practical applications demand

lightweight models with fast detection speeds.

Methods:We propose OptWake-YOLO, a lightweight ship wake detectionmodel

with three key innovations: A RepConv-based RCEA module in the Backbone

combining efficient layer aggregation with reparameterization to enhance

feature extraction. An Adaptive Dynamic Feature Fusion Network (ADFFN) in

the Neck integrating channel attention with Dynamic Upsampling (Dysample). A

Shared Lightweight Object Detection Head (SLODH) using parameter sharing

and Group Normalization.

Results: Experiments on the SWIM dataset show OptWake-YOLO improves

mAP50 by 1.5% (to 93.2%) and mAP50-95 by 2.9% (to 66.5%) compared to

YOLOv11n, while reducing parameters by 40.7% (to 1.6M) and computation by

25.8% (to 4.9 GFLOPs), maintaining 303 FPS speed.

Discussion: Themodel demonstrates superior performance in complexmaritime

conditions through: RCEA's multi-branch feature extraction. ADFFN's adaptive

multi-scale fusion. SLODH's efficient detection architecture. Ablation studies

confirm each component's contribution to balancing accuracy and efficiency for

real-time wake detection.
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1 Introduction

Maritime safety monitoring plays a crucial strategic role in

national defense security and marine resource protection. Although

modern Automatic Identification Systems (AIS) have been widely

applied to vessel tracking, their mandatory use is limited to large

vessels exceeding 300 tons. This limitation creates a significant

vulnerability as smaller vessels can intentionally disable their AIS

transmitters to evade monitoring, providing opportunities for illicit

activities such as illegal fishing, smuggling operations, and

environmental pollution. These security gaps have prompted

researchers to develop more reliable remote sensing detection

technologies to complement the limitations of AIS systems.

With the rapid advancement of remote sensing technology, ship

detection based on satellite imagery has made remarkable progress

(IMO, 2024). However, when detection targets are small vessels,

direct identification of ship hulls often faces tremendous challenges

due to sensor resolution constraints. In contrast, wakes generated by

moving vessels can extend for dozens of kilometers (Pichel et al.,

2004), presenting more prominent features in remote sensing images

and providing critical information such as heading and speed.

Consequently, wake detection offers greater feasibility and practical

value compared to direct vessel detection (Mook and Jin, 2019).

Currently, wake image acquisition primarily relies on two

technologies: Synthetic Aperture Radar (SAR) and optical remote

sensing. Although SAR technology emerged earlier and holds a

dominant position (Vesecky and Stewart, 1982), optical remote

sensing is gradually becoming a research hotspot (Xue et al., 2021)

due to its higher spatial resolution and non-coherent imaging

characteristics, which enable clearer capture of wake texture

details. Nevertheless, optical remote sensing wake detection

confronts multiple challenges, including sea surface background

interference, meteorological condition variations, and coastal

structure influences, while practical applications also impose

higher requirements for model lightweighting design and real-

time performance.

Traditional approaches to ship wake detection have relied on

transformations such as Radon and Hough, which are applied to

images to enhance linear features. However, due to atmospheric and

sea surface disturbances and clutter, wakes in complex sea conditions

don’t show as clearly in satellite imagery. Therefore, these methods

are typically only suitable for wakes centered around vessels and

under low sea state conditions, making them impractical for large-

scale applications (Mazzeo et al., 2024). As the development of deep

learning techniques continues to flourish, Convolutional Neural

Networks (CNNs) have made breakthrough progress in image

feature extraction and object detection, leading to increasing

attention on applying deep learning-based detection models to

solve ship wake detection problems. Among numerous object

detection algorithms, the YOLO series has garnered significant

attention for its balanced performance in accuracy and real-time

capability. The recently released YOLOv11 model supports multi-

scale feature fusion, achieving high-precision detection at relatively

low computational cost, while its modular design facilitates

customized optimization for specific application scenarios.
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To address the aforementioned challenges, a lightweight ship

wake detection model, OptWake-YOLO, is put forward in this

paper based on YOLOv11n. The main contributions are as follows:
1. Design of an efficient RCEA module in the Backbone, the

employment of a multi-branch structure in conjunction

with reparameterization technology has been demonstrated

to improve the capability of feature extraction whilst

concomitantly reducing the parameter count;

2. Implementation of a newly designed feature fusion network

ADFFN in the model’s Neck, combining channel attention

mechanisms with Dynamic Upsampling technology to

accomplish the efficient fusion of multi-scale features;

3. Redesign of a more lightweight detection head SLODH using

Group Normalization operations and shared convolutions,

significantly reducing model complexity through parameter

sharing and group normalization techniques;

4. A substantial series of experiments on the public SWIM

dataset has been conducted, the results of which

demonstrate that, in comparison with other state-of-the-

art algorithms, the proposed method maintains excellent

detection accuracy while attaining superior lightweight

functionality in ship wake detection missions. Among

many models, the WakeNet model (Xue et al., 2022)

pioneered by Xue et al. has made a significant

breakthrough in CNN-based ship wake detection.

Specifically, WakeNet improves detection accuracy by

extracting wake features more efficiently mainly through

the use of the FcaNet backbone network and the newly

designed multiscale attention module (MSAM). The

OptWake-YOLO model proposed in this paper uses the

reparameterization technique and parameter sharing

mechanism to achieve light weight while maintaining

high detection accuracy, striking a balance between the

accuracy and real-time requirements necessary for

maritime monitoring applications.
The rest of the paper is arranged as follows: Section 2 gives a full

overview of the related work; Section 3 provides detailed elaboration

on the architecture of the proposed OptWake-YOLO model;

Section 4 presents the experimental setup and results analysis;

and finally; Section 5 is the conclusion of the paper, with a

discussion of the future directions for research.
2 Related work

Ship wakes detectable in remote sensing images can be classified

into four primary categories (Pichel et al., 2004): Kelvin wakes,

turbulent wakes, internal wave wakes, and narrow V-shaped wakes.

Among these, internal wave wakes and narrow V-shaped wakes are

only observable within a limited range of specific environmental

circumstances and imaging methods (Zilman et al., 2015). In

general research, the more commonly observed Kelvin wakes and

turbulent wakes are typically used as detection targets, with
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structures as shown in Figure 1. Kelvin wakes and turbulent wakes

exhibit characteristic features in both SAR and optical images. In

the context of SAR images, Kelvin arms appear as bright outer lines

while turbulent wakes manifest as dark central lines. However,

owing to the coherent imaging nature and commonly lower spatial

resolution of SAR, these two types of wakes display relatively

limited textural details in SAR imagery. In contrast, optical

remote sensing imaging offers higher resolution and non-coherent

characteristics, allowing wake features to exhibit more distinct

textural details in most optical images as long as the wake energy

exceeds that of sea clutter (Liu and Deng, 2018). From this

perspective, the phenomenon of wakes in optical remote sensing

images presents more extractable and interpretable features

compared to those in SAR images. Nevertheless, since the

development of wake detection techniques in optical remote

sensing is relatively recent, the majority of extant wake detection

algorithms have been designed principally for SAR imagery.
2.1 Traditional wake detection methods

Traditional ship wake detection methods primarily leverage the

linear characteristics of wakes, simplifying the detection problem to

the recognition of linear features in remote sensing images (Liu

et al., 2021). Common linear detection methods include Radon

transformation (Radon, 1986) and Hough transformation (Hough,

1962). Taking RT as an example, ship wakes in SAR remote sensing

images appear either brighter or darker than the surrounding sea

surface. After Radon transformation, these linear features are

highlighted in the Radon domain, manifesting as X-shaped

features as shown in Figure 2. Specific wake components are then

extracted through threshold setting (Graziano, 2020).
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Despite the linear characteristics of ship wakes, the presence of

atmospheric and sea surface phenomena, such as clutter, in satellite

imagery hinders the visibility of wakes as uniform lines of brightness.

Consequently, the aforementioned methods may result in lower

detection accuracy. Although some research has attempted to

improve detection performance through image enhancement

techniques (Karakus et al., 2020), these methods still struggle to

resolve false detection issues caused by other linear sea surface

phenomena (such as waves), limiting their practical application to

small-scale images centered around vessels and low sea state

environments. With the development of high-quality spaceborne

remote sensing datasets, the research focus has gradually shifted

toward solutions based on deep neural networks.
2.2 Deep learning methods for ship wake
detection

Object detection is the process of detecting one or more instances of

specific object categories in images or videos. This task is implemented

based on various object detection models, more specifically, object

detectors based on deep learning (Zilman et al., 2015). Deep learning

object detection models typically comprise three components:

Backbone, Neck, and Detection head (Kateb et al, 2021). Depending

on whether candidate regions need to be generated, object detection

models can be one-stage or two-stage (Li et al., 2022). Two-stagemodels,

e.g. the R-CNN suite (Girshick et al., 2014; Girshick, 2015; Ren et al.,

2017) first generate candidate regions before conducting classification

and regression, achieving higher accuracy but slower inference speed.

One-stage models like Single Shot multibox Detector (SSD) (Liu et al.,

2016) and the You Only Look Once (YOLO) series (Ge et al., 2021;

Bochkovskiy et al., 2004; Redmon et al., 2016; Redmon and Farhadi,
FIGURE 1

Schematic diagram of the elementary structure of a ship’s wake.
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2017; Redmon and Farhadi, 2018) directly perform classification and

regression on images, sacrificing some accuracy for better detection.

In SAR image ship wake detection, Del Prete et al (Del Prete

et al., 2021). were the first to put forward a deep learning method

specifically for ship wake detection, validating the performance of

Cascade Mask R-CNN (Cai and Vasconcelos, 2018) on their self-

built SSWD dataset. Ding et al (Ding et al., 2023). designed a

lightweight YOLO variant incorporating attention mechanisms for

military-embedded devices. Wang et al (Wang et al., 2022).

combined electromagnetic scattering models with YOLOv5 to

achieve non-linear wake detection. Xu and Wang (2024)

introduced the OpenSARWake dataset and developed a dedicated

SWNet detector, utilizing a ConvNeXt-T (Liu et al., 2022) backbone

and a specially designed HR-FPN* neck structure.

In the case of optical image wake detection, Xue et al (Xue et al.,

2022). first developed an end-to-end CNN-based detector called

WakeNet, with innovations including an additional wake feature

regression head, a ResNet backbone integrated with Fca modules,

and a redesigned FPN with multi-scale attention modules. They also

constructed the SWIM dataset containing 11,600 images. Esposito

et al (Esposito et al., 2022). applied Mask R-CNN (He et al., 2020) to

multi-band wake detection. Liu and Zhao et al (Liu and Zhao,

2024). employed GoogLeNet (Szegedy et al., 2015) with inception

modules to transform wake detection into a classification problem,

addressing detection challenges in large, high-resolution images.

Current studies on ship wake detection based on optical remote

sensing images have focused on improving feature extraction

capabilities but have not prioritized model lightweighting.

Moreover, these improvements may lead to extended detection

times, failing to meet real-time requirements. Addressing this issue,

this paper proposes the lightweight OptWake-YOLO model, which
Frontiers in Marine Science 04
significantly reduces computational complexity while ensuring

detection accuracy, achieving efficient and accurate wake detection.
2.3 YOLOv11n detection model

YOLOv11 is a new generation of universal object detection

model proposed by Ultralytics. This model supports multi-scale

feature fusion, achieving high-precision detection tasks at relatively

low computational cost, while its high rate of detection also makes it

appropriate for real-time detection scenarios. YOLOv11 continues

the efficient detection framework optimization design of the YOLO

series. The Backbone employs C3k2 as its core module, adopting

hierarchical progressive convolution and cross-stage modules to

gradually extract multi-scale features. The Neck employs a bi-

directional feature fusion strategy to maximally preserve detailed

information. The Detection head outputs prediction results from

three scales, adapting to detection requirements for targets of

different sizes. Its modular structural design not only provides

flexible scaling capabilities but also supports rapid adaptation to

different hardware platforms. Therefore, YOLOv11 serves as a

baseline model for further development to meet practical

requirements across numerous different fields in both industry

and academia.
3 Proposed network

To meet the practical requirements of ship wake detection in

optical remote sensing imagery, we propose the OptWake-YOLO

model. This model systematically optimizes the YOLOv11n
FIGURE 2

Processing effects of Radon transformation on normal sea surfaces and sea surfaces with ship wakes.
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architecture, focusing innovation on three key aspects: feature

extraction capability, multi-scale feature fusion efficiency, and

model lightweighting. As shown in Figure 3, the OptWake-YOLO

employs the newly designed RCEA module in the backbone, which

combines reparameterization technology with multi-branch

aggregation mechanisms to enhance feature representation

capabilities; the neck structure utilizes the newly designed

ADFFN network, which integrates channel attention mechanisms

and Dynamic Upsampling (Dysample) operations to achieve

adaptive channel adjustment and efficient fusion across different

scales; and we redesign the light-weight detection head SLODH,

significantly reducing model parameter count and computational

complexity through parameter sharing and group normalization

techniques. These innovative designs collectively constitute an end-

to-end lightweight detection framework. The following subsections

will elaborate on the design principles, mathematical expressions,

and functional mechanisms of each improved module.
3.1 RCEA

In ship wake detection tasks, the traditional YOLOv11n

architecture employs the C3k2 module as its primary feature
Frontiers in Marine Science 05
extraction unit. However, the C3k2 module exhibits significant

limitations when processing slender, low-contrast targets like ship

wakes. First, the C3k2 module’s feature extraction capability is

relatively limited, insufficient for capturing the subtle texture

features characteristic of ship wakes; second, simply reducing

channel numbers during model lightweighting leads to a dramatic

decline in feature representation capability. This paper puts forward

the Rep Cheap Operation Efficient Aggregation (RCEA) feature

extraction module to overcome these problems, which effectively

integrates the advantages of the RepConv (Ding et al., 2021)

reparameterization module, Cheap operation concept, and multi-

branch efficient aggregation connections. This module not only

decreases the number of parameters and computational complexity

but also improves the ability to extract features. The RCEA module

employs channel separation and reorganization strategies,

complemented by residual learning and feature reuse

mechanisms, not only improving the accuracy of detecting ship

wakes but also reducing model parameters and computational

overhead. The module structure is illustrated in Figure 4a.

The design of the RCEA module is based on fine control and

optimized allocation of feature flow. It processes the input feature

map X_ input by first performing channel transformation through a

1×1 convolution, then separating it into F1 and F2, where the second
FIGURE 3

OptWake-YOLO architecture diagram.
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path feature F2 is processed through RepConv operations. RepConv

combines identity mapping and 3×3 convolution, using

reparameterization operations to convert the multi-branch

convolution structure during the training phase into a single 3×3

convolution operation, improving computational efficiency.

The reparameterization operation of RepConv is executed in

two steps. During the training phase, parameters are first

individually fused for each branch, and then during the inference

phase, the branch fusion results are transformed into an equivalent

3×3 convolution operation. Figure 4b visualizes the above workflow.

During training, the input images pass through three branches: 3×3

convolution followed by batch normalization, 1×1 convolution

followed by batch normalization, and batch normalization alone.

The computation process for convolution and batch normalization

is as followed as Equation 1:

B(F2_ input) = g ·
(W(n)

*F2_ input−m)ffiffiffiffiffiffiffiffi
s2+e

p + b = W 0(n)
*F2_ input + b 0(n) (1)

Where g represents the scaling factor, b the bias term, m the

mean value, s 2 the variance, e the constant, and W(n) denotes

convolution operation with an n×n kernel, F2_ input is the input

feature map, andW 0(n), b 0(n) are the fused convolution weights and

bias after reparameterization. The fusion result of the three

branches is as followed as Equation 2:
Frontiers in Marine Science 06
B(F2_ input) = B1(F2_ input) + B2(F2_ input) + B3(F2_ input)

= (W 0(3) +W 0(1) +W 0(0) )*F2_ input + (b 0(3) +b 0(1) +b 0(0) )

= Wfused
*F2_ input + b 0 fused

(2)

Through these calculations, the three branches are fused into a

new single convolution operation. This new single convolution can

equivalently represent the output of the multi-branch structure

during training, thereby directly utilizing this equivalent

convolution layer for calculation during inference, reducing

computational load and improving inference speed while

ensuring feature extraction accuracy.

To further refine the features Frep generated by RepConv, (n-1)

cascaded 3×3 convolutions are employed to extract additional

features as Equation 3:

Fm,i = W(3)
*(Fm,i−1), i ∈ 1, 2,…, n − 1f g (3)

Where Fm,0 = Frep.

Finally, the channels of the final features are reorganised using

pointwise convolution (PWConv) to form Fcv4. This step embodies

the idea of ‘Cheap Operations’ in RCEA. The core idea of cheap

operations is to generate additional feature maps with as little

computation as possible. Low computation and parameter count

are the key features. PWConv is a 1×1 convolutional operation with
FIGURE 4

(a) RCEA structure diagram, (b) RepConv structure diagram.
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the same input and output channels. Compared to a normal

convolutional operation (K×K), PWConv is only 1/K. Reducing

the computational complexity while ensuring that Fcv4 maintains

the same feature dimensions as the other branching features

(F1, Frep, Fm,i) for subsequent concatenation operations. The goal

of providing feature enhancement with minimal computational

overhead and maintaining overall efficiency is achieved. Finally,

all features are fused and output dimensions are adjusted by channel

concatenation and 1×1 convolution as shown as Equation 4:

Y = W(1)
*(Concat½F1, Frep, Fm,i, Fcv4�)i ∈ 1, 2,…, n − 1f g (4)

The key innovation of the feature extraction module proposed

in this paper lies in its use of reparameterization technology and the

cheap operation concept. Reparameterization technology allows the

use of multi-branch structures during training while transforming

them into a single efficient structure during inference through

equivalent transformation. Combined with the multi-branch

efficient aggregation connection mechanism, RCEA can efficiently

extract and transmit useful feature information at each scale level.

This module successfully addresses the limitations of traditional

C3k2 modules in lightweight ship wake detection, achieving an

optimized balance between feature extraction capability and

computational efficiency.
3.2 ADFFN

Currently, feature fusion networks in most object detection

algorithms typically adopt simple feature pyramid structures (FPN)

or their variants, such as PANet (Liu et al., 2018) and BiFPN (Tan

et al., 2020). Although these methods improve detection

performance to some extent, they still have obvious limitations

when processing targets like ship wakes that exhibit high

complexity, scale variation, and low-contrast features. The main

problems with traditional feature fusion networks include

insufficient information flow transmission, limited feature

representation capability, and inadequate feature extraction

capability after lightweighting. To solve these problems, this paper

puts forward the Adaptive Dynamic Feature Fusion Network

(ADFFN), which employs channel attention mechanisms and

dynamic learnable upsampling strategies to adaptively adjust

feature representations according to input content. This

significantly enhances feature expression capability and scale

transformation accuracy while maintaining low computational

cost and achieving effective fusion of features at different levels,

effectively solving the problem of insufficient feature fusion in

previous lightweight networks.

The ADFFN network is an improved Hierarchical Scale-based

Feature Pyramid Network (Chen et al., 2024) (HS-FPN), with

Dynamic Upampling (Liu et al., 2023) (Dysample) as its core,

combined with channel attention mechanisms to achieve efficient

feature fusion. Compared to traditional FPN structures, the ADFFN

network adopts a more flexible feature fusion strategy. Traditional

FPNs typically employ simple feature concatenation followed by

convolution processing, while the ADFFN network uses channel
Frontiers in Marine Science 07
attention mechanisms to modulate the feature weighting at different

levels and dynamic learnable upsampling to precisely control the

scale transformation process of features. This design allows the

network to make more effective use of complementary information

between multi-scale features, improving the model’s ability to detect

complex targets such as ship wakes. The workflow is shown

in Figure 5.

The ADFFN network consists mainly of two parts: feature

selection and feature fusion. In the feature selection part, features

output by the Backbone serve as input, are enhanced through

channel attention mechanisms, multiplied with the original input

features, and then undergo channel transformation using 1×1

convolution to facilitate subsequent feature fusion. During the

process of feature fusion, high-level and low-level features are

synergistically integrated by the selective feature fusion (SFF)

mechanism modified by Dysample. The features produced by this

fusion contain rich semantic content, aiding in the detection of

subtle features in ship wake images.

Feature Selection: In the feature selection module, the Channel

Attention(CA) mechanism is a core component that can adaptively

adjust the importance of feature channels, and eliminate irrelevant

channel noise while enhancing the discriminative power of channel

features. The workflow is illustrated in Figure 6.

Given the input feature map XCA ∈ RC�H�W , where C, H, and

W represent the number of channels, height, and width respectively,

the CA module first calculates each channel’s average and

maximum values through global average and maximum pooling,

as shown in the Equations 5, 6:

Favg =
1

H �Wo
H

i=1
o
W

j=1
XCAc,i,j

∈ RC�1�1 (5)

Fmax = max
i,j

XCAc,i,j ∈ RC�1�1 (6)

Where XCAc, i, j represents the value of feature map XCA ∈
RC�H�W at position (i,j) in channel C. Subsequently, these two

features are processed through a multi-layer perceptron (MLP)

consisting of two 1×1 convolutions and a ReLU activation function.

The features processed by MLP are F
0
avg and F

0
max , respectively. The

two processed features are then added together and passed through

a Sigmoid function to generate channel attention weights. Finally,

the channel attention weights are multiplied with the original

feature map to obtain an enhanced feature representation as

shown as Equation 7:

X0
en = s (F

0
avg + F

0
max)⊗XCA (7)

Where s represents the Sigmoid activation function and ⊗
represents element-wise multiplication by channel. X0

en is the

enhanced feature.

The CA module extracts the most representative information

from each channel through a combination of pooling operations

while minimizing information loss. The MLP structure achieves

lightweight design while maximizing the preservation of spatial

information through cross-channel feature integration, non-linear

enhancement, and parameter-sharing mechanisms. Through these
frontiersin.org
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operations, the feature selection component of ADFFN can

adaptively learn the importance of each channel, effectively

enhancing discriminative channel features without introducing

excessive computational overhead, and achieving screening of

feature maps at different scales.

Feature Fusion: To more effectively fuse features from different

levels, the ADFFN network adopts a feature fusion strategy called

Selective Feature Fusion (SFF). Unlike traditional simple feature

concatenation or additive fusion, SFF combines multiplicative and

additive operations, high-level features are used as weights to filter

low-level features to extract important semantic information that is

embedded in them, better capturing complementary information

between different feature levels. Simultaneously, it employs the

dynamic learnable upsampling Dysample module to complete

upsampling operations. This module can adaptively learn

sampling positions and weights according to the content of input

features. The SFF workflow is illustrated in Figure 7.

For a given high-level feature Fhigh ∈ RC�H�W , the upsampling

operation is first completed through the Dysample module, and

then the CA module converts the high-level feature into

corresponding attention weights, filtering dimensionally

consistent low-level features using multiplication operations.

Finally, the filtered low-level feature Flow ∈ RC�H�W is additively

fused with the high-level feature to form the final fused feature. The

advantage of SFF in feature fusion lies in that multiplication

operations can emphasize areas that are commonly important in

features from both levels, while addition operations can maximally
Frontiers in Marine Science 08
preserve the information of the original features, preventing the loss

of useful information.

Traditional upsampling methods such as nearest neighbor or

bilinear interpolation typically adopt fixed interpolation weights,

making it difficult to adaptively adjust according to the content of

input features, which may result in missing critical details when

detecting ship wakes with complex structures. To solve this

problem, SFF employs the Dynamic Upsampling (DySample)

module, which can adaptively learn sampling positions and

weights according to input features. The DySample workflow is

illustrated in Figure 8.

Dysample achieves dynamic adaptive feature resampling by

learning the offset field in feature space. According to geometric

information modeling, we revisit the essence of upsampling as point

sampling. The formation process of the sampling set is shown in

Figure 8. The input feature F generates sampling offsets DF through a

1×1 convolution layer. To increase the flexibility of the offsets, we further

generate per-point dynamic range factors through linear projection of

the input features. The dynamic range factors are formed by combining

a sigmoid activation function with a static factor of 0.5. The generation

process of offset O is shown as Equations 8, 9:

DF = Conv1� 1(F) (8)

O = DF⊗ 0:5s (DF) (9)

The above equations s represent the sigmoid activation

function, and 0.5 is used to limit the offset magnitude, preventing
FIGURE 5

ADFFN structure diagram.
FIGURE 6

Channel Attention (CA) structure diagram.
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sampling points from deviating too far and causing information

distortion. In addition to dynamically generated offsets, the

sampling set also requires an original grid G as basic positioning

to make sure that the upsampling process is fundamentally stable.

The original grid G is a two-dimensional initial position field,

serving as the starting reference coordinates for sampling. The

offset O is processed through pixel shuffle to increase spatial

resolution, then added to the original grid G to obtain the

sampling set S. Finally, Dysample applies the grid sample module

to complete the upsampling operation, obtaining the sampled

feature F0 as Equation 10:
Frontiers in Marine Science 09
F0 = grid _ sample(F, S) (10)

The ADFFN feature fusion network significantly enhances the

performance of the YOLOv11n lightweight network in ship wake

detection tasks through the use of channel attention mechanisms,

dynamic learnable sampling, and efficient feature fusion strategies.

Compared to traditional feature fusion networks, the ADFFN

network significantly enhances discriminative channel features

through channel attention mechanisms, improving the ability of

the model to detect complicated targets (e.g. ship wakes).
FIGURE 7

Selective Feature Fusion (SFF) structure diagram.
FIGURE 8

DySample (Dynamic Upsampling) structure diagram.
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Furthermore, dynamic learnable sampling Dysample can adaptively

adjust sampling positions and weights according to input features,

preserving key details of ship wakes.
3.3 SLODH

Traditional object detection heads exhibit obvious limitations

when addressing ship wake detection in specialized scenarios. First,

standard Oriented Bounding Box (OBB) detection heads typically

contain numerous convolution layers and parameters, resulting in a

heavy computational burden and slow inference speed, making it

hard to satisfy the demands of real-time detection. Second, as a

special target with high directionality and slender structure, ship

wakes are difficult for traditional detection heads to effectively

capture in terms of angular features, thereby affecting detection

accuracy. Based on these issues, this paper designs a lightweight

detection head named Shared Lightweight Orientation-aware

Detection Head (SLODH), which significantly reduces model

parameter count while improving perception capability for

directional features of ship wakes through parameter sharing

mechanisms and lightweight convolution design, achieving more

efficient detection capability. Its workflow is illustrated in Figure 9.

The core concept of the SLODH detection head is to

significantly reduce computational complexity while maintaining

detection accuracy through the use of parameter-sharing
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mechanisms and lightweight structures. Compared to traditional

OBB detection heads, the main innovations of SLODH proposed in

this paper are: first, designing independent feature transformation

convolution modules for each feature layer (P3, P4, P5) at the multi-

scale feature input end, mapping input features to feature spaces of

the same dimension, establishing the foundation for subsequent

shared convolution; then adopting a convolution block

(Share_Conv) shared among multiple feature layers, where all

feature layers are mapped to the same dimension through their

respective feature transformations and then commonly utilize this

module for further processing. This operation significantly reduces

the model’s parameter count. This shared convolution consists of a

Depth Wise convolution (DWConv) and a standard convolution in

series as shown as Equation 11:

ShareConv(x) = Conv _GN(DWConv _GN(x)) (11)

This operation both reduces computational complexity and

ensures feature extraction capability. The normalization operation

in the shared convolution employs group normalization (Wu and

He, 2020) (GN). GN accelerates convergence, stabilizes gradient

propagation, and provides regularization to prevent overfitting

during the training process. When the input dimension is

represented as x ∈ RN�C�H�W , where N is the batch size, C is the

number of channels, and H×W represents height and width, GN

requires dividing the input channel number C into G groups before

calculation, computing statistics for all samples and spatial
FIGURE 9

SLODH structure diagram.
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positions within each group g. The calculation process is as followed

as Equations 12, 13:

mg =
1

(C=G) · H · W  
 o
c∈ɡ
o
H

h=1
o
W

w=1
xn,c,h,w (12)

s 2
ɡ =

1
(C=G) · H · W o

c∈ɡ
o
H

h=1
o
W

w=1
(xn,c,h,w − mɡ)

2 (13)

The above equations mg represent the mean value and s 2
g the

variance. The normalized output is shown as Equation 14:

x
∧
n,c,h,w =

xn,c,h,w − mgffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
g + e

q (14)

From the above calculation process, it is evident that GN

performs grouping within feature channels and then conducts

normalization calculations within each group. This unique

calculation method reduces the model’s dependence on batch size

while improving training stability and generalization ability.

For the selection of the number of groups G, this paper

integrates the number of input channels C and the seminal group

normalization study of Wu and He (2020).

According to the overall structure of the model, the number of

feature channels input to SLODH after ADFFN feature fusion

operation is 64. In the seminal Group Normalization (GN) study

(Wu and He, 2020), Wu and He conducted a comprehensive analysis

of ImageNet classification, COCO object detection and semantic

segmentation, and finally proved that a group containing 8-32

channels can provide the best performance for vision tasks. When

G=8, the number of channels per group for SLODH, C/G=64/8 = 8, is

just within the above optimal performance range. This case achieves

both the highest computational efficiency and the best feature diversity,

without the increased thread overhead caused by too large a group size

or the statistical instability caused by too small a group size. In addition,

G=8 also meets the hardware suitability: 8 is an integer factor of GPU

warp (32 threads), which can minimize thread waste.

Thus G=8 satisfies the theoretically optimal configuration

established in the pioneering research on Group Normalization,

and achieves an optimal balance between the statistical stability of

multiscale features and the computational efficiency of hardware.

In summary, the SLODH lightweight detection head proposed

in this paper effectively addresses the problems of high

computational complexity and parameter redundancy in

traditional OBB detection heads for ship wake detection through

the use of feature transformation layers, shared convolution

structures, and lightweight group normalization.
4 Experiment

To validate the effectiveness of the newly designed OptWake-

YOLO model, we conducted extensive experiments on the public

SWIM dataset. Through comparisons between OptWake-YOLO

and other network models, we have demonstrated the effectiveness

of our proposed model.
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4.1 Experimental environment and dataset

ShipWake ImageryMass (SWIM) dataset is a large-scale maritime

object detection dataset. The creators of this dataset collected images

from Google Earth of coastal areas around the world taken between

2009 and 2021. The detection targets include various ship wakes

ranging from yachts to large cargo ships, with backgrounds including

open seas, harbors, straits, and canals to ensure background variety.

The spatial resolution of the images varies from 2.5 to 0.5meters, with a

uniform pixel count of 768 x 768. The dataset comprises a total of

11,600 images providing up to 15,356 precisely annotated wake

instances. The dataset was divided into a 6:2:2 ratio, with the

training set containing 6,960 images, while the validation and test

sets containing 2,320 images each. Figure 10 illustrates the essential

condition of the dataset. Figure 10a demonstrates that the dataset

contains only one type of target ship wake; Figure 10b represents the

size and quantity information of target boxes, reflecting the size

distribution of target instances in each image; Figure 10c shows the

position of target box centers relative to the entire image, indicating

that target instances are relatively central in the images; Figure 10d

represents the aspect ratio of target boxes relative to the image, showing

that the box sizes are moderate, with few extreme cases of oversized or

undersized boxes.

All experiments were conducted on the Ubuntu 22.04 operating

system with the deep learning framework PyTorch 2.1.0, Python 3.10

as the programming language, CUDA version 12.2, Intel Xeon Gold

6342 CPU, and NVIDIA GeForce RTX 3090 GPU. Hyperparameter

settings were as follows: initial learning rate of 0.01, weight decay co-

efficient of 0.0005, SGD optimizer, input image size of 768×768 pixels,

100 epochs, batch size of 16, with remaining parameters set to

YOLOv11n default values. The configuration is shown in Table 1.

While our evaluation focuses on the SWIM dataset due to its

comprehensive coverage and public availability, we acknowledge this

represents a limitation in terms of generalizability assessment across

diverse optical remote sensing scenarios.
4.2 Evaluation metrics

To accurately evaluate the performance improvements of the

new model, metrics such as mean Average Precision (mAP), Recall

(R), Precision (P), Frames Per Second (FPS), parameter count

(Params), and computational complexity (GFLOPs) were used to

quantitatively validate the effectiveness of the proposed network.

The metrics are defined as Equations 15–18:

Precision = TP
TP+FP (15)

Recall = TP
TP+FN (16)

AP =
Z 1

0
P(R)dR (17)

FPS = FrameNum
ElapsedTime (18)
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In the above equations, TP, FP, and FN represent correctly

detected targets, incorrectly detected targets, and targets that failed

to be detected, respectively. A ship wake is considered correctly

detected if the Intersection over Union (IoU) is greater than 0.5. P

(R) represents the precision-recall curve.
4.3 Ablation experiments

To evaluate the impact of each improved module on the model’s

detection performance, we conducted a series of ablation

experiments on the SWIM dataset. The experiments used

YOLOv11 as the baseline network, separately adding the RCEA,

ADFFN, and SLODH modules and their different combinations to

verify the effectiveness of their improvements. The results are

shown in Table 2, where the activation of a specific module or

modules is indicated √. To better visualize the effects of model

improvements, heatmaps are used to intuitively represent the

performance before and after improvements, as shown in Figure 11.
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As shown in Table 2, the baseline YOLOv11n achieves 91.7%

mAP50 and 63.6%mAP50-95 with 2.7M parameters and 6.6 GFLOPs.

Then we assessed the improvement of each module added individually

to the baseline model. From the results, each module improves the

detection performance, among which the RCEA accuracy is the most

obvious, precisely because of its re-parameterization and multi-branch

aggregation which effectively enhances the feature extraction capability.

And ADFFN’s selective feature fusion mechanism strategy eliminates

redundant computation and significantly improves efficiency.

In the case of a two-module combination, the combination of

RCEA+ADFFN exhibits an interesting performance pattern: mAP50

rises to 92.7% (+1.0%), but mAP50-95 falls to 63.4% (-0.2%). This

phenomenon occurs due to feature over-enhancement, with the

reparameterization of RCEA amplifying certain channels, while the

attentional mechanism of ADFFN creates a positive feedback loop that

overemphasizes strong features while suppressing weaker, but

important details. This leads to an increase in overall detection

capability (higher mAP50 values), but a decrease in localization

accuracy (lower mAP50-95 values) at tighter IoU thresholds. For the
FIGURE 10

SWIM dataset distribution diagram. (a) Number of wake instances; (b) Box size and quantity; (c) Center point position relative to the entire image;
(d) Target width-height ratio rela-tive to the entire image.
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other two combination cases, RCEA+SLODH and ADFFN+SLODH,

the performance improvement is not significant. Compared with the

baseline model, the mAP50 of ADFFN+SLODH only improves by

0.4% despite the reduction of the computational cost, indicating that

the advantage of lightweight detection will be limited without the

enhanced feature extraction of RCEA; RCEA+SLODH exhibits a

similar scenario, suggesting that without proper multi-scale feature

fusion, even if the enhanced backbone features are coupled with the

highly efficient detection head cannot achieve optimal performance.

By adding SLODH to both, the feature imbalance problem of

RCEA+ADFFN is solved, and the Group Normalization operation

and parameter sharing mechanism in SLODH achieves feature
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balancing for optimal performance of the complete system, with

93.2% mAP50 (+1.5%) and 66.5% mAP50-95 (+2.9%) detection

accuracies while maintaining excellent efficiencies of 1.6M

parameters (-40.7%) and 4.9 GFLOPs (-25.8%). This excellent

performance demonstrates the synergistic effect of the three

modules: RCEA for enhanced feature extraction through

reparameterization, ADFFN for effective multi-scale feature fusion

through the attention mechanism, and SLODH for efficient

detection through shared convolution and group normalization.

The heatmap comparison provided in Figure 11 clearly

demonstrates the significant advantages of the improved model in

ship wake detection tasks. The heatmaps intuitively present the

distribution of model attention, with red areas indicating high-

attention regions and blue areas indicating low-attention regions. In

the comparison between Figures 11a, b, the baseline model’s

attention is dispersed when processing sea surface backgrounds,

with substantial noise interference, making it difficult for the model

to precisely locate wakes. In contrast, our proposed OptWake-

YOLO model significantly enhances attention by focusing on the

wake itself while effectively suppressing sea surface noise

interference. This is primarily attributed to the multi-branch

structure and reparameterization technology used in the model.

The separated feature flow design and efficient feature aggregation

mechanism enable the model to effectively extract rich texture and

geometric features under complex sea conditions, improving wake

recognition accuracy while maintaining computational efficiency.

In Figures 11c, f, baseline models exhibited high false positive

rates due to the linear structures of coastlines, port facilities, and

stationary vessels that closely resemble ship wake characteristics. In

contrast, OptWake-YOLO significantly reduced attention to non-

target linear features. This performance enhancement primarily

stems from ADFFN module’s dual innovations: the channel

attention mechanism adaptively weights features across different

levels, effectively amplifying wake-related channel features while

suppressing interference channels, thereby achieving precise feature

screening; meanwhile, the Selective Feature Fusion (SFF)

mechanism emphasizes common salient regions across multi-level

features through multiplicative operations, combined with additive

operations that maximally preserve original feature information,

enabling the model to accurately capture the distinctive

morphology and texture patterns of wakes. This allows precise
TABLE 2 Ablation experiment results.

RCEA ADFFN SLODH mAP50(%) mAP50-95 (%) Param (M) GFLOPs FPS

91.7 63.6 2.7 6.6 302.57

✓ 92.6 64.5 2.5 6.8 305.92

✓ 92.3 64.6 1.9 5.5 303.74

✓ 92.1 64.4 2.4 5.7 315.26

✓ ✓ 92.7 63.4 1.8 5.7 276.68

✓ ✓ 92.1 62.8 2.3 5.9 312.27

✓ ✓ 92.0 62.8 1.8 4.6 231.21

✓ ✓ ✓ 93.2 66.5 1.6 4.9 303.43
TABLE 1 Experimental environment configuration and hyperparameters.

Parameter Configuration

Computer operating system Ubuntu22.04

CPU Intel Xeon Gold 6342

GPU NVIDIA RTX 3090

CUDA V12.2

Python V3.10

Pytorch V2.1.0

Initial Learning Rate 0.01

Weight Decay 0.0005

Momentum 0.937

Optimizer SGD

Batch Size 16

Input Resolution 768×768

Training Epochs 100

Warmup Epochs 3

Data Augmentation Mosaic, MixUp, HSV

Label Smoothing 0.0

IoU Loss Weight 7.5

Classification Loss Weight 0.5

Object Loss Weight 1.0
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discrimination between wakes and non-target linear features, with

the module’s robust feature fusion capabilities in complex

backgrounds establishing a critical foundation for OptWake-

YOLO’s high-precision detection performance.

A comprehensive analysis of the table and heatmaps

comparison results clearly demonstrates that OptWake-YOLO

exhibits excellent detection performance in various complex

environments. The RCEA module enhances feature extraction

capability, the ADFFN optimizes feature fusion effects, and the

SLODH detection head significantly reduces computational

complexity while ensuring detection accuracy. The synergistic

effect of these three modules enables our model to accurately

detect ship wakes when faced with complex situations such as sea

surface background noise, coastal structure interference, and

stationary vessels, while maintaining low computational cost and

high detection efficiency, providing reliable technical support for

practical applications.

To more comprehensively evaluate the performance of different

components in the ship wake detection task, we further designed a

series of comparative experiments targeting various modules,

exploring the impact of different types of Backbone, Neck, and
Frontiers in Marine Science 14
upsampling operations on model performance. These experiments

aimed to verify the superiority of the improved modules among

similar methods while providing a scientific basis for model

structure selection. Using the controlled variable method, we

evaluated performance by replacing only a single module while

keeping other components unchanged, ensuring the reliability and

comparability of experimental results. The results are shown in

Tables 3-5, corresponding to comparative experiments of

Backbone, Neck, and upsampling operations, respectively. These

experiments not only verified the effectiveness of our proposed

modules but also revealed their unique advantages in feature

extraction, feature fusion, and fine feature reconstruction,

providing deep insights into understanding the working

mechanisms of wake detection models.
1. Backbone: To assess the effect of different backbones on

ship wake detection capability, in this ablation experiment,

we compared experimental results of ship wake detection

by replacing different backbones, keeping other structures

and parameters unchanged. The results are shown in

Table 3. Compared to other commonly used backbone
TABLE 3 Comparison of detection performance with different backbones.

Backbone mAP50 (%) mAP50-95 (%) Param (M) GFLOPs FPS

Fasternet 92.6 63.6 4.0 9.4 259.87

EfficientViT 91.3 62.5 3.8 8.2 147.43

Convnextv2 89.7 58.9 5.5 12.8 144.34

MobilenetV4 89.6 60.5 5.5 21.3 256.71

RCEA 92.6 64.5 2.5 6.8 305.92
FIGURE 11

Heat maps of baseline and improved model. (a, b) Comparison of the heatmaps of the baseline model and that of the OptWake-YOLO model when
noise is present on the sea surface. (c, d) Comparison of the heat maps of the baseline model and the Optwak-Yolo model when there is
interference from coastal buildings around the wake. (e, f) Comparison of the heat maps of the baseline model and the Optwak-Yolo model when
there are multiple stationary vessels around the wake.
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Fron
networks such as Fasternet (Chen et al., 2023), EfficientViT

(Liu et al., 2023), Convnextv2 (Woo et al., 2023), and Mo-

bilenetV4 (Qin et al., 2024), our backbone network

improved with the RCEA module achieved the highest

detection accuracy at 92.6% with the most lightweight

model size.

2. Neck: To evaluate the impact of different Neck improvements

on ship wake detection capability, we compared experimental

results of different improved neck structures, with results

shown in Table 4. Our model improved with the ADFFN

module and achieved optimal performance. Among the

comparative neck structures, models improved with BiFPN,

GFPN (Xu et al., 2022), and MAFPN (Yang et al., 2024) also

showed increased detection accuracy compared to the baseline

model, but their degree of model lightweighting was not as

significant as ADFFN.

3. Upsample: Upsampling operations play an important role in

object detection models, enabling resolution recovery, detail

reconstruction, and other operations that can facilitate precise

detection and localization of targets by detection models. To

further investigate the impact of upsampling operations on

detectionmodels, we experimented and compared results with

ConvTranspose, CARAFE (Wang et al., 2019), and

WaveletUnpool (Xu et al., 2023) against the Dysample

upsampling operation used in this paper on the SWIM

dataset, as shown in Table 5. Different upsampling

operations all helped improve detection accuracy, while the

Dysample upsampling operation used in this paper achieved

the best detection performance.
In addition to the model components, we also explored the

effect of the number of samples of the model during training on the

effectiveness of model detection. The model detection performance
tiers in Marine Science 15
for the following batch sizes N ∈ {4, 8, 16, 32, 64} was evaluated

under the same training conditions (same hardware, same hyper-

parameters except for the batch size, and consistent data

augmentation), and the results of the tests are shown in Table 6.

From the experimental results, the model with Batchsize=16

performs optimally in several key metrics. First, its mAP50 reaches

93.2%, which is higher than other configurations, indicating that it

has higher accuracy in the target detection task. Second, the

mAP50-95 (66.5%) is also higher than other configurations,

indicating that it is more robust to different IoU thresholds.

In summary, the model configuration of Batchsize=16 strikes an

optimal balance between training stability and model performance,

and is a reasonable choice for balancing performance, speed

and stability.
4.4 Comparison with state-of-the-art
methods

To comprehensively evaluate the performance advantages of

our proposed method, this study selected multiple cutting-edge

object detection algorithms widely recognized in both academic and

industrial communities, including the classic YOLOv3-tiny, the

industrial-grade PP-YOLOE-R, mainstream YOLOv5n to

YOLOv12n series, S2Anet (Han et al., 2022) specialized for

oriented objects, the innovative Mamba-T (Wang et al., 2024)

architecture based on state space models and Hyper-YOLO (Feng

et al., 2025), a target detection model based on hypergraph

computation. Rigorous comparative experiments have been

accomplished on the public SWIM dataset. To ensure a

comprehensive and objective performance assessment, the

evaluation employed the aforementioned multi-dimensional

metric system, with detailed comparison results shown in Table 7.

Analysis of the experimental results demonstrates that the

OptWake-YOLO model proposed in this paper achieves an

optimal balance between detection accuracy and computational

efficiency on the SWIM dataset. Specifically, compared to all

benchmark models, our method achieves optimal performance on

key evaluation metrics with mAP50 and mAP50-95 reaching 93.2%

and 66.5%, respectively, while establishing the best result for model

lightweighting with only 1.6M parameters and 4.9 GFLOPs

computational overhead. Notably, although YOLOv6 and

YOLOv8n slightly lead in detection speed (309.11 and 313.79

FPS, respectively), their detection accuracy is significantly lower

than our method (mAP50 decreased by 4.7% and 1.1%,

respectively), with computational loads 140.8% and 44.9% higher.
TABLE 4 Comparison of detection performance with different necks.

Neck
mAP50
(%)

mAP50-
95 (%)

Param
(M)

GFLOPs FPS

BiFPN 91.9 62.1 2.0 6.5 291.81

Slimneck 90.9 62.1 2.6 6.2 301.10

GFPN 92.4 64.0 3.7 8.4 300.53

GoldYOLO 89.2 58.3 5.9 9.4 205.31

MAFPN 92.2 62.7 2.7 7.3 197.28

ADFFN 92.3 64.6 1.9 5.5 293.56
TABLE 5 Comparison of detection performance with different upsampling operations.

Upsample mAP50 (%) mAP50-95 (%) Param (M) GFLOPs FPS

ConvTranspose 92.4 63.6 2.0 6.0 286.77

CARAFE 92.3 63.4 2.1 5.7 218.57

Waveletunpool 92.3 64.3 2.2 5.5 311.86

Dysample 92.3 64.6 1.9 5.5 293.56
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Meanwhile, although Mamba-T approaches our method in mAP50

(93.0% vs. 93.2%) with both achieving 66.5% in mAP50-95, its

model parameter count (5.7M) and computational complexity (12.6

GFLOPs) are significantly higher than our method, resulting in a

detection speed of only 75.6 FPS, far below the threshold for real-

time applications.

To intuitively demonstrate the superiority of our method in

practical applications, Figure 12 presents the detection results of

various algorithms addressing typical complex environments. As

shown in Figures 12a, b, under severe sea conditions where wakes

are partially submerged by waves causing indistinct features, YOLOv3-

tiny, YOLOv5n, YOLOv8n, and YOLOv11n all exhibit varying degrees

of missed detections, while OptWake-YOLO successfully overcomes

sea condition interference with its powerful feature extraction

capability, precisely detecting wakes obscured by waves. Figure 12c

illustrates the detection challenges in coastal port or vessel berthing

areas, where linear features presented by embankments and coastlines

easily interfere with detection systems. In this situation, YOLOv5n and
Frontiers in Marine Science 16
YOLOv11n in-correctly identify embankments with similar linear

shapes as ship wakes, while our method successfully avoids such

misidentifications by effectively extracting wake-specific texture

features. Figure 12d further validates OptWake-YOLO’s robustness

in environments obscured by clouds and fog, where comparative

algorithms all exhibit missed detections, while our method maintains

high accuracy, successfully detecting all wake targets.

Comprehensive analysis indicates that compared to existing state-

of-the-art algorithms, the OptWake-YOLO proposed in this paper

demonstrates significant advantages in feature extraction capability,

recognition of wake-specific high-level semantic features (such as the

V-shaped distribution of Kelvin wakes, and the dark-line patterns of

turbulent wakes), and adaptability to complex environments. These

advantages stem from three core innovations of the model: enhanced

feature extraction capability from the RCEA module, efficient feature

fusion implemented by the ADFFN module, and the lightweight

computational architecture provided by the SLODH detection head.

The synergistic effect of these three components enables OptWake-

YOLO to maintain excellent detection performance when facing

complex scenarios such as sea surface background noise, coastal

structure interference, and meteorological condition variations, while

meeting the strict requirements of practical applications for

computational resources and real-time performance, providing ideal

technical support for maritime safety monitoring systems.

While our experiments were conducted on RTX 3090 for

standardized comparison, the lightweight nature of OptWake-YOLO

(1.6M parameters, 4.9 GFLOPs) makes it well-suited for edge

deployment. Based on the computational complexity of the model

and parametric analysis of commonly used edge devices, OptWake-

YOLO’s inference speed is estimated to be 40-67 FPS when deployed

on the entry-level edge device, NVIDIA Jetson Nano (Zhang et al.,

2022); and when deployed on the more capable Jetson Xavier NX

(Wang et al., 2022) The inference speed can exceed 100FPS. The

lightweight nature of the model is perfectly suited to ships and coastal

monitoring stations with limited computational resources.
5 Conclusions

This paper addresses the challenge of real-time ship wake

detection by proposing an improved wake detection model

OptWake-YOLO based on YOLOv11n. The model perfectly

balances detection accuracy and efficiency through three key

innovations: first, implementing the RCEA module in the

Backbone, which integrates reparameterization technology with

multi-branch structures to significantly enhance feature extraction

capabilities; second, designing a novel ADFFN feature fusion network

in the Neck, combining channel attention mechanisms with dynamic

upsampling techniques to achieve efficient multi-scale feature fusion;

and finally, developing the new SLODH lightweight detection head,

which substantially reduces model complexity through parameter

sharing and group normalization techniques.

Extensive experiments on the public SWIM dataset demonstrate

that, compared to the YOLOv11n, the OptWake-YOLO improves

mAP50 and mAP50-95 evaluation metrics by 1.5% and 2.9%
TABLE 7 Detection results of the improved model versus other state-of-
the-art detection models.

Model
mAP50
(%)

mAP50-
95 (%)

Param
(M)

GFLOPs FPS

YOLOv3-
tiny

90.0 56.2 10.0 15.2 286.16

PP-
YOLOE-R

78.4 54.2 8.2 12.3 46.69

YOLOv5n 92.0 63.2 2.6 7.3 294.43

S2ANet 69.7 47.1 37.4 130.9 35.12

YOLOv6 88.5 55.9 4.3 11.8 309.11

YOLOv8n 92.1 64.4 2.8 7.1 313.79

YOLOv9t 90.3 59.4 2.0 7.8 277.96

YOLOv10n 91.8 63.7 3.1 8.7 267.21

Mamba-T 93.0 66.5 5.7 12.6 75.61

YOLOv11n 91.7 63.6 2.7 6.6 302.57

YOLOv12n 88.5 55.2 2.6 6.1 277.78

Hyper-
YOLOt

92.4 64.6 2.8 7.9 243.90

Ours 93.2 66.5 1.6 4.9 303.43
TABLE 6 Comparison of detection performance with different batchsize.

Batchsize
mAP50
(%)

mAP50-
95(%)

Param
(M)

GFLOPs

4 93.0 66.1 1.6 4.9

8 92.8 65.9 1.6 4.9

16 93.2 66.5 1.6 4.9

32 92.5 66.0 1.6 4.9

64 92.0 65.5 1.6 4.9
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respectively, while significantly reducing parameter count and

computational load by 40.7% and 25.8%, maintaining a high

detection speed of 303.43 FPS. Heatmap analysis and visualization

comparisons in complex environments further verify the robustness

and accuracy of the model in different sea states, meteorological

circumstances, and coastal interferences. Compared to current

mainstream object detection algorithms (e.g. YOLOv5, YOLOv8,

YOLOv10, and Mamba), OptWake-YOLO achieves optimal

lightweight performance while maintaining the highest detection

accuracy, fully satisfying the requirements for high-precision, low-

latency wake detection in practical application scenarios including edge

device deployment for real-time maritime surveillance systems.

The lightweight design of the OptWake-YOLO offers a high degree

of engineering and practical value, making it particularly suitable for

practical maritime surveillance deployment scenarios: (1) Autonomous

Maritime Vehicles: The model’s low computational requirements (4.9

GFLOPs) and small memory footprint (6.4MB) enable integration into

unmanned surface vehicles and autonomous underwater vehicles for

real-time wake detection and vessel tracking. (2) Coastal Monitoring

Systems: Edge device compatibility allows deployment in remote

coastal monitoring stations with limited power and computational

resources, enabling 24/7 surveillance coverage. (3) Satellite Integration:

The model’s efficiency makes it suitable for on-board satellite

processing, reducing data transmission requirements and enabling
Frontiers in Marine Science 17
near real-time maritime surveillance from space. (4) Multi-sensor

Fusion: The lightweight architecture facilitates integration with other

sensing modalities (radar, AIS, infrared) in comprehensive maritime

domain awareness systems.

Despite the significant achievements of this work, there remain

scope for future research: (1) Dataset limitations: Our experiments

were conducted solely on the SWIM dataset, which may introduce

geographical and environmental biases. The dataset primarily contains

images from coastal areas with specific resolution ranges (0.5-2.5m),

which may not fully represent diverse maritime conditions globally.

Future work will therefore need to be supported by multiple datasets

with different geographical distributions, seasonal conditions and

sensor characteristics. (2) Extreme weather performance: While our

model demonstrates robust performance under various sea conditions

present in SWIM, its effectiveness in extreme weather scenarios (heavy

storms, dense fog) or different water types (polar regions, inland

waters) requires further validation. (3) Wake classification: Current

model focuses on detection; extension to wake classification (vessel

type, size estimation) would enhance practical utility. (4) The

possibility of further optimizing the model size and deployment cost:

e.g. using model compression techniques such as pruning and

knowledge distillation.

In conclusion, the method proposed in this paper provides an

efficient and reliable technical solution for real-time ship wake
FIGURE 12

Detection results of different algorithms in typical complex scenarios. (a, b) Comparison of wake detection effects of different detection models
under adverse sea conditions. (c) Comparison of wake detection effects of different detection models around coastal ports or ship mooring areas.
(d) Comparison of wake detection effects of different detection models under cloud and fog occlusion conditions.
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detection in optical remote sensing images, offering significant

theoretical and practical value for maritime surveillance and

security protection.
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