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The escalating issue of marine plastic pollution demands urgent and innovative

solutions to mitigate its detrimental impacts on ecosystems, human health, and

global economies. This paper provides a comprehensive review of mechanical

recycling and upcycling technologies for marine macro- and microplastics,

addressing the challenges and future directions in their sustainable

management. The study systematically examines the processes of collection,

cleaning, separation, and melt processing, highlighting advancements and

limitations in current methodologies. Recent advancements in marine plastic

recycling technologies have addressed the challenges of macroplastic collection

and separation, further research into more cost-effective and scalable processes

remains imperative for its recycling and upcycling. The recycling of microplastics

is much more challenging because of the difficulties in efficient collection and

separation. The comprehensive methodologies for the segregation of both

macroplastics and microplastics were discussed. The policy framework and

technical pathway for marine plastics management was proposed. The paper

concludes with actionable recommendations for stakeholders, emphasizing the

need for standardized monitoring, improved separation techniques, and global

collaboration to combat marine plastic pollution effectively.
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1 Introduction

The ocean covers nearly 71% of Earth’s surface, making it

potentially the most extensive repository of waste on our planet.

The pervasive issue of marine plastic pollution poses a significant

threat to the health of our oceans and has far-reaching implications

for ecosystems, economies, and global policies. Mismanaged waste

plastics enter the ocean primarily via river systems and activities

related to marine fisheries (Van Emmerik et al., 2019; Nelms et al.,

2021; Meijer et al., 2021; Thushari and Senevirathna, 2020). The

endangerment of ocean ecosystems by plastic pollution from

marine sources is a substantial concern, where non-biodegradable

plastics constitute 73% of the debris present in various aquatic

ecosystems worldwide (Cocchi et al., 2023). Waste marine plastics

pose a threat to marine wildlife through entanglement and

ingestion, as well as to human marine activities through

interaction with ships (Law, 2017; Ibrahim et al., 2024). The toxic

substances in marine plastics, especially monomer residues,

plasticisers, coloring agents, flame retardants, and others, cause

ecotoxicological and combined pollution (Gong and Xie, 2020;

Worm et al., 2017). Furthermore, chemical pollutants,

which include pharmaceuticals and personal care products,

pesticides, polycyclic aromatic hydrocarbons, polychlorinated

biphenyls, trace heavy metals, ultraviolet filters (UV-filters),

organophosphorus flame retardants (OPFR), as well as

polybrominated diphenyl ethers (PBDEs) derived from marine

plastic debris, possess the capacity to promote trophic transfer

and bioaccumulation within the ecological food web, thereby

presenting a considerable threat to human health (Worm et al.,

2017; Râpă et al., 2024; Aragaw, 2020). Moreover, specific

minuscule plastic microparticles may leach their chemical

additives, such as bisphenol A (BPA), bis(2-ethylhexyl) phthalate

(DEHP), and dibutyl phthalate (DBP), consequently exacerbating

the potential risks to both aquatic life forms and human health

(Dimassi et al., 2023).

As plastics accumulate in marine environments, they not only

disrupt marine life but also lead to economic burdens through the

degradation of coastal communities and industries such as fisheries

and tourism. Calculating the accurate economic impact of marine

plastics is challenging. Beaumont et al. (2019) estimate that marine

plastic pollution could reduce global marine ecosystem service

(benefits provided to human by marine ecosystem (Barbier,

2017)) delivery by 1–5% annually, equivalent to an economic loss

of $500–$2500 billion per year (based on 2011 values). Given the

estimated 75–150 million tons of plastic in the ocean in 2011, this

translates to an annual cost of $3300–$33,000 per ton of marine

plastic in terms of diminished marine natural capital (Beaumont

et al., 2019). Although an accurate quantitative assessment of the

economic impact of marine plastics on the entire ecosystem is not

possible, the financial losses attributable to marine plastics can be

quantified in certain sectors, such as fisheries and tourism

(Newman et al., 2015). Mcilgorm et al. (2022) studied the direct

economic loss incurred in the sectors of fisheries, aquaculture,

maritime transportation and marine tourism, the economic loss

in Asia Pacific Economic Cooperation (APEC) and on global scale
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amounted to $10.82 billion and $18.3 billion, respectively. In the

absence of changes in plastic production or waste management

policies, the global economic loss associated with marine plastics

can reach $ 731 billion by 2050 (Mcilgorm et al., 2022).

In response to this crisis, various countries have implemented

policies and initiatives aimed at mitigating the impact of plastic waste

and promoting sustainable practices. The EU Marine Strategy

Framework Directive (Directive 2008/56/EC) and the Waste

Directive (Directive 2008/98/EC) established the requirements for

monitoring and reducing marine plastics and waste treatment

hierarchy, respectively (Penca, 2018). In 2020, the Save Our Seas

2.0 Act, a bipartisan effort in the United States, was enacted to fortify

domestic initiatives targeting marine debris, bolster international

engagement in combatting marine waste, and enhance local

systems to mitigate marine litter (S.1982 - 116TH CONGRESS,

2019-2020). The United States’ policy inclination is directed

towards diminishing the utilization of disposable plastic bags

(Wagner, 2017) and stopping the use of plastic microbeads for

cosmetic products (Bakaraki Turan et al., 2021). China has also

established a stricter waste plastic management framework, while

policy development and scientific research on marine plastics have

accelerated in recent years. In 2017, the State Oceanic Administration

(SOA) established the Marine Litter and Microplastics (MPs)

Research Center, focusing on monitoring technologies and global

governance strategies (Fu et al., 2020). At the provincial level, the

Fujian government promulgated a strategic action plan aimed at

enhancing the integrated management of floating garbage in the sea

in 2020, which constituted the first document specifically developed

to address marine waste cleanups, including plastic waste (Fürst and

Feng, 2022). The predominant focus of these policy frameworks is on

the mitigation of plastic waste entering the oceans, with limited

attention directed towards the recycling and repurposing of marine

plastic materials. Current estimates indicate that over 150 million

tons of plastics already pollute our oceans, with an additional 4.8–

12.7 million metric tons entering marine ecosystems each year

(Agenda, 2016; Jambeck et al., 2015). Given this escalating crisis,

developing specialized recycling methodologies for marine plastics

has become an urgent priority.

The challenges for marine plastics mechanical recycling and

upcycling mainly arises from three aspects. First, pre-processing

marine plastics presents additional difficulties compared to

municipal waste. Large-scale collection systems for marine

plastics are lacking, and the unique marine environment

introduces contaminants such as salt, marine organisms, and

sand. These factors prevent the direct application of conventional

land-based sorting techniques to marine plastics (Mendoza et al.,

2024). Second, marine environments accelerate plastic degradation

due to mechanical forces (e.g., waves, currents) and prolonged UV

exposure. This degradation negatively impacts both mechanical

recycling and upcycling, though its full effects remain understudied

(Law, 2017). Third, the current low economic viability of marine

plastic recycling indicates that technological solutions alone are

insufficient. Addressing plastic pollution requires collaborative

efforts from multiple stakeholders, including policymakers

(Schmaltz et al., 2020).
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Despite growing literature on marine plastic pollution (Cole

et al., 2011; Simul Bhuyan et al., 2021; Li et al., 2016; Yang et al.,

2021b; Iñiguez et al., 2016; Auta et al., 2017), critical gaps persist in

scalable recycling solutions. First, existing reviews focus

predominantly on environmental impacts (Aragaw, 2020b) or

policy frameworks (Wu, 2022),with limited integration of

technical pathways. Second, while macroplastic collection

technologies have advanced (Schmaltz et al., 2020), cost-effective

microplastic retrieval remains unexplored at scale. Third,

degradation studies (Iniguez et al., 2018) rarely address

recyclability thresholds for marine-weathered plastics. This review

bridges these gaps by synthesizing marine plastics sources, recycling

challenges and mechanical recycling technologies with actionable

policy and economic insights. While this review focuses on

mechanical recycling and upcycling, we acknowledge that

challenges in collection, cleaning, and separation apply broadly to

chemical, thermal, and biological recycling. However, because

mechanical recycling is the dominant method in current industry

practice and requires stricter pre-processing standards due to its

sensitivity to contaminants, polymer degradation, and economic

viability constraints, we will therefore limit our discussion of pre-

processing stages to mechanical recycling (Muzata et al., 2024;

Ragaert et al., 2017).
1.1 Sources of marine plastics

In 2021, the worldwide production of plastic reached 390.7

million tons (PlasticsEurope, 2022). Table 1 lists the production

data for the major types of plastics.

When the aforementioned plastic products reach the end of

their lifecycle, an estimated 4.8 to 12.7 million metric tons of

improperly managed plastic waste is annually deposited into the

ocean (Jambeck et al., 2015). Consequently, it is projected that the

total amount of plastic waste in the marine ecosystem will reach

approximately 100 to 250 million metric tons by the year 2025

(Jambeck et al., 2015).
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Plastic waste can be categorized into macroplastics (>0.5 cm)

and microplastics (<0.5 cm) (Lebreton et al., 2019). Other

researchers have a more precise classification based on the plastic

dimensions: mega-debris (>100 mm), macro-debris (20–100 mm),

meso-debris (5–20 mm), micro-debris (0.1mm and 5 mm) (Barnes

et al., 2009), and nano-debris (<0.1mm) (GESAMP, 2016). The types

and sizes of marine plastics vary across distinct geological regions.

Polyethylene (PE), polypropylene (PP), and polystyrene (PS) are the

most commonly found waste plastics in marine environments

(Perumal and Muthuramalingam, 2022). Eo et al. (2018)

investigated the waste plastic compositions of sand beaches in

South Korea and found that 95% of the large microplastics (1–5

mm) expanded PS, whereas PE and PP accounted for 49% and 38%

of the small microplastics (0.02–1 mm), respectively. Based on a

meta-analysis, Erni-Cassola et al. (2019) further concluded that

low-density PP and PE (0.89-0.94 g/cm3)accounted for 25% and

42% of the sea surface sample, and the content decreased to 3% and

2% in the deep sea, polyesters and acrylics (1.10-1.40 g/cm3), which

are dense polymers, account for 77% of the plastics found in deep-

sea environments.

Marine plastics originate from land-based pollution and marine

activities. Research has shown that 80% of marine plastic waste

comes from land (Andrady, 2011). Southeast Asia is proposed to be

the primary source of plastic emissions from terrestrial to marine

environments, predominantly originating from river systems (Van

Emmerik et al., 2019). Meijer et al. (2021) examined the origins of

marine plastics from rivers, and their findings reveal that over 1000

rivers contribute to 80% of the total global riverine plastic discharge

into the marine environment. 0.8 million to 2.7 million metric tons

of plastics enter the ocean from these 1000 rivers annually. It was

estimated that the Yangtze River catchment in China contributes

the largest annual plastic load to the ocean, discharging 0.33 million

tons (range: 0.31–0.48) into the East China Sea. The Ganges River

catchment ranks second, with an estimated input of 0.12 million

tons per year (range: 0.10–0.17) (Lebreton et al., 2017). Nelms et al.

(2021) studied the plastic pollution in the Ganges River, a 2500 km

river in India that sustains over 655 million people, finding that the
TABLE 1 Global plastic production data.

Plastics Acronyms Production
percentagea

Specific gravityb Main applicationc

Polypropylene PP 19.3 0.85-0.93 Rope, bottle caps, netting

Polyethylene PE 26.9 0.91-0.97 Packaging

Polyvinyl chloride PVC 12.9 1.19-1.31 Building and construction

Polyethylene terephthalate PET 6.2 1.37-1.45 Plastic beverage bottles

Polyurethane PUR 5.5 0.03-0.1 Building and construction

Polystyrene, Expandable
polystyrene

PS, PS-E 5.3 0.28-1.04 Packaging

Others / 24 Varies Varies
Reference.
aPlasticsEurope (2022).
bChoong et al. (2021) and Hanvey et al. (2017).
cAndrady (2011) and Choong et al. (2021).
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major source of plastic pollution is discarded fishing gear in such

large rivers. Marine plastic emissions were found to be strongly

associated with fishing activities. Deville et al. (2023) conducted a

study on marine plastic emissions within the Peruvian Economic

Exclusive Zone, revealing that an estimated 2,715–5,584 metric tons

of plastic material were discharged into this region in 2018. Notably,

discarded, lost, or abandoned fishing equipment contributed

significantly, accounting for 56–96% of the total plastic release.

Compare to macroplastics, the identification and quantification

of microplastics present significantly greater challenges. The

microplastics infiltrate the marine environment via various

pathways, such as riverine systems, coastlines, urban sewage

outflows, storm runoffs, inappropriate disposal methods,

intentional dumping, unintended releases from marine

operations, and atmospheric deposition (Wang et al., 2018). The

primary sources of microplastics include plastic pellets, microbeads,

and glitters (Fatima and Chihhao, 2022). The secondary sources are

effluent from water and wastewater treatment plants, wear and tear

from normal plastic use, and airborne dust (Yang et al., 2021a;

GESAMP, 2016). Macroplastics may also be further degraded to

secondary microplastics after exposure to the marine environment

(Hasan Anik et al., 2021; Wang et al., 2018). The investigation of

microplastics in beach and marine bottom sediments in the

southern Baltic Sea showed that wastewater treatment plant

effluents, maritime transport, and tourism are major sources of

microplastic pollutants (Graca et al., 2017). Given the diverse

sources and widespread presence of marine microplastics,

significant attention has been directed towards monitoring their

distribution and abundance in aquatic environments. The National

Oceanic and Atmospheric Administration (NOAA), National

Centers for Environmental Information (NCEI) provide open

access to global marine microplastic data through a user-friendly

GIS web map and data porta, facilitating the continuous monitoring

of microplastic distribution on a worldwide scale (Nyadjro

et al., 2023).
1.2 Challenges for recycling marine plastic
wastes

A systemic perspective is crucial for understanding the

challenges associated with the management of marine plastic

waste (Schneider et al., 2018). Although numerous studies have

focused on policies to reduce plastic waste before it enters the ocean

(Willis et al., 2018; Wu, 2022; Kamaruddin et al., 2022), the

substantial quantity of existing marine debris necessitates the

development of sustainable recycling and treatment technologies.

Key challenges in managing marine plastic waste arise from the

collection, separation, and recycling processes because of technical

and economic considerations.

The collection of marine plastic waste presents significant

logistical and economic challenges (Juan et al., 2021). Current

methods for collecting marine plastic waste typically include: 1)
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manual retrieval from coastal areas, 2) surface trawling operations,

3) deployment of retention booms to capture floating marine debris

at the sea surface, 4) bottom trawling, and 5) underwater diving

collection (Schneider et al., 2018). Current marine plastic collection

methods face significant limitations. Manual retrieval, especially

through underwater diving, is notably expensive, while the

effectiveness of surface or bottom trawling depends heavily on the

local concentration of plastic waste. Although these methods are

effective for collecting macroplastics, they are less suited for

microplastics, which are rarely addressed by existing technologies.

Owing to the technical and economic constraints of collection

technologies, nonprofit organizations have become primary

contributors to marine plastic collection initiatives. As the volume

of collected ocean plastics increases, the challenge of treating and

recycling this waste has become increasingly pressing.

Following collections, marine plastics must be properly

separated to enable high-value recycling application. Similar to

municipal plastic waste, the inherent immiscibility of different

plastic types complicates recycling efforts (Hopewell et al., 2009).

For macroplastics, manual sorting remains a practical separation

approach. In contrast, microplastic separation demands more

sophisticated methodologies, including filtration, density-based

flotation, centrifugation, and magnetic separation techniques

(Kurniawan et al., 2021). The complex composition of waste

streams and degradation of plastics after reprocessing are major

challenges for mechanical recycling (Vogt et al., 2021). Before melt

processing, waste marine plastics must be sorted to achieve a certain

purity level prior to the reprocessing process, such as extrusion.

However, even low levels of contaminants can be difficult to remove

and compromise the performance of recycled plastic products

processed by mechanical separation (Roosen et al., 2020).

Plastic degradation in marine environments further

complicates recycling. Previous research indicates that

ultraviolet (UV) degradation dominates the breakdown of

marine plastics, with biodegradation, thermo-oxidative

degradation, thermal degradation, and hydrolysis playing

comparatively minor roles (Andrady, 2011). UV exposure leads

to the photo-initiated oxidative degradation of polyethylene (PE),

polypropylene (PP), and polystyrene (PS), resulting in reduced

molecular weight and the generation of carboxylic functional

groups. These changes can significantly deteriorate the

mechanical performance of recycled marine plastics. Iniguez

et al. (2018) studied the recyclability of four common plastics,

Nylon, PE, PP and PET, in marine environments. After 6.5

months of UV exposure, the study found that all materials

exhibited surface degradation, with PP showing visible cracks.

All materials become less elastic and more rigid. However,

quantifying the degradation rate of marine plastics remains

challenging because of the presence of different types of

additives, as well as potential shielding by water or biofilms

(Gewert et al., 2015). Consequently, characterizing the

recyclability of marine plastics is critical before mechanical

recycling can be undertaken.
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2 Mechanical recycling of marine
plastics

Mechanical recycling is the most common approach for

recycling waste plastics and involves a series of sequential

processes: collection/segregation, cleaning, drying, chipping/sizing,

coloring/agglomeration, pelletization/extrusion, and manufacturing

(Li et al., 2022).

Mechanical recycling refers to a series of physical processes

designed to recover plastic materials for reuse. As the most widely

adopted method for plastic waste recycling, this approach typically

involves sequential operations including separation and sorting,

baling, washing, grinding, compounding/pelletizing (Ragaert

et al., 2017).

However, recycling marine plastics presents unique challenges

compared with land-based plastic waste, primarily because of the

following factors:
Fron
1. The collection of marine plastics presents significantly

greater challenges compared to municipal waste,

primarily due to the complexities associated with

detecting marine plastics and retrieving microplastics

(Ibrahim et al., 2024).

2. Difficulty in eliminating pollutants in marine plastics, such

as salt, sand, shell, algae and marine plants (Ronkay

et al., 2021).

3. Some marine plastic debris present challenges for

mechanical recycling owing to their complex structures,

multilayered compositions, or heterogeneous material

properties (Ibrahim et al., 2024). Existing separation

techniques may be inadequate for processing these

macro- and microplastics.
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The subsequent discussion elucidates the existing techniques

and challenges of the aforementioned procedures within the context

of marine plastic waste cycling.
2.1 Marine plastic collection

Schmaltz et al. (2020) provided a comprehensive overview the

current marine and riverine plastics collection technologies, as

shown in Figure 1.

These technologies can be divided into two categories: 1)

prevention technologies and 2) clean-up technologies (Schmaltz

et al., 2020). Prevention technologies aim to reduce marine plastic

pollution by intercepting plastics before they enter the ocean, often

targeting rivers as the primary pathways. An example of this

technology is the Mr. Trash Wheel, a device powered by both

solar and hydro energy, strategically positioned at the mouth of

rivers or streams to capture floating debris and use a conveyor

system to transfer the accumulated waste into designated dumpsters

(Mr. Trash Wheel, ). Another example is the “Great bubble barrier”,

which uses a tube with holes installed on the riverbed, which is

pumped through the tube and pushes the plastic to the water

surface to be collected (UNESCO, 2022).

In contrast, cleanup technologies focus on retrieving plastics

that are already present in marine environments. However, owing

to high costs and limited effectiveness, only a few institutions and

businesses are actively engaged in marine plastic retrieval.

Operations that focus on both floating and underwater marine

plastic recycling have been reported. One notable example of a

floating plastic operation is the Seabin Project, which originated in

Australia. A pool skimmer and a garbage bin were combined near

the shoreline to establish a system for gathering marine debris. In

2022, this initiative managed to collected 32.9 tons of marine litter
FIGURE 1

Graphical depictions of waste plastic collection technologies (Falk-Andersson et al., 2023).
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in Sydney and 3.34 tons in Los Angeles (Seabin, 2023). For large-

scale operations, The Ocean Cleanup initiative stands out as a

pioneering effort aimed at reducing marine plastic pollution in large

accumulation zones, such as the Great Pacific garbage patch. The

Ocean Cleanup has developed a massive (three meters in depth) U-

shaped floating net-like barrier to capture plastic debris in open

ocean environments. This innovative structure is gradually towed

by two ships to gather floating marine plastics, which are then

transported to shore for recycling (Renee cho, 2022). Despite these

efforts, collection activities in areas with low plastic density remain

limited. Detect-aid collection systems have been proposed to

address this issue. A research team from Xiamen University

developed a sea-floating litter prediction system that monitors

and identifies floating marine litter, predicts its trajectory, and

determines the optimum interception points (Zhang, 2020). For

underwater marine plastics, although Broere et al. (2021) reported

successful submerged macroplastic detection using imaging sonar,

the high costs associated with seafloor plastic retrieval have

hindered large-scale applications. Currently, most underwater

plastic collection relies on trawling by fishermen or manual

retrieval by scuba and snorkel divers, which are labor-intensive

and costly (Madricardo et al., 2020).

Due to technological and economic constraints, the collection of

microplastics is even more challenging and was primarily

conducted for research purposes. The Non-profit Organization,

‘Microplastic Removal System’, uses a static charge filtration screen

to remove the microplastics from beaches, often relying on

volunteers from developed regions, such as the US, UK, Australia

and Hong Kong (Microplastic Removal Systems, ). Air barriers (or

bubble barriers) can also be used for the collection of microplastics

as small as 1 mm in size (The Great Bubble Barrier, ).

Overall, to address the collection limitations noted in Section

1.2, passive systems (e.g., Bubble Barriers, Seabins) reduce

operational costs compared to manual retrieval but remain depth-

limited (<5 m). Detect-aid systems (e.g., trajectory prediction)

improve efficiency in low-density zones, though scalable solutions

for benthic macroplastics are absent. Microplastic collection,

however, remains economically unviable and source control is

currently more feasible than retrieval.
2.2 Marine plastic cleaning

Compared to terrestrial waste plastics, marine plastic waste

often contains additional contaminants such as sand, salt, shells,

algae, and marine plants (Ronkay et al., 2021). Density separation

can effectively isolate sand and shells from plastic materials.

Conventionally, cleaning processes involve purification and

desiccation procedures, where cold or hot water is used to remove

impurities, and chemical cleaning agents, such as caustic soda and

surfactants, are employed to detach adhesives from plastics (Al-

Salem et al., 2009). Such methods are highly effective and capable of

removing over 99% of the initial organic contaminants in RPET

bottles. These cleaning processes are often integrated into the
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sorting process; for example, shredding is combined with a sink-

float sorting step (Lange, 2021).

However, conventional wet cleaning processes are resource

intensive and require significant amounts of water, energy for

drying, and additional wastewater treatment. To address these

challenges, various dry cleaning processes have been developed to

reduce the use of water and energy, as well as wastewater treatment

costs. Xia and Zhang (2018) developed a dry system employing

particle collision and abrasion to clean waste plastics within a gas-

solid medium. They systematically investigated the effects of the

superficial gas velocity, bed height, thermal conditions, agitation

velocity, and cleaning duration in an agitated fluidized bed

containing Geldart B silica sand. Geng et al. (2022) also proposed

a similar waterless process for waste plastic cleaning, which involves

three main steps: 1) detachment of soil and small sand through the

friction of the sand medium, 2) separation of sand and plastics by a

wind sorting device, and 3) removal of dust on the plastic piece

surface by high-speed air. This dry cleaning process can achieve a

cleaning efficiency of over 90% and offers economic benefits, with

resource consumption of 88.64 RMB/ton and net income of 311.36

RMB/ton (Geng et al., 2022).
2.3 Marine plastic separation

Table 2 summarized the plastic separation techniques covered

in this section. The table outlines the scale at which the technique

has been validated, types of plastics suitable for each technique,

along with their respective advantages and limitations.

2.3.1 Manual sorting
Manual sorting is a simple and labor-intensive sorting method,

the recyclable materials were selectively sorted by the “waste pickers”

(Li et al., 2022). Manual sorting can be applied to visible marine

macroplastics, but this process depends entirely on the experience of

the workers responsible for identifying and sorting the plastics

(Manrich and Santos, 2008). Although manual sorting is

inexpensive, it has been proven to be unsafe and inefficient in some

developing countries, such as China (Ji et al., 2022). The safety

concerns predominantly arise from 1) an insufficiency of personal

protective equipment; 2) the prevalent condition of workers being

financially disenfranchised, lacking stable housing, and not receiving

adequate community assistance; 3) the inability of workers to access

sufficient medical care; 4) the absence of comprehensive safety

regulations pertaining to waste management; and 5) a deficiency in

safety training and awareness (Chandrappa and Das, 2012).

2.3.2 Sieving
Trommel screens, also referred to as rotary screens, are

cylindrical rollers that are positioned at an incline and feature

perforations along their surfaces, which can be utilized for either

primary or final size classification (Li et al., 2022). The small holes

first screen out fine dirt and small objects; therefore, macroplastics

with the desired size can be separately collected (Ji et al., 2022). The
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factors influencing the efficiency of a trommel include the

dimensions of the screen apertures, the diameter of the trommel,

the rate of rotation, the classification of the trommel, the quantity of

baffles, and the angle of inclination of the cylinder (Li et al., 2022).

For microplastics, once they are collected, on-site sieving can be

applied to isolate large microplastics (>1 mm) for later visual

processing. However, this technique is not applicable to small

microplastics (<1 mm) and requires further laboratory extraction

processes (Hanvey et al., 2017). Filtration is a commonly used

method for separating and collecting microplastics. Bayo et al.

(2020) compared the efficiency of membrane bioreactor and rapid

sand filtration on the removal of microplastics, the results indicated

these two types of filtration obtained similar performance, the

removal efficiency is 79.01% and 75.49%, respectively. Researchers

have endeavored to identify the primary controlling variables and

enhance the effectiveness of filtration processes. In a study

conducted by Zhu (2015), an elutriation apparatus was developed

with a focus on optimizing the flow rate and column diameter to

attain the targeted filtration efficiency for microplastics. To further

improve the filtration performance, Wang et al. (2020) used corn

straw biochar and hardwood biochar as filtration media and

achieved a removal efficiency of more than 95% for the

microplastic spheres. The problem with the filtration technique is

that it is difficult to extract and recycle the microplastics
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accumulated in the filtration medium. To overcome this problem,

Rhein et al. (2019) proposed a magnetic-seeded filtration process

that involved hetero-agglomeration and magnetic separation steps.

Fe3O4 was used as a magnetic seed to agglomerate with the non-

magnetite microplastics to form hetero-agglomerates, and the tank

was subjected to a magnetic field to process the separation. This

process can also achieve a separation efficiency of 95% (Rhein et al.,

2019). Subsequent work by the research group further evaluated

three hetero-agglomerate processing approaches: thermal,

chemical, and mechanical breakup methods. These investigations

revealed consistent performance across all strategies, with high

magnetic seed recovery rates exceeding 90%, maintained

separation efficiency through multiple operational cycles, and

effective recovery of non-magnetic fractions when applicable

(Rhein et al., 2021).

2.3.3 Magnetic separation
Magnetic separation is a common method for separating

magnetic and non-magnetic materials (Qin et al., 2021). It is

usually followed by eddy current and density segregation

methodologies to separate ferrous metals, non-ferrous metals, and

non-metallic materials (Adhiwiguna et al., 2025). Consequently,

metals in marine plastics (mixed macroplastics), such as fishing

gear, can be effectively separated using this technique. For
TABLE 2 Comparison between Various Plastic Separation Techniques.

Technique name Scale
validated

Plastic types Key advantages Key limitations References

Manual Sorting Industrial Maaoplastics (>5mm) Low-tech;
Immediate implementation

Labor-intensive; Safety
issues; Inefficient

Manrich and Santos, 2008

Trammel Saeens Industrial Maaoplastics Size dassification; Removes
dirt/sand

Ineffective for
miaoplastics (<lmm)

Li et al., 2022

Membrane/
Biochar Filtration

Lab/Pilot Miaoplastics 75-95% removal efficiency Clogging issues; Difficult
plastic recovery

Bayo et al., 2020; Wang
et al., 2020

Conventional Magnetic Industrial Fishing gear (metal) Effective forferrous metals Limited to
magnetic components

Qin et al., 2021

Magnetic Levitation Lab PE, PP, PS, PVC 95% recovery; Density-
based separation

Toxic solutions (MnCh);
Low throughput

Ren et al., 2022; Zhang
et al., 2021

Sink-Float Industrial PE, PP, PET, PVC Low-cost; Fast processing Limited to >0.5mm; Cannot
separate similar densities

Pita, 2023

Hydrocydones Pilot Miaoplastics (10µm) 51% recovery (10µm);
Scalable design

Efficiency d rops for
smaller particles

He et al., 2022; Gonçalves
et al., 2020

N IR/VIS Industrial Municipal waste High-speed automation Struggles with ad ditives/
dyes; Limited
marine validation

Procházka et al., 2024

Raman Spectroscopy Lab Miaoplastics (lµm) Small partide detection Fluorescence interference;
Slow processing

Käppler et al., 2016

MI R + ML Lab PET, HDPE, LDPE,
PP, PS

100% aa:uracy; Handles
ad ditives

Requires spectral database;
Untested at scale

Stavinski et al., 2023

Froth Flotation Lab PC, PVC, ABS,
PMMA, PS

High purity (99%); Density-
independ ent

Chemical reagents needed;
Surface alteration

Jiang et al., 2022a; Zhang
et al., 2020

Electrostatic Separation Lab Miaoplastics (100µm) Waterless;99-100%
recovery (>2mm)

Efficiency d rops to 45% at
20µm; Partide
size limitations

Enders et al., 2020
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microplastics, a technique called magnetic levitation separation has

been developed and used in various applications (Xia et al., 2023;

Zhang et al., 2021; Ren et al., 2022). The magnetic levitation of

plastic is achieved by the balance of the gravitational force,

buoyancy force and the magnetic buoyancy force on the object,

the levitated height of the object is affected by the magnetic field and

material density (Zhao et al., 2018). An important advantage of

magnetic levitation is that it can separate mixed plastics rather than

the two types of plastics in most of the extant separation processes

(Zhang et al., 2019). Ren et al. (2022) designed a magnetism-assisted

density gradient separation device, by adjusting the density of the

MnCl2 solution, the PE with different densities (0.98-1.35 g cm-3)

was also selectively separated. Although microplastics can be

accurately separated using this technique, their processing

capacity is still low. Zhang et al. (2021) proposed a magnetic

projection device with an automatic feeding module to improve

the automation of the process, and six types of plastics were

successfully separated, with a recovery rate of over 95%. To

increase the operating space and processing capacity, Xia et al.

(2023) developed radial magnetic levitation with an open structure

of two ring magnets, making the addition and removal of samples

and medium easier, with good visualization, and no limitation on

the height of the container. The challenge for magnetism-assisted

separation is that the microplastic feed into the system needs to be

properly controlled in terms of size and impurities. Another

problem is that manganese chloride, used as a solution in the

process, is toxic and may harm the aquatic environment, which

means that the industry incurs extra costs for plastic cleaning and

wastewater treatment.

2.3.4 Density separation (sink-float separation)
Plastics with different densities can be placed in a liquid of

intermediate density; the denser plastic will sink and separate from

the floating plastics (Pita, 2023). Due to its low cost and fast

separation efficiency, density separation is the most feasible and

applicable method for application in various contaminated

environments (Kurniawan et al., 2021), and medium density plays

a key role in affecting the separation efficiency of mixed plastics (Fu

et al., 2017). Water, calcium chloride solution (CaCl2), sodium

chloride solution (NaCl), and ethyl alcohol solution (C2H5OH) are

commonly used separation media (Wang et al., 2019; Fu et al.,

2017). However, non-aqueous media present post-separation

challenges, as residual solutes must be thoroughly removed from

recovered plastics. In this regard, water-soluble salts like NaCl are

particularly advantageous due to their ease of removal through

simple rinsing and lower environmental impact compared to heavy

metal salts. Duong et al. (2022) tested the separation efficiency of

microplastics (PS, PE, PVC, PET, PP, and HDPE) using different

salt solutions (NaCl, NaI, CaCl2, and ZnCl2), and the results

revealed that NaCl is the best option by considering the

separation efficiency, cost, environmental effects, and ease of post-

separation cleanup.

Nevertheless, for plastic particles that possess dimensions

smaller than 0.5 mm, the traditional density separator proves to

be impractical; but the technique of hydrocyclone separation may
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be employed (Zhang et al., 2023). The hydrocyclone, also referred to

as a cyclone, is a widely applied separation device in the coal

industry, which utilizes centrifugal force to accelerate the setting

rate of slurry particles and separate particles according to their

shape, size, and density (Lu, 2015). However, because this method is

gravity-based, plastics with similar densities cannot be separated by

this method (Pita and Castilho, 2017). Hydrocyclones have been

applied for the separation of different types of plastics (Gent et al.,

2018; Zhang et al., 2023; Malcolm Richard et al., 2011). Malcolm

Richard et al. (2011) presented a method for the separation of

plastics with different densities by using density media separation

(DMS) techniques. The efficiency of DMS cyclones is influenced by

various factors such as viscosity, particle size distribution, flow rate,

pressure of the separation media, diameter, length, feed and exit

port size, cyclone configurations, and particle size distributions

(Malcolm Richard et al., 2011). To enhance the geometric

characteristics of hydrocyclones and optimize their performance,

computational fluid dynamics simulations were utilized to replicate

and study the intricate mechanisms involved in the centrifugal

separation process. This approach involves the application of

advanced numerical methods to model fluid flow patterns, forces,

and interactions within the hydrocyclone system, providing

valuable insights into the underlying physics and enabling the

identification of potential areas for improvement and

optimization. Based on a database of 60 hydrocyclones with

different geometric dimensions, Gonçalves et al. (2020) used

numerical and experimental studies to change the design of

hydrocyclones, leading to a 22% higher processing capacity, 9%

higher efficiency, and 33% reduction in energy consumption.

The concentration of microplastics and the viscosity of the

solution also affect the overall performance. He et al. (2022)

investigated the performance of mini-hydrocyclones in separating

microplastics, 10 mmmicroplastics achieved a recovery rate of 51%,

with a maximum concentration ratio of 2.16. Han et al. (2019)

improved the extraction efficiency of microplastics in flotation

techniques by using a NaCl-NaI mix to replace the commonly

used NaCl solution and used air flotation rather than stirring. Yuan

et al. (2022) also used air flotation to remove the microplastics from

water in a mini-hydrocyclone, the separation efficiency improved by

5% to 15% within a split ratio range of 0.04 to 0.23.

As mentioned above, the efficiency of hydrocyclones in

separating plastics depends on the inherent properties of

microplastics, selection of the separation medium, and geometry

of the cyclones. However, the properties of microplastics in different

geological regions may vary, which means that the design of the

separation process must be optimized accordingly.

2.3.5 Optical sorting
There are some commonly used spectroscopic methods (optical

techniques) to separate municipal waste plastics, including near-

infrared (NIR), Raman, Laser-induced breakdown spectroscopy

(LIBS), and X-ray fluorescence spectroscopy (XRF). The process

of optical sorting relies on the application of artificial illumination

to the stream of waste materials, which is subsequently identified by

highly sensitive sensors, followed by the pneumatic ejection of the
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identified materials to their predetermined locations; among the

various methodologies employed, near-infrared/visual spectroscopy

(NIR/VIS) scanning is the most commonly used technique

(Procházka et al., 2024). However, current optical sorting

methods are mainly designed for separating mixed municipal

solid waste, and the effectiveness of optical sorting for marine

plastics still requires further investigation. Mendoza et al. (2024)

evaluated the performance of municipal solid waste optical sorters

(NIR/VIS) for separating marine plastics, the results showed the

chemical differences of the marine plastics will not affect the

efficiency of the automatic sorting system. The NIR/VIS

wavelengths may however present additional difficulties in the

characterization of post-consumer plastics due to the excessively

absorbent spectral bands originating from various additives such as

dyes. Furthermore, environmental weathering (e.g., mechanical

abrasion and photodegradation) alters polymer surface chemistry,

causing spectral shifts that reduce identification accuracy. For

example, photodegradation generates carbonyl groups (C=O),

creating new FTIR absorption peaks at 1710–1740 cm-1 (Iniguez

et al., 2018; Gewert et al., 2015), while mechanical abrasion

increases surface roughness, scattering incident light and

broadening spectral bands in NIR (Käppler et al., 2016). To

overcome these problems, a technique using mid-infrared

spectroscopy and machine learning was developed for the

classification of post-consumer plastic waste (Stavinski et al.,

2023). Their approach utilized a spectral database containing 835

real-world plastic items (yielding 2505 spectra) across five major

resin types (PET #1, HDPE #2, LDPE #4, PP #5, PS #6). They

applied autoencoders—an unsupervised machine learning

algorithm—to pre-process spectral data before classification using

several models: Random Forest (RF), k-Nearest Neighbors (KNN),

Support Vector Machine (SVM), and Logistic Regression (LR).

Notably, the RF model achieved perfect accuracy (100.0%) in both

the C–H stretching region (2990–2820 cm-1) and the molecular

fingerprint region (1500–650 cm-1). There are many other optical

identification methods have been devised in recent decades and

implemented for the segregation of plastics. Raman spectroscopy

can be used to obtain the molecular structure by analyzing the

scattering spectrum at different frequencies from the incident light

(Neo et al., 2022). LIBS employs a laser to heat polymer micro

regions, leading to ablation, atomic decomposition, plasma

formation, and subsequent characteristic radiation for data

analysis (Zhang et al., 2023). XRF uses X-ray photons to impact a

targeted material and detect the movements of electrons, followed

by the emission of X-rays (Rybarczyk et al., 2020). The smallest

measurable sample sizes of NIR, LIBS, and XRF are 1 cm, 1 mm,

and 1 cm, respectively, making these techniques suitable for

separating macroplastics (Michel et al. , 2020). Raman

spectroscopy, with the smallest sample sizes of 1 mm, is more

appropriate for microplastics (Käppler et al., 2016).

2.3.6 Froth flotation
The key concept of froth flotation relies on the preferential

adhesion of particles to air bubbles, governed by their surface

energy and resulting hydrophobic or hydrophilic properties
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(Kökkiliç et al., 2022). In plastic flotation, multiple bubbles

adhere to a single particle, forming aggregates where clusters of

plastic particles are held together by bubbles (Wang et al., 2015).The

froth flotation efficiency is affected by various chemical and physical

variables. Physical variables include physical properties, such as

particle size and composition, and chemical variables mainly aim to

control the hydrophilic and hydrophobic states of the materials

(Wills et al., 2015). Hydrophobic materials can attach to air bubbles

and float (Kökkiliç et al., 2022). Froth flotation is limited to fine

plastics due to the insufficient adhesion between larger particles and

bubbles, leading to bubble rupture (Wills and Finch, 2015).

Therefore, froth flotation cannot be applied to macroplastics.

Froth flotation separates fine particles from aqueous suspensions

by the selective attachment of particles to air bubbles (Pawlik, 2022).

Because of this mechanism, froth flotation can separate plastics with

different densities; however, the reagents introduced in the process

may require further wastewater treatment.

Jiang et al. (2022a) conducted a study into the impact of

microplastic properties, flotation conditions, and the presence of

various aqueous species on the efficacy of froth flotation separation.

The findings revealed that variables such as pH, temperature,

microplastic size, and concentration did not have any significant

influence on the efficiency of separation. However, it has been

observed that the selection of specific aqueous species is crucial to

attaining the desired recovery rate for distinct microplastics (Jiang

et al., 2022a). To further improve separation efficiency, Zhang et al.

(2020) used chlorine dioxide for the surface treatment of polyvinyl

chloride (PVC) and polycarbonate (PC). This process successfully

increased the hydrophilization of PC, and the recovery rate and

purity of the separated PC were 97% and 99%, respectively (Zhang

et al., 2020). Wang et al. (2023) also tried to improve the

hydrophilization of PC by using Fe(VI), which successfully

separates PC from multi-plastic mixtures (PC, ABS, PVC, PMMA

and PS). However, this process changed the surface functional

groups of PC, and the effects of the surface treatment on the

properties of PC still require further investigation.

2.3.7 Electrostatic separation
Electrostatic separation is a promising method for separating

various types of waste plastics (Silveira et al., 2018; Park et al., 2008).

The underlying principle of this technology lies in the distinct

electrical properties exhibited by various types of plastics, which

result in discrepant charges (Li et al., 2017; Rybarczyk et al., 2020).

Consequently, these charged particles undergo various electrostatic

forces within the electric field and are separated into different pure

fractions. It has a minimum treatment particle size of 100 µm

(Kurzweg et al., 2022). While excessively large particles may be too

heavy to be effectively moved by the electric field, a universally

defined threshold for “too large” remains unavailable in the

literature. However, studies suggest that electrostatic separation

can achieve a separation efficiency of ∼60–100% for particles

ranging from 450 µm to 4 mm, making it particularly suitable for

microplastic separation (Enders et al., 2020). A notable advantage of

this method is that it does not require wastewater treatment or

drying processes (Pita and Castilho, 2017).
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Felsing et al. (2018) pioneered the application of the Korona-

Walzen-Scheider (KWS) electrostatic separator for microplastic

(MP) separation. Their study evaluated four distinct matrices—

quartz sand, freshwater suspended particulate matter, freshwater

sediment, and beach sand—each spiked with MPs ranging from

0.063 to 5 mm in size. Remarkably, this method achieved recovery

rates approaching 100% across all tested materials. Building on this

work, Enders et al. (2020) assessed the reliability of the KWS system

for extracting MPs of varying sizes from beach sediments. Their

results revealed a strong dependence of separation efficiency on MP

size, with recovery rates (RR) as follows: MP ≥2 mm, RR=99-100%;

63<MP<450 µm, RR≈60-95%; MP=20 µm, RR≈45% (Enders et al.,

2020). Kurzweg et al. (2022) further improved the separation

process by combining electrostatic separation with density

separation by using potassium iodide solution, followed by

differential scanning calorimetry to determine the recovery rate.

While their scaled-up electrostatic separation achieved recovery

rates comparable to small-scale processes, the study highlighted the

need for further refinement of Differential Scanning Calorimetry

(DSC) protocols to improve measurement accuracy in MP

quantification (Kurzweg et al., 2022).
3 Thermomechanical recycling of
marine plastics

After cleaning and separation, marine plastics can be extruded

and pelletized for further processing. The pellets were

subsequently processed using resin-molding techniques to form

new products. There are five typical resin molding techniques:

extrusion molding, injection molding, blow molding, vacuum

molding and inflation molding (Al-Salem et al., 2009). However,

the efficacy of mechanical recycling is heavily dependent on the

purity of the waste stream, and different types of fillers in recycled

plastics, such as contaminants and additives, can compromise the

material quality (Lange, 2021). For high-value-added applications

with strict properties requirements, recycled marine plastic should

have no significant decrease in chemical, physical, and mechanical

properties compared to virgin materials (Râpă et al., 2024).

Furthermore, stringent regulations restrict the use of recycled

marine plastics in certain applications, such as food packaging,

owing to the potential presence of toxic impurities (Lange, 2021).

For instance, in the US, the Food and Drugs Administration(FDA)

evaluates recycled plastics for food contact on a case-by-case basis

through its Food Contact Notification (FCN) or Threshold of

Regulation (ToR) processes. Obtaining approval is particularly

challenging for marine plastics due to the difficulty in identifying

and removing complex environmental contaminants like

persistent organic pollutants or heavy metals absorbed during

ocean exposure (FDA, 2021).
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4 Upcycling of macroplastics and
microplastics

Upcycling marine plastic waste offers a promising pathway for

transforming environmental pollutants into high-value products,

combining sustainability with innovation to address the global

plastic crisis. In this review, ‘upcycling’ encompasses two distinct

pathways: (1) Mechanical upcycling, referring to the physical

reprocessing of waste plastics into higher-value products, and (2)

Chemical and biological upcycling, denoting the molecular

transformation of plastic polymers into value-added feedstocks or

fuels through chemical or biological processes.
4.1 Mechanical upcycling

In recent years, numerous companies have successfully upcycled

mechanically recycled marine macroplastics into commercial

products, including shoes, sunglasses, bags, athletic shorts, and

furniture (Dorfman, 2020; Winkler, 2024). In 2019, The Ocean

Cleanup (n.d.) project transformed plastics collected from the

Great Pacific Garbage Patch into sunglasses. In 2021, Sabic and

Microsoft collaborated to produce Microsoft Ocean Plastic Mouse,

which contained 20 wt. % recycled ocean plastic (Heather, 2021).

Similarly, Adidas partnered with Parley to produce shoes from

recycled marine plastic bottles (Adidas, 2021). The environmental

benefits of these initiatives have been validated by life cycle

assessments (LCAs) conducted by researchers. Cañado et al. (2022)

gathered discarded polyamide fishing nets and employed 3D printing

techniques to fabricate new products. By conducting a cradle-to-

grave LCA investigation, the utilization of marine plastic waste as a

primary resource demonstrated enhanced efficacy in environmental

impacts compared to virgin bioplastics sourced from renewable

sources. Tippett (2023) conducted an investigation into the

ecological ramifications associated with the manufacturing of

recycled plastic granulate derived from discarded ropes, which

originate from the fishing or aquaculture sectors, and LCA

demonstrated that the recycled material exhibits markedly reduced

impacts on global warming potential, acidification potential, and

eutrophication potential compared to conventional materials.

Although macroplastics have seen successful commercial

upcycling, the upcycling of marine microplastics remains largely

hypothetical due to the absence of operational facilities. The

mechanical upcycling of microplastics are rarely reported. Some

researchers reported the chemical upcycling method for transform

the carbon in low value polyolefins to high value organics (Vogt

et al., 2021; Jiang et al., 2022b). These innovative approaches

highlight the potential for future advancements in microplastic

upcycling, although significant technical and logistical

challenges remain.
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4.2 Chemical and biological upcycling

Chemical and biological upcycling depolymerizes marine

plastics into molecular building blocks (e.g., monomers,

oligomers, or hydrocarbons) for reconstitution into higher-value

products, overcoming limitations of mechanical reprocessing for

degraded polymers. Exemplary chemical and biological upcycling

routes are shown in Figure 2.

Key technologies include catalytic pyrolysis, which converts

polyolefins (PE/PP) into liquid alkanes for fuels. For instance, Cai

et al. (2021)demonstrated that PP plastic waste can be transformed

into hydrogen and liquid fuels using Fe/Al2O3 and Fe/ZSM-5

catalysts, respectively. Similarly), Cocchi et al. (2023) validated

this approach using marine plastic litter (52 wt% PE, 45 wt% PP)

collected during beach cleanups, confirming catalytic pyrolysis as a

viable upcycling pathway for valuable organic products. Beyond

pyrolysis, hydrogenolysis offers another route; Jia et al. (2021)

reported a liquid-phase catalytic process that efficiently converts

high-density PE to jet-fuel and lubricant hydrocarbons under mild

conditions using Ru catalysts. Enzymatic depolymerization also

shows significant promise. Lu et al. (2022)utilized FAST-PETase

for ambient degradation of macroplastics, achieved near-complete

depolymerization of untreated postconsumer-PET from 51

thermoformed products within one week. This enzyme further

demonstrated efficacy on amorphous sections of commercial

water bottles and entire thermally pretreated bottles at 50°C,

enabling closed-loop PET recycling via monomer recovery

and resynthesis.

Though mechanical upcycling of microplastics were rarely

reported, chemical upcycling show promise for microplastics;

recent work demonstrates hydrothermal dechlorination of PVC
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microparticles into carbon nanomaterials for energy storage

applications (Zhang et al., 2025). Photoreforming offers a low-

energy route for transforming microplastic waste into fuel and

chemicals. Uekert et al. (2019) employed an inexpensive carbon

nitride/nickel phosphide (CNx|Ni2P) photocatalyst to photoreform

polyester microfibers, generating H2 and organics. Atmospheric

pressure microwave plasma (APMP) synthesis provides a one-step,

environmentally friendly method to convert microplastics into

valuable graphene. Zafar and Jacob (2024) demonstrated efficient

transformation of polyethylene microplastics from waste dropper

bottles using this technique.

While offering a transformative pathway, scaling chemical

and biological upcycling to address the immense challenge of

marine plastics, particularly persistent microplastics, requires

breakthroughs in handling complex contaminant mixtures and

improving process energy efficiency.
5 Policy frameworks and technical
pathways for marine plastic waste
management

Building upon the technical routes and challenges of marine

plastic recycling identified in previous sections, this section

establishes how policy frameworks enable viable waste

management pathways through the waste hierarchy (prevention >

reuse > recycling > recovery > disposal). We align solutions with

this hierarchy from the EU Marine Strategy Framework Directive

(2008/56/EC) and Waste Directive (2008/98/EC) (European

Commission, 2008), proposing an integrated technical route

shown in Figure 3.
FIGURE 2

Exemplary routes of marine plastic waste chemical/biological upcycling.
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Strict regulations on single-use plastics (e.g., China’s 2025 phase-

out plan, EU Directive 2019/904) primarily serve prevention by

mitigating plastic leakage at source (National Development and

Reform Commission, 2020). For existing marine plastics, the core

focus shifts to recycling and recovery, where this review’s examined

technologies apply most directly. Macroplastic recycling leverages

separation techniques like density-based hydrocyclones and NIR/

VIS optical sorting to achieve material purity for mechanical

upcycling—processes commercially implemented in products from

Adidas shoes to Ocean Cleanup sunglasses. These align with policies

mandating recycled content (e.g., EU’s 25-30% targets for bottles) but

require enhanced collection systems and extended producer

responsibility schemes.

Recovery provides pathways for non-recyclable plastics:

catalytic pyrolysis (Section 4.2) converts degraded PE/PP into

fuels, while emerging chemical upcycling methods target

microplastics through hydrothermal dechlorination or

photoreforming. Though less mature, these technologies offer

value extraction where mechanical recycling fails, supported by

policy incentives for chemical recovery. For microplastics,

separation methods like froth flotation and magnetic levitation

bridge recycling and recovery but face scalability limitations.

Finally, disposal manages residuals from recycling/recovery

processes—such as contaminated microplastics or pyrolysis chars

—through regulated landfilling or energy recovery. This least-

preferred tier requires stringent controls to prevent secondary

pollution. Global collaboration must prioritize scaling feasible

separation technologies while advancing monitoring systems like

NOAA’s microplastic database. The integrated pathway in Figure 3

demonstrates how policy frameworks activate technical solutions

across the hierarchy, with prevention reducing new inputs and

recycling/recovery addressing legacy waste.
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6 Research gap and future direction

Despite the significant advancements in mechanical recycling

technologies for marine plastics, several critical research gaps and

challenges remain. Addressing these gaps is essential for enhancing

the efficiency, scalability, and sustainability of recycling processes

while aligning with global and regional policy frameworks. The

existing marine plastics pose significant threats to marine

ecosystems, human health, and economic activities. The current

marine plastic collection and transportation processes are labor-

intensive and costly (Râpă et al., 2024). To address this issue, some

non-profit organizations and research facilities have developed

collection technologies for recycling waste plastics from rivers,

beaches, and regions at various ocean depths. However, many of

these technologies still struggle with cost effectiveness, which limits

the large-scale treatment of marine plastics. Passive collection

systems, such as Seabin and Ocean Cleanup interceptors, may be

an effective solution to reducing the operating cost. However, these

techniques are mainly designed for collecting floating

macroplastics, and the collection of high-density marine plastics

remains challenging. Future research should focus on improving

the cost-effectiveness of current collection technologies and

extending their applicability to more plastic types.

Currently, marine microplastic collection is mainly carried

out for research purposes rather than recycling. Compared to

macroplastics, the economic benefits of recycling microplastics

are minor unless a large-scale cost-effective collection system can

be developed. Based on the current situation, source control is the

most acceptable control method for microplastics (Ruan et al.,

2018). To reduce microplastic pollution, three important aspects

must be considered: 1) recycling of macroplastics to reduce

plastic fragmentation (Julienne et al., 2019); 2) reducing the use
FIGURE 3

Waste management strategy for reducing the environmental impact of marine plastics waste.
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of single-use plastics (Xanthos and Walker, 2017); and 3)

reducing the use of microbeads and synthetic microfibers

(Lindeque et al., 2020).

To motivate investment in marine plastic recycling, government

support in the following aspects is crucial: 1.Designing effective

solid waste management strategies to prevent plastic leakage into

marine environments.2. Providing tax subsidies and financial

incentives to make recycling operations economically viable. 3.

Enhancing public education on marine plastic pollution and

expanding the market for recycled marine plastic products.

Marine plastic pollution is a global issue that requires coordinated

international effort. Although some countries have initiated projects

to address this problem, marine plastic pollution remains

underappreciated in many regions (Kurniawan et al., 2021).

Strengthening global collaboration, sharing best practices, and

raising awareness are essential for achieving meaningful progress

in combating marine plastic pollution.
7 Conclusion

Although marine plastic pollution has attracted public attention

in recent years, there remains a lack of large-scale waste

management systems and reliable commercial solutions for the

treatment of existing marine plastics. Recycling of marine plastics,

especially macroplastics, has become an urgent issue because they

can break up into microplastics, which are almost impossible to

completely remove from the ocean. Marine plastic pollution is a

typical global problem that requires all stakeholders (government,

product manufacturers, scientists, NGOs, and the general public) to

make joint efforts to solve this problem. To improve the upcycling

or recycling of marine plastics, this review systematically reviews

the mechanical techniques for recycling marine macroplastics and

microplastics. The main mechanical recycling technologies involved

in marine plastic collection, cleaning, separation, and melt

processing were discussed. However, current mechanical recycling

technologies still have some limitations. Many techniques are still in

the laboratory stage and have not yet been industrialized. Some of

the technologies mentioned in this paper may perform well in a

small lab-scale experiment but may face cost-effectiveness issues in

large-scale processes. As a result, there is an urgent need to establish

a reliable marine plastic monitoring system, set up standard plastic

collection, separation, and melt processing steps, and establish

domestic and international cooperation to solve this problem.
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Bayo, J., López-Castellanos, J., and Olmos, S. (2020). Membrane bioreactor and rapid
sand filtration for the removal of microplastics in an urban wastewater treatment plant.
Mar. pollut. Bull. 156. doi: 10.1016/j.marpolbul.2020.111211

Beaumont, N. J., Aanesen, M., Austen, M. C., Borger, T., Clark, J. R., Cole, M., et al.
(2019). Global ecological, social and economic impacts of marine plastic. Mar. pollut.
Bull. 142, 189–195. doi: 10.1016/j.marpolbul.2019.03.022
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ABS Acrylonitrile Butadiene Styrene
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APEC Asia Pacific Economic Cooperation
ARIS Adaptive Resolution Imaging Sonar
ATR Attenuated Total Reflectance
BPA Bisphenol A
DBP Dibutyl Phthalate
DEHP Bis(2-Ethylhexyl) Phthalate
DMS Density Media Separation
DSC Differential Scanning Calorimetry
LCA Life Cycle Assessment
LIBS Laser-Induced Breakdown Spectroscopy
LS-TENG Liquid-Solid Triboelectric Nanogenerator
MP Microplastics
NCEI National Centers For Environmental Information
NDRC National Development And Reform Commission
NIR Near-Infrared Reflectance
NIR/VIS Near-Infrared/Visual Spectroscopy
NOAA National Oceanic And Atmospheric Administration
ience 17
OPFR Organophosphorus Flame Retardants
PBDEs Polybrominated Diphenyl Ethers
PC Polycarbonate
PE Polyethylene
PET Polyethylene Terephthalate
PMMA Polymethyl Methacrylate
PP Polypropylene
PS Polystyrene
PS-E Expandable Polystyrene
PUR Polyurethane
PVC Polyvinyl Chloride
Py-GC/MS Pyrolysis-Gas Chromatography-Mass Spectrometry
RR Recovery Rate
SOA State Oceanic Administration
SRS Stimulated Raman Scattering
SSS Side-Scan Sonar
UV Ultraviolet
XRF X-Ray Fluorescence
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